

Chronic Kidney Failure

★ Objectives:

- 1. To understand the basic informations on etiology, staging, Diagnosis and treatment.
- 2. To know complications of CKD and their treatment.
- 3. To analyze the mechanism and pathophysiology of CKD progression and therapies to slow progression.

* Resources Used in This lecture: Slides-StepUp-Davidson's

Functions of normal kidneys:

- Fluid balance
- Electrolyte regulation
- Control acid base balance
- Waste removal
- Hormonal function:
 - Erythropoietin
 - o Renin
 - Prostaglandins
 - Active vitamin D3

chronic progressive **irreversible** loss of renal function. It is defined as the presence of clinical and/or pathologic evidence of kidney disease **for at least 3 months**

ESRD: advanced CKD (Stage-5) requiring dialysis or kidney transplantation

Stages of Chronic Kidney Disease:

stage	Description	GFR (ml/min/1.73m2)
1	Kidney damage with normal or GFR Evidence by lab (e.g. ↑ urea, Creatinine, proteinuria, hematuria) or by radiology (e.g. cysts, stones, atrophic kidney) + or normal ↑ GFR.	>90
2	Mild ↓ GFR	60 - 89
3	Moderate ↓ GFR	30 - 59
4	Severe ↓ GFR	15 – 29
5	Kidney failure, ESRD	<15 or dialysis

Etiology of CKD include:

- Diabetes Mellitus (30% of cases)
- Hypertension (25% of cases)
- Glomerulonephritis
- Interstitial nephritis/pyelonephritis
- Congenital and inherited "polycystic disease"
- Miscellaneous
- Tumors

Risk Factors For CKD:

- 1. Genetic (family hx of kidney disease)
- 2. Low socioeconomic status
- 3. Medical status: diabetes, hypertension, Obesity, smoking & cardiovascular disease

Pathophysiology:

Underlying kidney disease \rightarrow Loss of some nephrons \rightarrow Kidney try to compensate by two mechanism:

- 1. Increase Blood pressure (Due to decreased GFR).
- 2. Increase single nephron GFR [SNGFR] in the remaining nephrons by hypertrophy and hyperfunction leading to:
 - a. \(\begin{align*} \text{Intraglomerular pressure and } \Delta \text{Filtration (still the total GFR is decreased).} \)
 - b. Enhance proximal reabsorption of NaCl, Fluids and PO4.
 - c. Enhance collecting ducts secretion of K+ and H+.

These adaptations **initially** restore hemeostasis. But **glomerular hyperfiltration** → **glomerular injury**, glomerulosclerosis and further loss of renal function. Also will result in increase of some Growth factors such as:

- Transforming growth factor-B
- Platelets derived growth factors
- Osteopontin, angiotensin-II
- Endothelin.

leading to further kidney damage and interstitial fibrosis.

★ Factors contributing to the Progression of CKD

- Degree of hypertension
- Severity of proteinuria
- Hyperlipidemia
- Drugs (NSAID)
- High protein diet
- Persistent metabolic acidosis
- Extent of tubulointerstitial disease

★ Clinical Feature of CKD:

The typical presentation is with a **raised urea and creatinine** found during routine blood tests, frequently accompanied by hypertension, proteinuria or anaemia.

★ Symptoms and Signs:

Most patients with slowly progressive disease are asymptomatic until GFR falls below 30mL/min/1.73 m2 (stage 4 or 5) and some can remain asymptomatic with much lower GFR values **than** this.

★ Uremic syndrome:

Uremia results from retention of **end products of protein metabolism.** i.e. urea Administration of urea causes only mild symptoms. Other potential uremic toxins:

- Guanidine
- Phenoles
- P2 microglobulin
- Phosphate
- Hipurate

- Polyamines
- Homocysteine
- Purines
- Parathyroid hormone (PTH)
- Dimethyl arginine

Changes occur in CKD patients

Metabolic and electrolytes abnormalities in CKD:

A. Carbohydrate intolerance:

- Insulin is degraded by the liver and kidneys
- The decrease in insulin clearance is offset by <u>peripheral insulin resistance</u>
- Hyperparathyroidism inhibits insulin secretion
- Decrease in requirements for insulin and OHD in diabetic patients as they develop renal failure. Otherwise, they might develop hypoglycemia as they have decrease in insulin clearance.

B. dyslipidemia:

- ↓ HDL cholesterol
- \uparrow TG and lipoprotein (α)

C. Fluid and Electrolytes:

- \downarrow GFR and defective tubular function → expansion of plasma and ECF volumes, edema, and hypertension.
- **Hyponatremia** can result from failure to excrete free water when intakes exceed 1.5L/day. <u>Hypertension</u> is common unless Na+ intake is restricted to 100 meg/day.
- Patient with salt losing nephropathy require stepwise increases in Nacl and fluid intake.
- K+ elimination in CKD is **initially** maintained by:
 - enhanced K+ secretion in surviving nephrons
 - colonic K+ secretion (from aldosterone stimulated by hyperkalemia and metabolic acidosis)

However, as GFR decreases, K+ elimination is reduced \rightarrow hyperkalemia.

D. Acid-Base abnormalities - metabolic acidosis

- The body produces about 80 mmol of non-volatile acids from metabolism everyday.
- These acids accumulates as renal failure progresses.
- Production of ammonia NH_3 (in distal and CD cells) decreases \rightarrow limits distal tubular H^+ trapping as NH_4 and hence, decreases renal bicarbonate regeneration.
- Additionally, there may be proximal <u>HCO₃ wasting or reduced distal H⁺ secretion</u>.

E. Chronic Kidney Disease-mineral and bone disorder CKD-MBD:

Indicates alterations in mineral bone metabolism, these alterations include:

- 1. biochemical abnormalities in **calcium**, **phosphorus**,**PTH**, **vitamin D and fibroblast growth factor-23**.
- 2. changes in bone morphology: volume, turnover, and mineralization

3. calcification of soft tissue and blood vessels

As GFR declines, the excretion of phosphorus is impaired, leading to a tendency to hyperphosphatemia.

Hyperphosphatemia is an independent risk factor for the increased morbidity and mortality of stage 5 CKD from cardiovascular events.

Recently, it has been demonstrated that fibroblast growth factor 23 (FGF-23) is stimulated by **phosphorus retention.**

FGF-23 causes phosphat<u>uria</u> (via both parathyroid-dependent and independent mechanisms) and <u>maintain serum phosphorus in the normal range</u> **until GFR declines to < 30 ml/min/1.73m2.**

FGF-23 also decreases 1,25-dihydroxyvitamin D (calcitriol) formation which in conjunction with hyperphosphatemia, will lead to parathyroid hyperplasia and an increase in PTH secretion.

★ The classic biochemical abnormalities:

- hypocalcemia
- hypophosphatemia
- hyperparathyroidism
- o hypovitaminosis D
- o elevated FGF-23

E.Renal Osteodystrophy (ROD)

is a complex disorders of bones in uremic patient resulting from abnormalities of <u>mineral ions</u> (Ca, po4, Mg) ,PTH , Vit-D and FGF23 metabolism in the presence of factors related to the uremic state.

Spectrum of bone abnormalities in ROD:

- 1. <u>Osteitis fibrosa cystica</u> (high bone turnover), due to:
 - a. PTH
 - b. activity of both osteoclast and osteoblast

2. <u>Adynamic bone disease</u> (low bone turnover): A defect in osteoblast development or activity caused by factors related to the uremic state.

Risk factors for adynamic bone disease:

- Advanced age
- CAPD
- Diabetes mellitus
- Calcitriol therapy
- Parathyroidectomy
- Flouride and iron intoxication
- 3. *Osteomalacia* (low turnover accompanied by under mineralized bone tissue)
- 4. <u>Combination of the above</u>

Patients with these bone abnormalities may be asymptomatic or may develop symptoms related to bone pain or fractures.

ESRD patients on dialysis have > 3-4 times increased risk of vertebral and hip fractures compared to general population even after adjustment for age, gender and race.

♦ Cardiovascular:

- 1. Hypertension Occurs in 90% of patients with ESRD
 - Secondary to **Salt and water retention.**
 - Inappropriate secretion of RAA system.
 - † sympathetic tone
 - † generation of vasoconstrictors (endothelin)
 - ↓ generation of vasodilators (nitric oxide)
- 2. Cardiomyopathy
 - left ventricular hypertrophy (LVH)
 - Coronary artery disease (CAD)
 - Congestive heart failure (CHF)
 - Diastolic dysfunction
- 3. Pericarditis and pericardial effusion
 - Due to Uremia. It's an indication of Dialysis.
- 4. Congestive heart failure
 - Due to Volume overload, HTN, and Anemia.
- ◆ These abnormalities increase 2-5 folds in ESRD
- ◆ About one-half of all hemodialysis patients have significant ischemic heart disease
- ◆ Dyslipidemia, HTN, homocystin, DM, and insulin resistance contribute to atherosclerosis
- ◆ Anemia aggravates LVH
- Hyperparathyroidism amyloidosis, and iron overload cause also cardiac dysfunction.

♦ GI:

- Nausea, Vomiting.
- Loss of appetite (Anorexia).
- Uremic faetor, stomatitis, esophagitis, gastritis, and peptic ulcer disease
- 1 Gastrin in CKD

♦ Neuromuscular abnormalities

CNS dysfunction:

- Decreased attention, agitation, confusion, insomnia, and impaired memory
- May develop also: depression, hallucinations, delusions, hiccups, cramps, **flapping tremor**, "sign of encephalopathy and indication of hemodialysis"
- myocloms, fasciculation, and uremic seizures.
- Lethargy, Confusion, Tetany due to **Hypocalcemia**

Peripheral neuropathy:

- usually symmetric, lower limbs
- Sensory precedes motor dysfunction
- Hyperreflexia
- Restless leg syndrome, in which the patient's legs are jumpy during the night. and burning feet
- Postural hypotension (autonomic dysfunction)

♦ Hematological:

Anemia:

- Develops as serum creatinine increases > 180 mcm/L and GFR declines to <30 ml/minute
- Normocytic, normochromic anemia
- Main cause: decreased production of EPO

Platelet Dysfunction:

- Bruising, ecchymoses, bleeding from mm
- Platelets dysfunction (count is normal): ↓ VWF, which facilitate the interaction between platelets and endothelium through its binding to platelet glycoprotein (IIb, IIIa) receptors.

♦ <u>Immunologic:</u>

Impair cellular and humoral immunity → increased susceptibility to infections "degranulation is impaired"

♦ Dermatologic abnormalities

Uremic pruritus is related to:

- Calcium and phosph deposition (secondary to ↑ PTH)
- Hypercalcemia
- Peripheral neuropathy
- Dry skin
- Anemia
- Inadequate dialysis

★ Natural History of CKD:

Early: usually asymptomatic in its early stages.

Late: symptoms and signs usually related to:

- sodium and water retention (HTN, Edema)
- metabolic and hormonal complications (anemia, vit-D deficiency, ↑ PTH)
- Increased incidence of CVD, infection, and Impaired physical function.

★ Evaluation of Patients with CKD

- The history should document the presence of uremic symptoms and possible etiology from: Diabetes Mellitus, Hypertension, congestive Heart Failure, MM, NSAID
- Family history can suggest PCKD or hereditary nephritis
- Volume depletion and obstructive nephropathy should be identified and treated promptly
- Ultrasound small, shrunken kidneys
- Normal kidney size with CKD: DM, amyloid, MM

Fig. 17.13 Physical signs in advanced chronic kidney disease. ("Features of renal replacement therapy)

All patients with CKD should have a basic evaluation including: CBC, urinalysis, U&E, LFTs, Ca, P, magnesium, PTH, Vit-D, urine pro/cr ratio.

Further evaluations will depend on initial findings and likely diagnostic possibilities

Investigation

- **CBC**: Anemia, thrombocytopenia
- **Urinalysis**: Hematuria and proteinuria may indicate cause. Proteinuria indicates risk of progressive CKD requiring preventive ACE inhibitor or ARB therapy
- Measure Cr clearance to estimate GFR
- **Serum electrolytes** (K⁺, Ca²⁺, PO₄³⁻, Serum protein)
- Renal ultrasound: evaluate size of kidneys/rule out obstruction
 - Small kidneys are suggestive of chronic renal insufficiency with little chance of recovery.
 - Presence of normal-sized or large kidneys does not exclude CKD.
- **Renal biopsy**—in select cases to determine specific etiology.

Management of CKD Patients

1. Nutrition: restriction intake of:

- protein; not less than 0.8mg/kg/day
- Phosphate
- sodium
- potassium

2. Salt and water retention:

- Salt intake restriction "daily Na⁺ < 100 meg
- fluid restriction 1 1.5 L/day
- Loop diuretics
- RAS inhibition (ACEi, ARB) if HTN w proteinuria

3. Hyperkalemia:

- Exogenous sources of K⁺: dates, dried fruits, citrus fruits, banana, chocolate, salt substitute
- Medications that ↑ K⁺: ACEI, ARB, NSAID, K⁺- sparing diuretics, B-Blockers, and heparin.

<u>Treatment of hyperkalemia:</u>

- IV calcium gluconate 10 cc of 10%
- Followed by 25 ml of 50% dextrose solution with 5-10 units regular insulin
- B₂-adrenergic agonist nebulizer (salbutamol)
- NaHCO₃ IV/oral

4. Hyperphosphatemia and secondary hyperparathyroidism:

- a. Reduce phosphate intake to < 10 mg/kg/day
- b. Phosphate binders: **Calcium carbonate**, **Sevelamer (Renagel)**, **Lanthanum carbonate**
- c. Vitamin D (Calcitriol) 0.125 mcq/day
 - Must be withheld until s. phosphate concentration have been controlled to < 6 mg/dl because it may cause severe soft tissue calcifications.
 - Vitamin D compounds can cause hypercalcemia and hyperphosphatemia, which may increase coronary calcification, so parcicalcitrol (Zemplar) is an analogue that inhibits PTH synthesis without elevation of calcium/phos.
- d. Indication for parathyroidectomy: **PTH > 800 pg/ml with symptoms of bone** disease (myopathy, bone pain) persistent hyperphosphatemia soft tissue calcifications.

5. Hyperlipidemia

the goal is to keep low density lipoprotein cholesterol < 100 mg/dl by diet control and statin group.

6. Anemia

Target Hb/Hct:

- K DOQI → Hb 11-12 Hct 33-36%

- Anemia will cause left ventricular hypertrophy, decrese quality of life and reduces survival in patients on HD
- Conversely: Hb > 13 and Hct > 42 are associated with more coronary events and increased mortality as evidenced by CHOIR (USA) and CREATE (Europe) studies target iron levels:
 - percent transferrin saturation (T-SAT) reflects iron available for erythopoiesis
 - serum ferritin reflects overall iron stores
 - in CKD, target T-Sat > 20 (20 50)
 - target S. ferritin > 100 ng/ml
 - iron supp should be withheld, if T-sat > 50, S. ferritin > 800 ng/ml

Treatment Guidelines (Anemia):

A. Oral iron

- <u>in non-dialysis patients (CKD stages 1-4)</u>: 100-200 mg elemental iron should be given daily in 2-3 days, either one hour before meals or two hours post. (1 tab Ferrous fumerate, 200 mg contains 66 mg elemental iron)
- *In dialysis patients (CKD 5):* IV iron should be given as ongoing iron losses tends to be higher

B. IV iron

- 1 gr of iron saccharate (ferrosac) divided into 10 doses of 100 mg given with each dialysis session.

C. Recombinant Erythropoeitin-epoeitin alfa (eprex):

- patients on: starting dose 120 180 IU/kg/week, IV
- pre-dialysis patients and PD patients: 80-120 IU/kg/week subcutaneously weekly dose
- Hb/Hct monitoring every 4 weeks
- the most common side effects: headache, HTN, arthralgia, and diarrhea
- resistance to epoeitin:
 - 1. inadequate Epo dose
 - 2. anemia of chronic disease (infection, inflammation)
 - 3. functional iron deficiency
 - 4. secondary to hyperparathyroidism
 - 5. carnitine deficiency
 - 6. hemoglobinopathies
 - 7. aluminum toxicity
 - 8. B_{12} /folate deficiency
 - 9. Malnutrition

D. Darbepoetin Alfa (Aranesp)

- Recombinant Epo
- Half-life: three folds longer IV and two folds longer S/C than that of epoetin
- Recommended starting dose 0.45 mcg/kg S/C weekly or double the dose every 2 weeks.

Transplantation is the only cure.

Medications:

- **Loop diuretics (fursemide)** (Salt and water retention).
- **RAS inhibition** (ACEi, ARB) if HTN with proteinuria.
- **Phosphate binders** (Calcium carbonate, Sevelamer (Renagel), Lanthanum carbonate). given with meals.
- **Statin** (hyperlipidemia).

- **Parcicalcitrol (Zemplar)** inhibits PTH synthesis without elevation of Ca²⁺/PO₄³⁻ (vitamin D compounds → Hypercalcemia + Hyperphosphatemia → coronary calcification). Parathyroidectomy when PTH 800 pg/ml + bone disease symptoms (myopathy, bone pain) + persistent hyperphosphatemia soft tissue calcifications.
- Hyperkalemia (temporary protect the heart from arrhythmia by shifting the K⁺ into the cell): IV calcium gluconate 10 cc of 10% → 25 ml of 50% dextrose solution with 5-10 units regular insulin → B2-adrenergic agonist nebulizer (salbutamol) → NaHCO₃ IV/oral.
- **Erythropoietin** for anemia (Hemoglobin should not go back to normal but around 11-12, if more than 12 high chance of strokes and cardiac problems).
- **Oral Iron** (100-200mg) if not on dialysis, IV Iron if on Dialysis divided into 10 doses of 100 mg given with each dialysis session.

Dialysis:

Should be delayed until their GFR drops to 8-6 mL/min/1.73 m² or until the first onset of a clinical indication.

(The overall aim is to commence Dialysis by the time symptoms of CKD have started to appear but before serious complications have occurred.)

- Clinical indication:
- Symptoms of uremia: Pericarditis, Lethargy, deterioration in mental status, encephalopathy, seizures.
- Fluid overload: Pulmonary edema, Hypertensive emergency.
- Refractory hyperkalemia or Acidosis.
- Intoxications: methanol, ethylene glycol, lithium, aspirin.

Cr and BUN levels are NOT absolute indications for dialysis.

Exercise

Aerobic exercise and resistance training have been shown to:

- decrease inflammation, oxidative stress, endothelial dysfunction and insulin resistance.
- reduce blood pressure.
- improve hyperlipidemia, proteinuria, and obesity.
- decrease CV mortality/morbidity.
- may decrease the rate of progression of CKD.

Treatment of the Manifestations of ESRD			
Manifestation	Treatment		
Anemia	Erythropoietin replacement and iron supplementation		
Hypocalcemia and osteomalacia	Replace vitamin D and calcium		
Bleeding	DDAVP increases platelet function; use only when bleeding		
Pruritus	Dialysis and ultraviolet light		
Hyperphosphatemia	Oral binders: see "Treatment of Hyperphosphatemia"		
Hypermagnesemia	Restriction of high-magnesium foods, laxatives, and antacids		
Atherosclerosis	Dialysis		
Endocrinopathy	Dialysis, estrogen and testosterone replacement		

MCQs

- 1) Which of the following is due to hyperparathyroidism in CKD?
- a. Osteomalacia
- b. Adynamic bone disease
- c. Osteitis fibrosa cystica
- d. Osteosarcoma
- 2) CKD patient with GFR of 68. Which stage is he at?
- a. Stage 1
- b. Stage 2
- c. Stage 3
- d. Stage 4

- 3) CKD causes:
- a. Decreased TG levels
- b. Decreased HDL levels
- c. Increased glucose levels
- d. Increased PH levels

4) Insulin is used in CKD to:

- a. Manage hypokalemia
- b. Manage hypophosphatemia
- c. Manage hyperphosphatemia
- d. Manage hyperkalemia

Answares:

- 1. C
- 2. B
- 3. B
- 4. D