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       After reading this chapter, you should know the 
answers to these questions:
•    What are the key motivations for clinical deci-

sion support?  
•   How is clinical decision support relevant to 

the concept of “meaningful use” of EHRs in 
the United States?  

•   What are typical design considerations when 
building a decision-support system?  

•   What are some ways in which developers of 
decision-support systems encode clinical 
knowledge?  

•   What are some current standards in the HIT 
industry that facilitate the construction of 
decision-support applications?  

•   Why has adoption been slow and what are 
prospects for broader use?  

•   What are the key areas for research and devel-
opment in clinical decision-support systems?    
 In this chapter, we discuss information tech-

nology that assists with  clinical decision 
support  (CDS) – the process that “provides clini-
cians, staff, patients, or other individuals with 
knowledge and person-specifi c information, 
intelligently fi ltered or presented at appropriate 
times, to enhance health and health care” (Osheroff 
et al.  2007 ). Systems that provide CDS do not 
simply assist with the retrieval of relevant infor-
mation; they communicate information that takes 
into consideration the particular clinical context, 
offering situation-specifi c information and rec-
ommendations. At the same time, such systems 
do not themselves perform clinical decision 
 making; they provide relevant knowledge and 
analyses that enable the ultimate decision makers—
clinicians, patients, and health care organiza-
tions—to develop more informed judgments. 
Ideally, CDS systems may be described in terms 
of fi ve  right  things that they do: they “provide the 
right information, to the right person, in the right 
format, through the right channel, at the right 
point in workfl ow to improve health and health 
care decisions and outcomes” (Osheroff et al. 
 2004 ). 

 Systems that provide CDS come in three basic 
varieties: (1) They may use information about the 
current clinical context to retrieve highly relevant 
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online documents, as with so-called “ infobut-
tons ” (introduced in Chap.   12    ); (2) they may pro-
vide patient-specifi c, situation-specifi c alerts, 
reminders, physician order sets, or other recom-
mendations for direct action; or (3) they may 
organize and present information in a way that 
facilitates problem solving and decision making, 
as in  dashboards , graphical displays, documen-
tation templates, structured reports, and order 
sets. Order sets are a good example of the latter 
because they both may facilitate decision making 
by providing a mnemonic function and also may 
enhance workfl ow by providing a means to select 
a group of relevant activities quickly. As we dis-
cussed in Chap.   1    , many observers consider 
knowledge resources that distill the medical lit-
erature and that facilitate manual selection of 
content relevant to the current situation to be 
simple decision-support systems. 

 This chapter provides a motivation for 
computer- based decision aids, emphasizing the 
current health care situation in the United States 
while keeping an eye on global trends. It offers 
some historical background regarding CDS sys-
tems, then provides a description of current 
implementation strategies and challenges, and 
closes with discussion of critical research ques-
tions that must be addressed to ensure optimal 
effectiveness of CDS in clinical practice. 

22.1    The Nature of Clinical 
Decision-Making 

    If you ask people what the phrase “computers in 
medicine” means, they often describe a computer 
program that helps physicians to make diagnoses. 
Although computers play numerous important 
clinical roles, people have recognized, from the 
earliest days of computing, that computers might 
support health-care workers by helping these 
people to sift through the vast collections of pos-
sible diseases, fi ndings, and treatments. 

 We can view the contents of this entire book 
as addressing clinical data and decision-making. 
In Chap.   2    , we discussed the central role of accu-
rate, complete, and relevant data in supporting 
the decisions that confront clinicians and other 

health-care workers. In Chap.   3    , we described the 
nature of good decisions and the need for clini-
cians to understand the proper use of information 
if they are to be effective and effi cient decision- 
makers. In Chap.   4     we introduced the cognitive 
issues that underlie clinical decision making and 
that infl uence the design of systems for decision 
support. Subsequent chapters have mentioned 
many real or potential uses of computers to assist 
with such decision-making. Medical practice  is  
medical decision-making, so most applications 
of computers in health care are intended to have 
a direct or indirect effect on the quality of health 
care decisions. In this chapter, we bring together 
these themes by concentrating on methods and 
systems that have been developed specifi cally to 
assist health workers in making decisions. 

 By now, you are familiar with the range of 
clinical decisions. The classic problem of  diag-
nosis  (analyzing available data to determine the 
pathophysiologic explanation for a patient’s 
symptoms) is only one of these. Equally chal-
lenging, as emphasized in Chaps.   3     and   4    , is the 
 diagnostic process —deciding which questions 
to ask, tests to order, or procedures to perform, 
and assessing the value of the results that can be 
obtained in relation to associated risks or fi nan-
cial costs. Thus, diagnosis involves not only 
deciding what is true about a patient but also 
what data are needed to determine what is true. 
Even when the diagnosis is known, there often 
are challenging  management  decisions that test 
the physician’s knowledge and experience: 
Should I treat the patient or allow the process to 
resolve on its own? If treatment is indicated, 
what should it be? How should I use the patient’s 
response to therapy to guide me in determining 
whether an alternate approach should be tried or, 
in some cases, to question whether my initial 
diagnosis was incorrect after all? (In that sense, 
the response to treatment is also a type of diag-
nostic test). Lastly, when a clinician and a patient 
are faced with alternative treatments, and they 
seek help to choose among them, the estimation 
of prognosis for cure or risk of death or compli-
cations is an important decision-making activity. 

 Biomedicine is also replete with decision 
tasks that do not involve specifi c patients or their 
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diseases. Consider, for example, the biomedical 
scientist who is using laboratory data to help with 
the design of her next experiment or the hospital 
administrator who uses management data to 
guide decisions about resource allocation in his 
hospital. Although we focus on systems to assist 
with clinical decisions in this chapter, we empha-
size that the concepts discussed generalize to 
many other problem areas as well. In Chap.   27    , 
for example, we examine the need for formal 
decision techniques and tools in creating health 
policies. As we develop databases that can iden-
tify patients with specifi c diseases, with risks of 
complications, or in need of specifi c interven-
tions such as screening tests or immunizations 
(see Chap.   16    ), so-called  population manage-
ment  can be used to provide a form of decision 
support for groups of patients. Some clinical 
decision support is also aimed directly at patients, 
in terms of alerts, reminders, or aids to interpreta-
tion of information; techniques for assessing 
prognosis and risk of alternative strategies should 
involve shared decision making between provid-
ers and patients, which is also an important area 
of activity. 

 In this chapter, we focus on decision aids for 
the provider in particular. The requirements for 
excellent decision-making fall into three princi-
pal categories: (1) accurate data, (2) pertinent 
knowledge, and (3) appropriate problem-solving 
skills. 

 The data about a patient must be adequate for 
making an informed decision, but they must not 
be excessive (see Chap.   4    ). Indeed, a major chal-
lenge occurs when decision-makers are bom-
barded with so much information that they cannot 
process and synthesize the information intelli-
gently and rapidly (see, for example, Chap.   19    ). 
Thus, it is important to know when additional 
data will confuse rather than clarify and when it 
is imperative to use tools (computational, visual, 
or otherwise) that permit data to be summarized 
for easier cognitive management (see Chap.   4    ). 
Operating rooms and intensive-care units are 
classic settings in which this problem arises; 
patients are monitored extensively, numerous 
data are collected, and decisions often have to be 
made on an emergent basis. 

 Equally important is the quality of the avail-
able data. In Chap.   2    , we discussed imprecision 
in terminology, illegibility and inaccessibility of 
records, and other opportunities for misinterpre-
tation of data. Similarly, measurement instru-
ments or recorded data may simply be erroneous; 
use of faulty data can have serious adverse effects 
on patient-care decisions. Thus, clinical data 
often need to be validated. 

 Even good data are useless if we do not have 
the knowledge necessary to apply them properly. 
Decision-makers must have broad knowledge of 
medicine, in-depth familiarity with their area of 
expertise, and access to information resources 
that provide pertinent additional information. 
Their knowledge must be accurate, with areas of 
controversy well understood and questions of 
personal choice well distinguished from those 
where a more prescriptive approach is appropri-
ate. Their knowledge must also be current; in the 
rapidly changing world of medicine, facts decay 
just as certainly as dead tissue does. 

 Good data and an extensive factual knowl-
edge base still do not guarantee a good decision; 
good problem-solving skills are equally impor-
tant. Decision-makers must know how to set 
appropriate goals for a task, how to reason about 
each goal, and how to make explicit the trade- 
offs between costs and benefi ts of diagnostic pro-
cedures or therapeutic maneuvers. The skilled 
clinician draws extensively on personal experi-
ence, and new physicians soon realize that good 
clinical judgment is based as much on an ability 
to reason effectively and appropriately about 
what to do as it is on formal knowledge of the 
fi eld or access to high-quality patient data. Thus, 
clinicians must develop a strategic approach to 
test selection and interpretation, understand ideas 
of sensitivity and specifi city, and be able to assess 
the urgency of a situation. Similar issues relating 
to test or treatment selection, in terms of costs, 
risks, and benefi ts, must be understood. 
Awareness of biases and of the ways that they can 
creep into problem-solving also are crucial (see 
Chap.   3    ). This brief review of issues central to 
clinical decision-making serves as a fi tting intro-
duction to the topic of  computer-assisted 
 decision- making: Precisely the same topics are 
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pertinent when we develop a computational tool 
for CDS. The program must have access to good 
data, it must have extensive background knowl-
edge encoded for the clinical domain in question, 
and it must embody an intelligent approach to 
problem-solving that is sensitive to requirements 
for proper analysis, appropriate cost–benefi t trade-
offs, and effi ciency.  

22.2    Motivation for Computer- 
Based CDS 

 Since the 1960s, workers in biomedical informat-
ics have been interested in CDS systems both 
because of a desire to improve health care and to 
understand better the process of medical decision- 
making. Building a computer system that attempts 
to process data as a clinician does provides insight 
into the nature of medical problem solving and 
enables the creation of formal models of clinical 
reasoning. At the same time, construction of such 
systems offers obvious societal benefi ts if the 
computer programs can aid practitioners in their 
care of patients and lead to better clinical out-
comes. Although the more academic consider-
ations have provided strong motivation for work in 
the area of computer-based decision aids over sev-
eral decades, the recognition of the importance of 
 clinical decision support systems  ( CDSSs ) as 
practical tools has increased markedly in recent 
years as a result of the inexorable growth in health 
care complexity and cost, as well as the introduc-
tion of health care legislation aimed at addressing 
these trends—which have made the development 
and broad adoption of CDS technology a priority. 

 The twenty-fi rst century has seen changes in 
health care practices that make the development of 
CDS technology particularly necessary. Computer-
based CDS has taken on increasing urgency for 
three reasons: (1) increasing challenges related to 
knowledge and information management in clini-
cal practice, (2) the pressure to adopt and mean-
ingfully use electronic medical records, and (3) the 
goal of delivering increasing personalized health 
care services – tailored to the patient’s preferences 
for care and to his or her individual genome. We 
consider these three factors in turn. 

22.2.1    Physician Information Needs 
and Clinical Data 
Management 

 Modern clinical practice is characterized by an 
ever-expanding knowledgebase in clinical medi-
cine, and by a growing clinical data set describing 
every patient characteristic from phenotype to 
genotype (Kohn et al.  2002 ). Despite the growing 
amounts of data and knowledge with which physi-
cians need to work, health care workers have seen 
the average time for a clinical encounter steadily 
decrease, particularly in the United States, where 
the pressures of the prevalent fee-for- service reim-
bursement system and a concomitant rise in the 
amount of paperwork required for administrative 
management and billing continue to squeeze prac-
titioners (Baron  2010 ). Studies of information 
needs among physicians in clinical practice have 
long revealed that unanswered clinical questions 
are common in ambulatory clinical encounters, 
with as many as one or two unanswered clinical 
questions about diagnosis, therapy, or administra-
tive issues arising in every visit (Covell et al. 
 1985 ). In as many as 81 % of clinical encounters in 
ambulatory care, clinicians may be missing critical 
information, with an average of four missing items 
per case (Tang et al.  1994b ,  1996 ). Providers con-
sequently face major challenges in accessing rele-
vant information, acquiring a complete picture of 
the patient’s clinical state and history, and know-
ing what further testing or therapeutic actions are 
best to take. Studies suggest that as many as 18 % 
of medical errors may be due to inadequate avail-
ability of patient information (Leape  1994 ). The 
demands for increased information management 
in the setting of an ever expanding clinical knowl-
edge base are primary drivers for the adoption of 
CDS systems. (See Chap.   21     for a deeper discus-
sion of physician information needs.)  

22.2.2    EHR Adoption and 
Meaningful Use 

 These challenges, coupled with the seemingly inex-
orable rise in health care costs, have led to a vari-
ety of cost-containment and quality- improvement 

M.A. Musen et al.



647

strategies in recent years. Health care delivery in 
the United States is in the midst of a profound 
transformation, in part due to Federal public policy 
efforts to encourage the adoption and use of health 
information technology (HIT). The American 
Recovery and Reinvestment Act (ARRA) of 2009, 
and the  HITECH regulations  within it, created 
incentives for the widespread adoption of health 
information technologies (Blumenthal  2009 ; see 
Chap.   27    ). These public policy efforts are often 
viewed as an essential adjunct to current health 
payment reform efforts in the United States, and 
a prelude to additional health care delivery rede-
sign, payment reform, and cost containment. Even 
as recently as 2012, only 34.8 % of physicians in 
ambulatory practice in the United States used a 
basic or comprehensive electronic medical record 
(Decker et al.  2012 ), and 26.6 % of U.S. hospitals 
used health information technologies in inpatient 
care-delivery settings (DesRoches et al.  2012 ), 
although these numbers are on a rapid upward 
trajectory. The ARRA and HITECH policies, and 
the resulting technology adoption, are changing 
the practice of medicine and clinical care deliv-
ery in both benefi cial and untoward ways (Sittig 
and Singh  2011 ). To achieve  meaningful and 
effective use of HIT, the software must be viewed 
as one component of a complex sociotechnical 
system, in which all elements must work effec-
tively (Institute of Medicine  2011a ). 

 One of the principal motivations for EHR 
adoption is to provide an infrastructure with 
which to improve the quality, safety, and effi cacy 
of health care delivery. In recent years, the U.S. 
government has placed considerable emphasis 
on the adoption of quality measures and quality- 
reporting requirements as part of meaningful use 
of HIT (Clancy et al.  2009 ; Institute of Medicine 
 2011a ). Quality measures, despite their ability to 
provide feedback that stimulates improved per-
formance by the clinician, are only part of the 
process needed to make the desired improve-
ments. Prospective, proactive clinical decision 
support must also be in place. The U.S. govern-
ment’s rules for  meaningful use  of HIT have 
required only minimal CDS compliance at the 
time of this writing, but Phase III of the mean-
ingful use regulations in 2016 is expected to 

increase the mandate for CDS in EHR systems 
substantially (Blumenthal and Tavenner  2010 ; 
see Chap.   27    ).  

22.2.3    Personalized Medicine 

 The fundamental model for the practice of medi-
cine has undergone dramatic change in the past 
century or so. The objectives of clinical care 
have shifted radically from the archaic goal of 
correcting putative imbalances of bodily humors 
to the scientifi c understanding of pathophysiol-
ogy and of mechanisms for eliminating patho-
gens and for remedying biological aberrancies. 
The resulting view of medicine as the applica-
tion of biological principles was at the core of 
the report produced by Abraham Flexner ( 1910 ) 
that upended medical education in the early 
twentieth century and that had led to the  reduc-
tionist biomedical model  that prevailed for the 
rest of that century. More recently, however, 
George Engel’s  biopsychosocial model  (Engel 
 1977 ) brought to the fore of clinical care the 
need to address psychological and social factors 
in clinical treatment plans in addition to underly-
ing biomedical problems. By the end of the 
twentieth century, it became increasingly 
accepted that CDS requires not only communi-
cation of scientifi c medical knowledge, but also 
adaptation of that knowledge to refl ect the psy-
chological and social situation that would tem-
per the application of the knowledge. Added to 
this complexity is the aging of the population, 
owing in part to advances in health and health 
care, resulting in a much higher burden of 
chronic diseases, multiple diseases, and multiple 
testing and treatment options, with both their 
positive and negative consequences that must be 
balanced—all contributing to the increasing 
intricacy of care. 

 As a further extension of these trends, the 
genomic era in which we now live has further 
increased the need for clinical practice to refl ect 
 personalized medicine  and the need to tailor 
care to individual factors in ways that never 
before were imaginable (Ginsburg and Willard 
 2009 ). Personalized medicine is characterized by 
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decision making that takes into account and that 
is specifi c to patient personal history, family his-
tory, social and environmental factors, along with 
genomic data and patient preferences regarding 
their own care (see Chap.   25    ). In this approach, 
clinical decision making is explicitly patient- 
centered in new ways, bringing the best evidence 
at the genetic level to bear on many clinical sce-
narios, while incorporating patient preferences 
for acquiring and applying genetic information 
(Fargher et al.  2007 ). Personalized genetic medi-
cine (Chan and Ginsburg  2011 ) is already gener-
ating data that outstrip the information and 
knowledge processing capabilities of practitio-
ners, and many clinicians feel threatened by the 
impending tsunami of additional knowledge that 
they will need to master (Baars et al.  2005 ). As 
personalized medicine becomes the norm, 
primary- care and specialist practitioners alike 
will need to manage their patients by interpreting 
genomic tests along with myriad other data at the 
point of care. It is hard to imagine how clinicians 
will manage to perform such activities with-
out substantial computer-based assistance. 
Informatics is well suited to support a personal-
ized approach to clinical genetic medicine 
(Ullman-Cullere and Mathew  2011 ). 

 Another related change is growing recognition 
of the importance of promoting optimal health and 
wellness, not just by treating disease but by 
encouraging healthy lifestyles, fostering compli-
ance with health and health care regimens, and 
carrying out periodic health-risk assessments. Key 
to personalized medicine will be tools to support 
such  prospective medicine  (Langheier and 
Snyderman  2004 )—assisting the acquisition of a 
detailed family history, social history, and environ-
mental history, providing health-risk assessments, 
and managing genomic information (Hoffman and 
Williams  2011 ; Overby et al.  2010 ).  

22.2.4    Savings Potential with 
Health IT and CDS 

 CDS has been shown to infl uence physician 
behavior (Colombet et al.  2004 ; Lindgren  2008 ; 
Schedlbauer et al.  2009 ), diagnostic test ordering 

and other care processes (Bates and Gawande 
 2003 ; Blumenthal and Glaser  2007 ), and the 
costs of care (Haynes et al. ( 2010 )), and it may 
have a modest impact on clinical outcomes 
(Bright et al.  2012 ). While there is great promise 
with HIT and CDS, their implementation is not 
without potential peril: HIT poorly designed or 
implemented, or misused, can generate unin-
tended consequences (Ash et al.  2007 ; Harrison 
et al.  2007 ; Bloomrosen et al.  2011 ), and intro-
duce new types of medical errors (Institute of 
Medicine  2011a ). 

 Only a handful of studies have examined the 
 return on investment  (ROI) for HIT, and even 
fewer have investigated that for decision-support 
specifi cally. The value of CDS in terms of ROI is 
diffi cult to measure. Isolated studies of various 
hand-crafted systems in academic centers have 
shown value, but adoption elsewhere has often 
been problematic. Broad adoption has not 
occurred, for many reasons discussed later in this 
chapter, including the proprietary nature of sys-
tems for CDS and for representation of knowl-
edge, the lack of interoperability of data, the 
mismatch of CDS to workfl ow, and usability 
concerns. 

 Systematic reviews of the scientifi c literature, 
such as the one performed by Bright and col-
leagues (Bright et al.  2012 ), have not been able to 
demonstrate an effect of CDS on patient outcomes 
except in the short term. This fi nding is not sur-
prising, however, because the time point at which 
CDS occurs is often long before a fi nal outcome, 
and many intervening factors may have a greater 
effect. In the case of CDS for many chronic dis-
eases whose complications ensue over years or 
decades, it simply may be impractical to continue 
longitudinal studies long enough to be able to 
measure meaningful differences in outcome. 

 Historically, the adoption of CDS technology 
has been motivated by a virtuous desire to 
enhance the performance of clinicians when deal-
ing with complex situations. The recent advent of 
legal, regulatory, and fi nancial drivers, as well as 
the increasing importance of personalizing medi-
cal decision making on the basis of genomic data, 
now make CDS an essential element of modern 
clinical practice.   
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22.3     Methods of CDS 

 As we have already noted, CDS systems (1) may 
use information about the current clinical context 
to retrieve pertinent online documents; or they 
(2) may provide patient-specifi c, situation- 
specifi c alerts, reminders, physician order sets, or 
other recommendations for direct action; or they 
(3) may organize information in ways that facili-
tate decision making and action. Category (2) 
largely consists of the various computer–based 
approaches (“classic” CDS systems) that have 
been the substrate for work in biomedical infor-
matics since the advent of applied work in proba-
bilistic reasoning and artifi cial intelligence in the 
1960s and 1970s. Such systems provide custom- 
tailored assessments or advice based on sets of 
patient-specifi c data. They may follow simple 
logics (such as algorithms), they may be based on 
decision theory and cost–benefi t analysis, or they 
may use probabilistic approaches only as an 
adjunct to symbolic problem solving. Some diag-
nostic assistants (such as DXplain Barnett et al. 
 1987 ) suggest differential diagnoses or indicate 
additional information that would help to narrow 
the range of etiologic possibilities. Other systems 
suggest a single best explanation for a patient’s 
symptomatology. Other systems interpret and 
summarize the patient’s record over time in a 
manner sensitive to the clinical context (Shahar 
and Musen  1996 ). Still other systems provide 
therapy advice rather than diagnostic assistance 
(Musen et al.  1996 ). 

 It is helpful to review some of the early work 
on such systems to get a sense of the scientifi c 
questions that need to be addressed in order to 
build CDS systems and to understand the chal-
lenges that currently confront the fi eld. 

 Since the earliest days of computers, health 
professionals have anticipated the time when 
machines would assist them in the diagnostic 
process. The fi rst article dealing with this possi-
bility appeared in the late 1950s (Ledley and 
Lusted  1959 ), and experimental prototypes 
appeared within a few years (Warner et al.  1964 ). 
Many problems prevented the widespread intro-
duction of such systems, however, ranging from 
the limitations of the scientifi c underpinnings to 

the lack of availability of needed data and to the 
logistical diffi culties that developers encountered 
when encouraging clinicians to use and accept 
systems that were not well integrated into the 
practitioners’ usual workfl ow. 

 Three advisory systems from the 1970s pro-
vide a useful overview of the origin of work on 
CDS systems and demonstrate paradigms for 
CDS implementation that still are prevalent 
today. These decision aids are de Dombal’s sys-
tem for diagnosis of abdominal pain (de Dombal 
et al.  1972 ), Shortliffe’s MYCIN system for 
selection of antibiotic therapy (Shortliffe  1976 ), 
and the HELP system for delivery of inpatient 
medical alerts (Kuperman et al.  1991 ; Warner 
 1979 ). We emphasize these three artifacts not 
because any of them has had a durable effect on 
clinical practice, but because they each demon-
strate very well defi ned principles for automated 
decision making that, in their own ways, con-
tinue to inspire modern CDS systems that are 
more complex and more eclectic in their compu-
tational architectures. 

22.3.1    Leeds Abdominal Pain 
System 

 Starting in the late 1960s, F. T. de Dombal and his 
associates at the University of Leeds studied the 
diagnostic process and developed computer- 
based decision aids using Bayesian probability 
theory (see Chap.   3    ). Using surgical or patho-
logic diagnoses as the gold standard, they empha-
sized the importance of deriving the conditional 
probabilities used in Bayesian reasoning from 
high-quality data that they gathered by collecting 
information on thousands of patients (Adams 
et al.  1986 ). Their system, the Leeds abdominal 
pain system, used sensitivity, specifi city, and 
disease- prevalence data for various signs, symp-
toms, and test results to calculate, using Bayes’ 
theorem, the probability of seven possible expla-
nations for acute abdominal pain (appendicitis, 
diverticulitis, perforated ulcer, cholecystitis, 
small-bowel obstruction, pancreatitis, and non-
specifi c abdominal pain). To keep the Bayesian 
computations manageable, the program made the 
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assumptions of (1) conditional independence of 
the fi ndings for the various diagnoses and of (2) 
mutual exclusivity and exhaustiveness of the 
seven diagnoses (see Chap.   3    ). 

 In one system evaluation (de Dombal et al. 
 1972 ), physicians fi lled out data sheets summa-
rizing clinical and laboratory fi ndings for 304 
patients who came to the emergency room with 
abdominal pain of sudden onset. The data from 
these sheets provided the attributes that were 
analyzed using Bayes’ rule. Thus, the Bayesian 
formulation assumed that each patient had one 
of the seven conditions and selected the most 
likely one on the basis of the recorded observa-
tions. Had the program been used directly by 
emergency- room physicians, results could have 
been available, on average, within 5 min after 
the data form was completed. During the study, 
however, the cases were run in batch mode; the 
computer- generated diagnoses were saved for 
later comparison (1) to the diagnoses reached 
by the attending clinicians and (2) to the ulti-
mate diagnosis verifi ed during surgery or 
through appropriate tests (the “gold standard”; 
see Chap.   2    ). 

 In contrast to the clinicians’ diagnoses, which 
were correct in only 65–80 % of the 304 cases 
(with accuracy depending on the individual clini-
cian’s training and experience), the program’s 
diagnoses were correct in 91.8 % of cases. 
Furthermore, in six of the seven disease catego-
ries, the computer was more likely to assign the 
patients to the correct disease category than was 
the senior clinician in charge of the case. Of par-
ticular interest was the program’s accuracy 
regarding appendicitis—a diagnosis that is often 
made incorrectly (or, less often, is missed or at 
least delayed). In no cases of appendicitis did the 
computer fail to make the correct diagnosis, and 
in only six cases were patients with nonspecifi c 
abdominal pain incorrectly classifi ed as having 
appendicitis. Based on the actual clinical deci-
sions, however, more than 20 patients with non- 
specifi c abdominal pain underwent unnecessary 
surgery for an incorrect diagnosis of appendicitis, 
and 6 patients who did have appendicitis were 
observed for more than 8 h before they were 
fi nally taken to the operating room. 

 With the introduction of personal computers, 
de Dombal’s system began to achieve widespread 
use—from emergency departments in other 
countries to the British submarine fl eet. 
Surprisingly, the system has never obtained the 
same degree of diagnostic accuracy in other set-
tings that it did in Leeds—even when adjust-
ments were made for differences in prior 
probabilities of disease. There are several reasons 
possible for this discrepancy. The most likely 
explanation is that there may be considerable 
variation in the way that clinicians interpret the 
data that must be entered into the computer. For 
example, physicians with different training or 
from different cultures may not agree on the cri-
teria for identifi cation of certain patient fi ndings 
on physical examination, such as “rebound 
tenderness.” 1  Another possible explanation is that 
there are different probabilistic relationships 
between fi ndings and diagnoses in different 
patient populations.  

22.3.2    MYCIN 

 A different approach to computer-assisted deci-
sion support was embodied in the MYCIN pro-
gram, a rule-based consultation system that 
combined diagnosis with appropriate manage-
ment of patients who have infections (Shortliffe 
 1976 ). MYCIN’s developers believed that straight-
forward algorithms or statistical approaches were 
inadequate for this clinical problem in which 
the underlying knowledge was poorly under-
stood and even the experts often disagreed about 
how best to manage specifi c patients, especially 
before defi nitive culture results became available. 
As a result, the researchers were drawn to the 
use of interacting rules to represent knowledge 
about organisms that might be causing a patient’s 
infection and the antibiotics that might be used 
to treat it. 

1   Rebound tenderness  is pain that is exacerbated when the 
physician presses down on the abdomen and then sud-
denly releases, generating a “rebound” when the abdomen 
returns to its baseline position. 
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 Knowledge of infectious diseases in MYCIN 
was represented as production rules (Fig.  22.1 ). 
A production rule is simply a conditional state-
ment that relates observations to associated infer-
ences that can be drawn. The conclusions drawn 
by one production rule may be considered as 
input observations by other rules when a system 
of rules is used for reasoning. MYCIN’s power 
was derived from such rules in a variety of ways:
•     The MYCIN program determined which rules 

to use and how to chain them together to make 
decisions about a specifi c case. The MYCIN 
reasoning program used an approach called 
 backward chaining ; whenever a rule was 
being considered such that the system did not 
know whether the condition on the left-hand 
side of the rule (i.e., the premise) was true, 
MYCIN would look backward to see whether 
the knowledge base contained any other rules 
that, when evaluated, could conclude informa-
tion that might inform the evaluation of the 
current rule’s premise. (Nearly all contempo-
rary rule-based systems, on the other hand, 
use an inference method known as  forward 
chaining : Whenever a production rule “fi res” 
and the conclusion of that rule is proven to be 
true, the system looks forward for other rules 
in the rule base that could also might be able 
to fi re now that the new conclusion is known 
to be true.)  

•   The rules often formed a coherent explanation 
of MYCIN’s reasoning—those that applied to 
the current decision were displayed in 

response to a user’s questions (Fig.  22.2 ). 
Although rules were stored in a machine- 
readable format, English translations could be 
displayed.

•      By removing, altering, or adding rules, system 
developers could modify the program’s 
knowledge structures rapidly, without explic-
itly reprogramming or restructuring other 
parts of the knowledge base. Making such 
changes, however, could lead to signifi cant, 
unintended side effects.    
 The developers evaluated MYCIN’s perfor-

mance on therapy selection for patients with 
blood-borne bacterial infections (Yu et al.  1979b ), 
and for those with meningitis (Yu et al.  1979a ). In 
the latter study, MYCIN gave advice that com-
pared favorably with that offered by experts in 
infectious diseases. MYCIN, however, is best 
viewed as an early exploration of methods for 
capturing and applying expert knowledge to 
solve important medical problems. Although the 
program was never used clinically, it paved the 
way for a great deal of research and develop-
ment. Work on MYCIN helped to clarify how 
techniques known as  knowledge acquisition  
could help developers to work with subject- 
matter experts to build new rule bases, how 
general- purpose rule interpreters could help offer 
decision support for new application areas when 
developers swapped in a new rule base, and why 
computer systems tailored to offer CDS are not 
always capable of offering their users compelling 
explanations of their decision logic.  

Rule507
 IF: 
  1) The infection that requires therapy is meningitis
  2) Organisms were not seen on the stain of the culture
  3) The type of infection is bacterial
  4) The patient does not have a head injury defect, AND
  5) The age of the patient is between 15 years and 55 years

 THEN
  The organisms that might be causing the infection are
  Diplococcus-pneuominae and Neisseria-meningitidis

  Fig. 22.1    A typical rule from the MYCIN system. Rules 
are conditional statements that indicate what conclusions 
can be reached or actions taken if a specifi ed set of condi-
tions is found to be true. In this rule, MYCIN is able to con-

clude probable bacterial causes of infection if the fi ve 
conditions in the premise are all found to be true for a spe-
cifi c patient. Not shown are the measures of uncertainty that 
are also associated with inference in the MYCIN system       
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22.3.3    HELP 

 The HELP system, an integrated hospital infor-
mation system at LDS Hospital in Salt Lake City 
that was built up locally during the 1970s and 
1980s, provided one of the fi rst demonstrations 
of the importance of integrating CDS capabilities 
with underlying information technology. HELP 
had the ability to generate automated alerts when 
abnormalities in the patient record were noted, 
and its impact on the development of the fi eld 
was immense, with applications and methodolo-
gies that span nearly the full range of activities in 
biomedical informatics (Kuperman et al.  1991 ). 

 HELP added to a conventional medical-record 
system a monitoring program and a mechanism 

for storing decision logic in  HELP sectors  that 
could be viewed as rules that relate the values of 
data in the patient database to actions that health 
care workers might be reminded to take. HELP 
thus provided a mechanism for event-driven gen-
eration of specialized warnings, alerts, and 
reports. Beginning in the 1990s, workers at LDS 
Hospital, Columbia Presbyterian Medical Center, 
and elsewhere created and adopted a standard 
formalism for encoding decision rules known as 
the  Arden Syntax —a programming language 
that provides a canonical means for writing rules 
that relate specifi c patient situations to appropri-
ate actions for practitioners to follow (Hripcsak 
et al.  1994 ). In the Arden Syntax, each decision 
rule, or HELP sector, is called a  medical logic 

 In this series, how many of the cultures were positive for E.coli (typical system prompt)
 (ORGANISM-1)?

 **WHY  (request from user to determine motivation for question)

[i.e. WHY is it important to determine the number of cultures which were (system’s rephrasing of the WHY
positive for the organism?] question, and answer)

[1.0] This will help to determine whether there is significant disease
associated with this occurrence of the organism.
 It has already been established that
  [1.1] the culture was taken from a sterile source
  [1.2] the number of cultures in the series is greater than 2
 Therefore, if
  [1.3] the number of cultures which were positive for ORGANISM-1
   is greater than 2
 Then there is suggestive evidence (.5) that there is significant disease
   associated with this occurrence of the e.coli (ORGANISM-1).
  [RULE049]
  **WHY repeated WHY to determine relevance of previous explanation)

[i.e. WHY is it important to determine if there is significant disease
associated with this occurrence of the organism?]

[2.0] This will help to determine a diagnosis for which the infection should
be treated.
 It has already been established that
  [2.1] the infection is not one of: primary bacteremia, meningitis
  [2.2] for some current culture of the patient it is true that the site
   of the culture is blood
 Therefore, if
  [2.3] there is significant disease associated with this occurrence of
   the organism
 Then 
  It is definite (1.0) that the diagnosis for which the infection should
  be treated is secondary-bacteremia
  [RULE103]

  Fig. 22.2    Two examples of MYCIN’s explanation capa-
bilities. User input is shown in boldface capital letters and 
follows the double asterisks. The system expands each 

[“WHY”] question (enclosed in square brackets) to ensure 
that the user is aware of its interpretation of the query       
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module  (MLM). Figure  22.3  shows one such 
MLM and its representation in the Arden syntax. 
An MLM is a specialized form of what is known 

as an  Event - Condition - Action  ( ECA )  rule , in 
that evaluation of situation-specifi c conditional 
expression logic is triggered by an external event, 

MAINTENANCE:

 Title:  Diabetic Foot Exam Reminder;; 

 Mlmname:  Diabetic_Foot_Exam.mlm;; 

 Arden:  Version 2.8;; 

 Version:  1.00;; 

 Institution:  Intermountain Healthcare ;; 

 Author:  Peter Haug (Peter.Haug@imail.org) ;;  

 Specialist:  Peter Haug (Peter.Haug@imail.org) ;;  

 Date:  2011-11-28;; 

 Validation:  testing;; 

LIBRARY:

 Purpose:  Alert for Diabetic Foot Exam Yearly;; 

 Explanation:  This MLM will send an alert if the patient is a diabetic (diabetes in problem list or discharge diagnoses) 
 and Foot Exam is recorded within the last 12 months.;; 

 Keywords:  diabetes; Foot Exam;; 

 Citations:  Boulton AJM, Armstrong DG, Albert SF, Frykberg RG,Richard Hellman, Kirkman MS, Lavery LA, 
 LeMaster JW, Mills JL, Mueller MJ, Sheehan P,Dane K. Wukich DK.  Comprehensive Foot Examination 
 and Risk Assessment. Diabetes Care. 2008 August; 31(8): 1679–1685.;;

 Links:  http://en.wikipedia.org/wiki/Diabetic_foot_ulcer;; 

KNOWLEDGE:

 Type:  data_driven;; 

 Data: Problem_List_Problem := object [Problem, Recorder];

 Problem_List := read as Problem_List_Problem {select problem, recorded_by from Problem_List_Table};

 Patient_Dx_Object := object [Dx];

 Diabetic_Dx := read as Patient_Dx_Object {ICD_Discharge_Diagnoses};

 Foot_Examination := object [Recorder, Observation];

 Observation := object [Abnormatlity, Location, Size, Units];

 Foot_Exam := read as Foot_Examination latest {select Recorder, Observation.Abnormatlity, 
 Observation.Location, Observation.Size, Observation.Units from PE_Table};

 Registration_Event := event { registration of patient };

 ICD_for_Diabetes := (250 , 250.0 , 250.1 , 250.2 , 250.3 , 250.4 , 250.5 , 250.6 , 250.7 , 
 250.8 , 250.9 ); ;; 

 Evoke:  Registration_Event;; 

 Logic: if (Diabetic_Dx.Dx is in ICD_for_Diabetes or (exist Problem_List and "Diabetes" is in 

 Problem_List.Problem)) then Diabetes_Present := true ; 
 endif;

 if (Diabetes_Present and exist Foot_Exam and Foot_Exam occurred not within past 12 months) then

 conclude true ;
 endif;
 conclude false ;          ;; 

Action: write "Patient is a diabetic with no Diabetic Foot Exam in last 12 months.  Please order or perform one.";;

  Fig. 22.3    This medical logic module (MLM), written in 
the Arden syntax, prints a warning for health care workers 
whenever a patient who has diabetes is registered for a clinic 
visit and has not had a documented foot examination in the 
past year. The  evoke  slot defi nes a situation that causes the 
rule to be triggered; the  logic  slot encodes the decision logic 

of the rule; the  action  slot defi nes the procedure to follow if 
the logic slot reaches a positive conclusion. The  data  slot 
defi nes the variables that are to be used by the MLM; the 
text between curly braces must be translated into queries on 
the local patient database when the MLM is deployed 
locally (Source: P. J. Haug, Intermountain Healthcare)       
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and, if the condition evaluates to be “true”, then 
an action is performed.

   Whenever new data about a patient became 
available, regardless of the source, the HELP sys-
tem checked to see whether the data matched the 
criteria for invoking an MLM. If they did, the 
system would evaluate the MLM to see whether 
that MLM was relevant for the specifi c patient. 
The logic in these MLMs was developed by clini-
cal experts who collaborated with workers in 
informatics. The output generated by successful 
MLMs included, for example, alerts regarding 
untoward drug actions, interpretations of labora-
tory tests, or calculations of the likelihood of dis-
eases. This output was communicated to the 
appropriate people through the hospital informa-
tion system’s workstations or on written reports, 
depending on the urgency of the output message 
and the location and functions of the person for 
whom the report was intended. 

 Another important extension of the idea of alerts 
is  clinical reminders , in which the triggering event 
is usually time – such as the age of the patient, or an 
elapsed time since a previous event – coupled with 
other conditions, fi rst popularized and imple-
mented widely at Regenstrief Institute of Medicine 
in Indianapolis, Indiana (McDonald  1976 ). Like 
the HELP system implemented at LDS Hospital, 
the Regenstrief Medical Information System used 
MLMs encoded as rules to generate one-step deci-
sion logic (McDonald  1981 ).  

22.3.4    Comparing the Early CDS 
Systems 

 The Leeds system, MYCIN, and HELP demon-
strate the most fundamental issues that develop-
ers of computer-based decision aids face: (1) 
identifying the input data that will drive decision 
making, (2) determining how the output of the 
CDS system will be communicated, and (3) con-
structing a mechanism to reason about the inputs 
to generate appropriate output. We will address 
each of these issues in detail in the remainder of 
this chapter. First, however, it is useful to review 
how these elements were addressed in each of 
these classic systems. 

 The three historical systems differed radically 
in how the input data were collected. In the 
Leeds abdominal pain system, the input was 
derived from a simple checklist completed by 
the clinician that enumerated some of the fi nd-
ings that a patient with abdominal pain might 
have. Data collection was not burdensome, since 
the checklist was rather short, although the 
results did need to be transcribed into the com-
puter. Some observers have suggested that the 
availability of the checklist itself could have 
been responsible for many of the benefi ts of the 
Leeds system, since it reminded the clinicians of 
key questions that they needed to ask their 
patients in the fi rst place (see Gawande  2009 ). 
On the other hand, use of the MYCIN system 
required a potentially lengthy question-and-
answer dialog with the computer that would 
have to take place outside of the usual clinical 
workfl ow. The barrier imposed by this style of 
interaction remains a major impediment to the 
adoption of MYCIN-style computer-based con-
sultation systems (although with modern EHRs, 
some of the data could be obtained in such a sys-
tem directly from the stored record instead of 
being entered manually by a user). With the 
HELP system, of course, there are no problems 
of human–computer interaction; the data are 
already available, provided by the health infor-
mation system as a function of routine care. 
Although the ability to drive a CDS system based 
on data that require no manual entry has compel-
ling advantages, HELP had the obvious disad-
vantage that any data that were not in the 
database—or that were in the database but not 
available in coded or numerical form—could not 
be brought to bear on the decision process. 
Nevertheless, the integration of CDS with EHR 
functionality in the HELP system was an impor-
tant move away from the idea of standalone 
“consultation systems,” such as MYCIN, which 
might provide comprehensive and complete 
patient advice for a particular problem, to more 
opportunistic CDS technology that could use 
readily available, but sometimes incomplete 
patient data to offer recommendations in a man-
ner that did not require clinicians to step outside 
their usual workfl ow (Miller and Masarie  1990 ). 
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 The output of the Leeds system was simply 
a posterior probability for each of the seven 
diagnoses for abdominal pain for which it had 
been programmed. MYCIN provided the user 
with an elaborate description of the infections 
that might be present in the patient, the antibi-
otics that should be administered, and the pos-
sible side effects of those antibiotics. More 
important, MYCIN supported a  mixed - initia-
tive dialog  through which the user could inves-
tigate the chain of inference rules that supported 
some aspects of the program’s output. With 
HELP, the output was a predefi ned text mes-
sage (sometimes customized for the patient’s 
particular clinical situation) that would appear 
on a line printer at the patient’s nursing station 
or at some other appropriate location in the 
hospital. In subsequent versions of HELP, as 
with more contemporary systems that offer 
alerts or reminders, such messages appeared in 
the form of popup windows in the EHR or 
emails or text messages sent directly to the 
provider. 

 The three decision aids differ signifi cantly in 
the manner in which they reached their conclu-
sions. The Leeds system used a large database of 
case histories to calculate the conditional proba-
bilities of a fi xed number of diseases given a 
fi xed number of possible patient fi ndings, and 
applied Bayes’ theorem to specifi c sets of input 
data. MYCIN, on the other hand, eschewed the 
use of formal probability theory and pioneered 
the use of chaining production rules that inter-
acted at runtime to deduce the possible pathogens 
causing infection and to suggest a treatment regi-
men that could provide coverage for each of 
these germs. The developers of MYCIN did 
explore a heuristic method for dealing with 
uncertainty, called “certainty factors,” that propa-
gated uncertainty about the conclusions of rules 
when the rules were chained, and which did have 
a relationship to subjective probability estima-
tions (Shortliffe and Buchanan  1975 ). HELP 
adopted a rule-based approach, but its rules typi-
cally did not “chain,” and rule fi ring was totally 
deterministic if the condition part of the MLM 
evaluated to “true” based on the pattern of fi nd-
ings in the patient database.   

22.4    Principles of CDS System 
Design 

 Modern CDS systems typically achieve their 
results using Bayesian reasoning, production 
rules, MLMs, knowledge-based groupings of 
physician orders, referred to as “order sets,” and 
other templates, or by the use of prediction asso-
ciations derived by mining and analysis of EHR 
data (or some combination of these approaches). 
Like the historical programs that we reviewed in 
Sect.  22.3 , contemporary systems may acquire 
the data on which they base their recommenda-
tions interactively from users or directly from a 
health information system (or some combination 
of these approaches). We now discuss the issues 
that drive CDS system design, and we highlight 
how these issues are manifest in current clinical 
decision aids. 

22.4.1    Acquisition and Validation 
of Patient Data 

 A prerequisite to any decision making process is 
having available all the data that are required to 
perform the required actions. As emphasized in 
Chap.   2    , few problems are more challenging than 
the development of effective techniques for cap-
turing patient data accurately, completely, and 
effi ciently. You have read in this book about a 
wide variety of techniques for data acquisition, 
ranging from keyboard entry, to speech input, to 
methods that separate the clinician from the com-
puter (such as scannable forms, real-time data 
monitoring, and intermediaries who transcribe 
written or dictated data for use by computers). 

 The problems of data acquisition go beyond 
entry or extraction from the EHR of the data 
themselves, however. A primary obstacle is that 
we lack standardized ways of expressing most 
clinical situations in a form that computers can 
interpret. As discussed in detail in Chap.   7    , there 
are several controlled medical terminologies that 
health care workers use to specify precise diag-
nostic evaluations (e.g., the International 
Classifi cation of Diseases and SNOMED-CT), 
clinical procedures (e.g., Current Procedural 
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Terminology and LOINC codes), and so on. Still, 
there is no controlled terminology that can cap-
ture all the nuances of a patient’s history of pres-
ent illness or fi ndings on physical examination. 
There is no coding system that can refl ect all the 
details of physicians’ or nurses’ progress notes. 
Given that much of the information in the medi-
cal record that we would like to use to drive deci-
sion support is not available in a structured, 
machine-understandable form, there are clear 
limitations on the data that can be used to assist 
clinician decision-making. The prose of progress 
notes, consultation notes, operation reports, dis-
charge summaries, and other documents contains 
an enormous amount of information that never 
makes it to the coded part of the EHR. 
Nevertheless, even when computer-based patient 
records store substantial information only as 
free-text entries, those data that  are  available in 
coded form (typically, diagnosis codes and pre-
scription data) can be used to signifi cant advan-
tage (van der Lei et al.  1991 ). 

 The desire to access information from the 
EHR that may be available only in free text has 
been a topic of great concern to the CDS com-
munity. Some information systems provide 
options for  structured data entry , asking clini-
cians to use fi ll-in-the-blanks forms or templates 
on the computer screen to enter information that 
otherwise would be entered as part of a textual 
note. In general, providers have resisted such 
human–computer interfaces, often fi nding it 
restrictive and cumbersome to make selections 
from predefi ned menus when they would much 
rather express themselves more freely in prose. 
Fortunately, work in  natural language process-
ing  has made major advances in recent years, 
making it increasingly possible to mine the tex-
tual notes of EHRs to identify information that 
might bear on the CDS process (see Chap.   8    ).  

22.4.2       Decision-Making Process 

 When building CDS systems, most of the work is 
concentrated on the development of the reason-
ing system and the specifi cation of the knowl-
edge on which that reasoning system operates. 

There is a wide range of strategies, each address-
ing different requirements that workers in bio-
medical informatics have adopted when building 
such computational resources. 

22.4.2.1    Infobuttons 
 The simplest, and perhaps most common, form 
of CDS uses contextual information from an 
EHR to perform information retrieval from a 
database of information about online documents. 
A person viewing data in an EHR may see select-
able icons ( infobuttons ) next to the names of 
drugs, laboratory tests, patient problems, or other 
elements of the patient record. Clicking on an 
infobutton causes the clinical information system 
to perform a query on the database, providing the 
user with one or more immediately accessible 
resources that can offer more information about 
the item in question. Alternatively, the system 
may automatically query one or more of those 
external resources and return the results of the 
queries for display (Cimino et al.  2002a ). 
Clicking on an infobutton next to a drug, for 
example, might allow the user to access informa-
tion about customary dosing, side effects, or 
alternative medications (see Fig.   12.8    ). The query 
that retrieves the links to the documents is tai-
lored based on whatever is next to the infobutton 
icon on the screen. The query may also take into 
account contextual information, such as patient- 
related data, the activity in which the user is 
engaged, and the role of the user in the health 
care enterprise (physician, nurse, patient, and 
so on). 

 An  infobutton manager  mediates the queries 
between the clinical information system and the 
available information resources. HL7 has created 
a standard for “context-aware knowledge 
retrieval,” leading to infobutton managers that 
have been adopted by many commercial EHR 
vendors. Infobutton managers need to anticipate 
how the clinical context might tailor the specifi c 
query performed by any given infobutton, so that 
the result of the query is highly precise and rele-
vant to the situation at hand. Detailing specifi -
cally how contextual information might alter the 
queries performed by each infobutton type can be 
tedious, and requires developers to be adept at 
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second-guessing all the reasons that might cause 
a user to click on a particular infobutton. Current 
research concentrates on the development of a 
Librarian Tailoring Infobutton Environment 
(LITE) that promises to aid the authoring of 
infobutton queries via “wizards” and other user- 
interface conveniences. 

 Although infobuttons are unquestionably 
important knowledge resources, many people 
would argue that they are not true CDS systems. 
Infobuttons retrieve relevant information for a 
user, but they do not explicitly address particular 
 decisions  that the user needs to make. The possi-
ble reasons that a user might click on an infobut-
ton are folded into the query specifi cation at the 
time that the infobutton is created; at runtime, of 
course, there is no way for the system to know 
exactly why the user selected the infobutton. 
Infobutton managers therefore require sophisti-
cated query capabilities, but they do not need to 
reason from a clinical situation to a particular 
recommendation. 

 When the goal is to generate a situation- 
specifi c recommendation regarding diagnosis or 
therapy, developers need to turn to methods that 
can perform some kind of inference. The sophis-
tication of the required technique is a function of 
the kind of inference that is necessary to render a 
result for the user.  

22.4.2.2    Branching Logic 
 From a computational perspective, there is noth-
ing simpler than encoding an algorithm directly. 
Numerous CDS systems have taken problem- 
specifi c fl owcharts designed by clinicians and 
encoded them for use by a computer. Although 
such algorithms have been useful for the purpose 
of triaging patients in urgent-care situations and 
as a didactic technique used in journals and books 
where an overview for a problem’s management 
has been appropriate, they have been largely 
rejected by physicians as too simplistic or generic 
for routine use (Grimm et al.  1975 ). In addition, 
the advantage of their implementation on comput-
ers has not been clear; the use of simple printed 
copies of the algorithms generally has proved 
adequate for clinical care (Komaroff et al.  1974 ). 
A noteworthy exception that gained enormous 

attention in the early 1970s was a computer pro-
gram deployed in Boston at what was then the 
Beth Israel Hospital (Bleich  1972 ); it used detailed 
algorithmic logic to provide advice regarding the 
diagnosis and management of acid–base and elec-
trolyte disorders. More recently, such branching-
logic approaches have been widely adopted in the 
administrative information systems that third-
party payers use to process requests to pre-certify 
payment for expensive services such as MRI stud-
ies and elective surgery. 

 Although fl owcharts alone often are inade-
quate for representing the decision making 
required for the execution of robust clinical- 
practice guidelines, the algorithmic representa-
tion of clinical procedures is extremely useful for 
clinicians when they think about the representa-
tion of preferred clinical workfl ows. It is there-
fore common to see a branching-logic 
representation of clinical protocols and guide-
lines as one component of the complex, heteroge-
neous knowledge representations needed to drive 
sophisticated CDSS systems, such as those 
described later in this section when we discuss 
ontology-driven decision support.  

22.4.2.3    Probabilistic Systems 
 Because computers were traditionally viewed as 
numerical calculating machines, people recog-
nized by the 1960s that they could be used to com-
pute the posterior probability of diseases based on 
observations of patient-specifi c parameters. Large 
numbers of  Bayesian diagnosis programs  have 
been developed in the intervening years, many of 
which have been shown to be accurate in selecting 
among competing explanations of a patient’s dis-
ease state. As we mentioned earlier, among the 
most signifi cant experiments were those of de 
Dombal and associates ( 1972 ) in England, who 
adopted a  naïve Bayesian model  that assumed 
that there are no conditional dependencies among 
fi ndings (i.e., a model that could make the in-
appropriate assumption that the presence of a fi nd-
ing such as fever never affects the likelihood of the 
presence of a fi nding such as chills). 

 Although a naïve Bayesian model may have 
limitations in accurately modeling a diagnostic 
problem, a major strength of this approach is 
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computational effi ciency. When the fi ndings that 
bear on a hypothesis are assumed to be condition-
ally independent, then the order in which the 
fi ndings are considered in the Bayesian analysis 
does not matter. The computer starts by consider-
ing a given fi nding, the prior probability of each 
possible diagnosis under consideration (gener-
ally the prevalence of each diagnosis in the popu-
lation), and the conditional probabilities of the 
fi nding (or the absence of the fi nding) given each 
diagnosis (or the absence of the diagnosis)—the 
 sensitivity  and  specifi city  of the fi nding (see the 
introduction of these concepts in Chap.   2    ). The 
computer then applies Bayes’ rule to calculate 
the posterior probability of each diagnosis given 
the value of the fi nding. The computer now is 
poised to update the probability of each diagnosis 
given the value of a second fi nding. The prior 
probability for each diagnosis in this case is not 
the prevalence of the diagnosis in the population, 
however. Having applied Bayes’ rule once, we 
have more information than we had at the start. 
We can treat the  posterior probability  of each 
diagnosis given the fi rst fi nding as the  prior prob-
ability  of the diagnosis when we apply Bayes’ 
rule a second time. When it is time to consider a 
third fi nding, the posterior probability for each 
diagnosis after processing the second fi nding 
serves as the prior probability for the next appli-
cation of Bayes rule. The process continues until 
the value of each fi nding has been considered. 
This  sequential Bayes  approach was explored as 
early as the 1960s for the diagnosis of congenital 
heart disease (Gorry and Barnett  1968 ) and has 
been used in many CDS systems since. 

 Much of the early interest in the sequential 
Bayesian approach stemmed from a conviction 
that it simply was impractical to construct 
Bayesian systems in which the assumption of 
conditional independence was lifted: There 
would be too many probabilities to assess when 
building the system and the necessary computa-
tion could be intractable. Recent work on the use 
of  belief networks , however, has demonstrated 
that it actually is realistic to develop more expres-
sive Bayesian systems in which conditional 
dependencies are modeled explicitly—often 
by taking advantage of newer algorithms for 

 concluding the posterior probabilities that are 
computationally effi cient in most cases. (Belief 
networks are described in detail in Chap.   3    .) 
Currently, most modern CDS systems that make 
recommendations based on probabilistic rela-
tionships use belief networks as their primary 
representation of the underlying clinical situa-
tion, and then “solve” the belief network at run-
time to calculate the posterior probabilities of the 
conditions represented in the graph. The use of 
belief networks is popular because the formalism 
makes probabilistic relationships perspicuous, 
overcomes the assumption of conditional inde-
pendence, and enables the attendant probabilities 
to be learned from analysis of appropriate data 
sets (for example, EHR data). The approach has 
been demonstrated in numerous diagnostic sys-
tems, from belief networks that ascertain the sta-
tus of newborns from data in the neonatal ICU 
(Saria et al.  2010 ) to belief networks that offer 
interpretations of biomedical image data (Kahn 
et al.  1997 ). 

 Because making most decisions in medicine 
requires weighing the costs and benefi ts of 
actions that could be taken in diagnosing or man-
aging a patient’s illness, researchers also have 
developed tools that draw on the methods of 
decision analysis (Sox et al.  1988 ; Weinstein and 
Fineberg  1980 ).  Decision analysis  adds to 
Bayesian reasoning the idea of explicit decisions 
and of  utilities  associated with the various out-
comes that could occur in response to those deci-
sions (see Chap.   3    ). One class of programs for 
decision-analysis is designed for use by the ana-
lysts themselves; such programs are of little use 
to the average clinician or patient (Pauker and 
Kassirer  1981 ). A second class of programs uses 
decision-analysis concepts within systems 
designed to advise physicians who are not trained 
in these techniques. In such programs, the under-
lying decision models generally have been pre-
specifi ed—either as decision trees that enumerate 
all possible decisions and all possible ramifi ca-
tions of those decisions or as belief networks in 
which explicit decision and utility nodes are 
added, called  infl uence diagrams . 

 There are a whole host of  supervised learn-
ing techniques  that can determine how data are 
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associated with hypotheses, and that conse-
quently can be trained on EHR data to infer con-
clusions based on some set of input data. For 
example, the decision-support capabilities of the 
patient monitoring systems discussed in Chap.   19     
often apply statistical methods to the current data 
stream to infer corresponding classifi cations to 
inform care providers of the patient’s current 
state. Regression analysis or more sophisticated 
techniques, such as artifi cial neural networks and 
support vector machines, when applied to rou-
tinely collected patient data, have enabled inves-
tigators to develop decision aids such as the 
APACHE III system (Knaus et al.  1991 ), which 
offers prediction models providing prognostic 
information regarding patients in the ICU (see 
Chap.   10    ).  

22.4.2.4    Rule-Based Approaches 
 Since the 1970s, workers in medical AI have been 
exploring the use of methods that emphasize sym-
bolic associations rather than purely probabilistic 
relationships to drive decision support (Clancey 
and Shortliffe  1984 ). This work has led to the 
construction of  knowledge - based systems —
programs that symbolically encode-concepts 
derived from experts in a fi eld in a  knowledge 
base  and that use that knowledge base to provide 
the kind of problem analysis and advice that the 
expert might provide. If–then production rules, 
such as those in MYCIN (see Fig.  22.1 ), often 
have been used to build knowledge- based sys-
tems, as have more recent approaches that encode 
explicit models of the application area or of the 
reasoning methods required (David et al.  1993 ; 
Musen  1997 ). The knowledge in a knowledge-
based system may include probabilistic relations, 
such as between symptoms and underlying dis-
eases. Typically, such relations are augmented by 
additional qualitative relations, such as causality 
and temporal relations. When a knowledge-based 
system is encoded using production rules, it is 
referred to as a  rule - based system  (Buchanan and 
Shortliffe  1984 ). 

 Rule-based systems provide the dominant 
mechanism for developers to build CDS capabili-
ties into modern information systems. From CDS 
systems that interpret ECG signals to those that 

recommend guideline-based therapy, rules pro-
vide an extremely convenient means to encode 
the necessary knowledge. Rule-based systems 
require a formal language for encoding the rules, 
plus an interpreter (sometimes called an  infer-
ence engine ) that operates on the rules to gener-
ate the necessary behavior. MYCIN, for example, 
required the developer to encode rules in a pre-
defi ned manner using the Lisp programming lan-
guage (see Fig.  22.1 ), and had an inference 
engine that could interpret the rules, determine 
whether the rules led to conclusions that were 
true or false, and, if necessary, automatically 
evaluate other rules in the knowledge base to 
help determine the truth value of a given rule that 
might be under consideration. Although the 
developers of MYCIN had to construct their own 
syntax for encoding rules and had to program 
their own inference engine to evaluate the rules, 
there now are many open-source and proprietary 
“rule engines” that provide custom-tailored edi-
tors for writing rules and inference engines that 
can execute the rules at runtime. For example, 
JESS is a popular Java-based rules engine that 
can be licensed from Sandia National Laboratory 
and that currently is free for academic use; JESS 
is based on a rules engine programmed in C, 
called CLIPS, created by NASA in the 1980s. 
Drools is an open-source rules engine developed 
by the JBoss community that also has had sub-
stantial adoption. 

 Developers use JESS, Drools, and proprietary 
rules engines to create CDS systems that contain 
multiple rules that, as with MYCIN, chain 
together to generate conclusions based on a 
sequence of inference steps. Decision support 
sometimes requires multiple rules to execute at 
runtime, together generating a fi nal recommen-
dation that derives from the consequences of the 
rules chaining off one another. 

 In most installed information systems, how-
ever, rule-based decision support is much simpler 
and also more limited. As in the HELP system, 
most CDS systems have rules that generally do 
not chain together, but that are triggered individ-
ually, each time either there is a relevant change 
to the data in a patient database that should gen-
erate an alert or there is a time event that should 
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trigger a reminder. Each rule, or MLM, examines 
the state of the database and generates a corre-
sponding action, alert, or reminder that is usually 
sent to a particular clinician or to members of the 
health care team. 

  Arden Syntax  became an international stan-
dard for MLMs endorsed by HL7 and ANSI in 
1999 (see Fig.  22.3 ). Arden Syntax provides a 
standard mechanism for declaring the variables 
about whose values the system will perform its 
reasoning (values that derive from data in the 
clinical information system); the conditions that, 
if true, would predicate specifi c actions; and the 
actions that should be taken. The standard was 
created with the idea that the shared syntax would 
allow an MLM written in an idiosyncratic repre-
sentation system (for example, the one adopted 
by HELP) to be translated into a canonical format 
for execution in other information systems. The 
hope was that the informatics community would 
develop whole libraries of MLMs, all written in 
Arden Syntax, which could operate in any clini-
cal environment where an information system 
could interpret the standard format. 

 A signifi cant obstacle to the sharing of MLMs 
is that Arden Syntax is, in fact, just a syntax. 
What is missing from the standard is any notion 
of the  semantics  of the data on which the MLMs 
operate. When an MLM executes, the variables 
that are used in the logic of the rule are bound to 
values that derive from the patient database of the 
information system in which the MLMs operate. 
Arden Syntax specifi es that the individual data-
base queries needed to determine the values of 
the variables should appear within the “curly 
braces” of variable defi nitions in the portion of 
the MLM known as the “data slot” (see Fig.  22.3 ). 
What a developer should include within the curly 
braces depends on the particular schema of the 
relevant patient database and mechanism for per-
forming queries. EHR information models and 
the way in which elements are coded differ from 
system to system. Thus, all system-specifi c 
aspects of MLM integration need to be provided 
within the curly braces. To adapt an MLM for use 
in a new environment, a programmer needs to 
consider the variables on which the MLM oper-
ates, determine whether those variables have 

counterparts in the local patient database, and 
write an appropriate query that will execute at 
runtime. 

 The problem is compounded because there 
may be assumptions regarding the semantics of 
the variables themselves that may not be obvi-
ous to the local implementer: If the MLM refers 
to serum potassium, should the logic be exe-
cuted if the original specimen was grossly 
hemolyzed? 2  If a serum potassium value is not 
available in the database, but there is a value for 
a whole-blood potassium, should the MLM be 
executed using that value instead? 3  If there is no 
serum potassium value available for today, but 
there is one from last night, should the logic 
execute using the most recent value? MLMs 
cannot simply be dropped from one system into 
another and be shared effortlessly; rather, con-
siderable thought, analysis, and computer skill 
needs to go into writing the appropriate data-
base queries that go within the curly braces to 
make MLMs operational. 

 This obstacle to sharing MLMs that are writ-
ten in the Arden Syntax is known, appropriately 
and whimsically, as the  curly braces problem . 
The lack of standards for what goes between 
Arden’s curly braces has been a major impedi-
ment both to the sharing of MLMs and to the cre-
ation of reference libraries of clinical decision 
rules. HL7 recognized this diffi culty early on, 
and developed an abstract expression language 
for specifying database queries known as 
GELLO, which was adopted as a standard in 
2005 (Sordo et al.  2004 ). The organization also 
advocated the use of a specifi cation for the 
canonical kinds of data that one might fi nd in an 
EHR—a  virtual  EHR—so that MLMs written in 
terms of GELLO queries on the virtual EHR can 
be translated programmatically into actual que-
ries on patient data as available at a local institu-
tion (Kawamoto et al.  2010 ). In 2012, HL7 
approved a  draft standard for trial use  (DSTU) 

2   If the red blood cells in a specimen  hemolyze  (burst), 
they release potassium, which can cause an inaccurate 
elevation in the measured potassium value. 
3   The  serum  is the liquid that is left when the cells are 
removed from whole blood. 
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for a virtual EHR (known for historical reasons 
as a  virtual medial record , or vMR; Johnson et al. 
 2001a ). We discuss these standards further in 
Sect.  22.5.2 . For the reasons described in that 
section, despite these HL7 standards, it is unlikely 
that the curly braces problem will be going away 
anytime soon. 

 In the case of Arden Syntax, developers write 
rules to deal with one clinical problem at a time. 
There may be one MLM to deal with the problem 
of administering a drug like penicillin to a patient 
with a history of penicillin allergy; another MLM 
may report that a patient has a dangerously low 
serum potassium value. Unlike the rules in 
MYCIN, MLMs are generally not intended to 
interact with one another or to be chained together 
to generate complex inferences. MLMs may be 
coerced to chain together when one MLM posts 
to the patient database a value that can trigger 
another MLM. This mechanism also allows one 
MLM to set up information in the database that 
might invoke another MLM in the case of some 
future event, thus enabling the recommendation 
of actions that unfold over time, as in the case of 
many clinical practice guidelines for chronic dis-
eases. Although this approach allows developers 
to program complex problem-solving behavior, 
the technique has the same disadvantages that 
came to light with chaining rule-based systems 
such as MYCIN: When the rule base grows to a 
large size, interactions among rules may have 
unanticipated side effects. Furthermore, when 
rules are added to or deleted from a previously 
debugged knowledge base, there may be unex-
pected system behaviors that emerge as a result 
(Clancey  1984 ; Heckerman and Horvitz  1986 ). 

 For MLMs to work well in practice, moreover, 
the rules need to be tailored to the particular clin-
ical environment—triggered by appropriate 
workfl ow events, interacting with particular 
kinds of participants, customizing logic to 
account for various business and workfl ow pro-
cesses, and notifying the user in setting-specifi c 
ways. To customize an MLM to account for such 
considerations requires that it become less porta-
ble. Much of the effort required to introduce CDS 
systems into the health care enterprise involves 
precisely such adaptations. To accelerate porta-

bility, MLM developers must seek a balance 
between a generic specifi cation of logic that is 
widely agreed upon, and site-specifi c customiza-
tions that will facilitate the use of that logic. 
Achieving the right balance will always remain 
an elusive target (see also Sect.  22.5.4 ).  

22.4.2.5    Ontology-Driven CDS Systems 
 There is a class of CDS systems that use higher- 
level abstractions of clinical knowledge and 
problem-solving knowledge to overcome some 
of the limitations of the more prevalent CDS 
architectures. These systems make an explicit 
distinction between the  static knowledge  of the 
clinical domain (e.g., knowledge of the specifi ca-
tions entailed by a clinical practice guideline) 
and the  problem - solving knowledge  needed to 
apply the static knowledge to a particular patient 
(e.g., the means to generate specifi c prescriptions 
for medications based on the general guideline 
recommendations and the particular clinical situ-
ation that the patient is experiencing). This dis-
tinction makes it possible for system builders to 
address different elements of the knowledge 
needed to be represented in the computer using 
tailored approaches and tools (Musen  1998 ; 
DeClerq et al.  2004 ). 

 The ATHENA-CDS system exemplifi es this 
component-oriented approach (Goldstein et al. 
 2000 ). ATHENA-CDS is a computer system that 
is integrated with the HIS used by the U.S. 
Department of Veterans Affairs (VA), known as 
VistA (see Chap.   12    ). ATHENA-CDS is installed 
at several VA medical centers and has been the 
subject of a number of evaluation experiments 
(Chan et al.  2004 ; Lin et al.  2006 ). ATHENA- 
CDS offers advice regarding patients who have 
certain chronic diseases, whose physicians would 
like to treat those patients in accordance with rec-
ognized evidence-based clinical practice guide-
lines (Fig.  22.4 ). Currently, ATHENA-CDS 
draws on several electronic knowledge bases, 
each one capturing the knowledge of a particular 
guideline (e.g., for hypertension, for hyperlipid-
emia, for diabetes, and so on). Each time that a 
patient with a relevant diagnosis (e.g., hyperten-
sion) is seen in the outpatient clinic, ATHENA- 
CDS takes as input the corresponding guideline 
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knowledge base and patient-specifi c data from 
the VistA EHR, and generates as output sugges-
tions to the clinician for treating the patient to 
ensure that the treatment is consistent with the 
care that the guideline would recommend. 
Because the standard documents that defi ne clini-
cal practice guidelines can be long and compli-
cated, it is extremely helpful for the computer to 
focus the clinician’s attention on precisely which 
interventions should be considered to guarantee 
that the patient’s care is consonant with the medi-
cal evidence captured by a given guideline 
(Fig.  22.5 ).

    ATHENA-CDS was engineered using an 
approach that separates out static knowledge 
about the clinical application area from knowl-
edge about problem solving (Musen et al.  1996 ). 

The developers began by creating an  ontology  of 
clinical guidelines in general. An ontology is like 
a  controlled terminology  (see Chap.   7    ) that 
includes not only an enumeration of the impor-
tant entities in some application area, but also—
in machine-processable form—the relationships 
among those entities and, possibly, constraints on 
those entities. Thus, an ontology contains taxo-
nomic relationships that indicate, for example, 
that  cholesterol  is a kind of  lipid  or that a  serum 
potassium  is a kind of  laboratory test . An ontol-
ogy may also contain partitive relationships that 
indicate, for example, that a  systolic blood pres-
sure measurement  is part of a  blood pressure 
measurement , or that the  guideline drugs  are part 
of a  guideline . To construct ATHENA-CDS, it 
was necessary fi rst to defi ne an ontology of 

  Fig. 22.4    An example of the ATHENA-CDS system 
interface. ATHENA-CDS provides decision-support for 
the management of hypertension and several other chronic 
diseases by using a declarative knowledge base created as 
an instantiation on a generic guideline ontology. In the 

screen capture, the provider has entered the patient’s most 
recent blood pressure, and is offered advice about possi-
ble alterations in therapy based on the relevant clinical-
practice guideline (Source: M. K. Goldstein, VA Palo 
Alto Healthcare System)       
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clinical practice guidelines (Fig.  22.6 ). The 
guideline ontology makes it clear that all guide-
lines must include  eligibility criteria  that indicate 
which patients should be treated in accordance 
with the guideline, a  clinical algorithm  that spec-
ifi es the sequence of treatments recommended by 

the guideline, and  guideline drugs  that represent 
all the medications that patients might be given 
when their provider follows the guideline. 
Because the guideline ontology is general, it does 
not contain information about any  particular  
clinical algorithm, any  particular  eligibility 

Lifestyle Modifications

ACEI, angiotexsin coverting
enzyme inhibitor; ARB,
anglotensin receptor blocker;
BB, beta blocker; CCB, calcium 
channel blocker; DBP, diastolic 
blood pressure; SBP, systolic 
blood pressure

Optimize dosages or add additional drugs
until goal blood pressure is achieved.

Consider consultation with hypertension specialist.

Stage 1
Hypertension
(SBP 140-159

or DBP 90-99 mmHG)
Thiazide-type diuretics
for most. May consider

ACEI, ARB, BB, CCB, or
combination

Stage 2
Hypertension
(SBP ≥ 160 or 

DBP ≥ 100 mmHG)
Two-drug combination

for most. (usually thiazide-
type diuretic and ACEI, 
or ARB,  or BB, or CCB)

Drug(s) for the 
compelling indications

Other antihypertensive
drugs (diuretics, ACEI, 

ARB, BB, CCB) 
as needed

With Compelling
Indications

Without Compelling
Indications

Initial Drug Choices

Not at Goal Blood Pressure

Not at Goal Blood Pressure (<140/90 mmHg)
(<130/80 mmHg for those with diabetes or

chronic kidney disease)

  Fig. 22.5    Professional    societies, health care practices, 
private foundations, and other organizations are all work-
ing to capture “best practices” for managing patients in 
accordance with scientifi c evidence in terms of clinical 
practice guidelines. Unfortunately, nearly all these guide-
lines are published initially as large paper documents. 

Here is a high-level, paper-based fl owchart from the 
guideline developed by Joint National Commission on 
Hypertension. The fl owchart summarizes detailed recom-
mendations that the guideline document specifi es in many 
pages of text. Synopses of such guidelines are available 
online at   http://guidelines.gov           
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criteria, and so on. The ontology merely states 
that all guidelines for management of chronic 
 diseases have such characteristics.

   Developers of ATHENA-CDS used the 
Protégé ontology-development system (Gennari 
et al.  2003 ) to create the ontology of clinical 
practice guidelines (see Fig.  22.6 ). They then 
used Protégé to allow the guideline ontology to 
structure  knowledge bases  that defi ne how to 
manage patients in accordance with particular 
guidelines. The developers created a knowledge 
base for management of hypertension refl ecting 
the guideline that is used by the VA and the 
Department of Defense (DOD), supplemented 
with recommendations from the Joint National 
Commission on Hypertension (National High 
Blood Pressure Education Program  2004 ; 

Fig.  22.7 ). They instantiated the ATHENA-CDS 
guideline ontology to build a knowledge base for 
management of congestive heart failure based on 
the guideline developed by the American Heart 
Association and the American College of 
Cardiology. The developers built a knowledge 
base for management of chronic pain, based on 
the guideline promoted by the VA and the DOD 
(Trafton et al.  2010 ). Other knowledge bases for 
guideline-based care of diabetes, hyperlipidemia, 
and chronic kidney disease were created in a sim-
ilar manner.

   The ATHENA-CDS guideline ontology can 
be viewed as a hierarchy of classes in an object- 
oriented language. Each object defi nes an entity 
in the ontology (e.g., clinical algorithm, guideline 
drugs). To create a knowledge base (such as the 

  Fig. 22.6    A small portion of the ontology of clinical guide-
lines used by ATHENA-CDS as entered into the Protégé 
ontology-editing system. The hierarchy of entries on the left 
includes entities that constitute building blocks for con-
structing guideline descriptions. The panel on the right 
shows the attributes of whatever entity is highlighted on the 
left. Here,  goal ,  eligibility _ criteria , and  clinical _ algorithm , 

for example, are attributes of the entity known as 
 Mangement _ Guideline . The ontology entered into Protégé 
refl ects concepts believed to be common to all guidelines, 
but does not include specifi cations for any guidelines in par-
ticular. The complete domain model is used to generate 
automatically a graphical knowledge-acquisition tool, such 
as the one shown in Fig.  22.7        
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one for hypertension management), the classes in 
the object hierarchy are instantiated to defi ne the 
particular  clinical algorithm  mandated by the 
hypertension guideline, the particular  guideline 
drugs  required to treat hypertension, and so on. 
Similarly, creating the diabetes knowledge base 
for ATHENA-CDS required instantiating the 
 clinical algorithm class  with information about 
the sequence of events that take place in the man-
agement of diabetes, and so on. Although creat-
ing the ATHENA-CDS guideline ontology 
required careful analysis and modeling, it is a 
much easier task to use a knowledge-editing sys-
tem such as Protégé to instantiate the ontology 
with the information required for individual 
guidelines. Indeed, editing and maintaining the 
ATHENA-CDS knowledge bases has been some-
thing that trained clinicians generally have done 
on their own without much assistance from work-
ers in informatics. 

 In the approach demonstrated by ATHENA- 
CDS, software engineers create specialized 
computer programs that encode the procedures 
needed to perform different tasks using the 
knowledge base. For example, in ATHENA- 
CDS, a problem-solving program uses a guide-
line knowledge base (for example, the knowledge 
base that encodes the VA/DOD/JNC guideline 
for management of hypertension) in conjunction 
with data that the program queries from the 
VistA EHR to make situation-specifi c recom-
mendations to providers regarding therapy for 
high blood pressure. The approach separates the 
static knowledge base from problem solvers that 
operate on that knowledge base. Thus, a differ-
ent problem-solving program could use the 
knowledge base and available EHR data to deter-
mine whether a patient is eligible for treatment 
in accordance with the guideline. Another 
problem- solving program could perform  quality 

  Fig. 22.7    A screen from a Protégé-generated knowl-
edge-acquisition tool for entry of clinical-practice guide-
lines. The tool is generated automatically from domain 
ontology, shown in Fig.  22.6 . The entries into the tool 

specify the knowledge required to treat patients in accor-
dance with the guideline for chronic hypertension adopted 
by the Department of Veterans Affairs       

 

22 Clinical Decision-Support Systems



666

assurance  to assess whether past patients have 
been treated in accordance with the guideline, 
when appropriate (Advani et al.  2003 ). Another 
program could estimate the cost of treating a 
patient in accordance with the guideline. 

 The ontology-driven approach makes it pos-
sible to start with a particular ontology (in this 
case, one for clinical practice guidelines for man-
agement of chronic disease) to create multiple 
knowledge bases, each one instantiating the 
ontology to specify the knowledge required for 
particular guidelines. Similarly, the different 
knowledge bases can be mapped to different 
problem-solving programs, such that each prob-
lem solver automates a different task associated 
with guideline-based care (therapy planning, eli-
gibility determination, and so on). The ability to 
“mix and match” knowledge bases and problem 
solvers offers considerable fl exibility, and 
enables developers to reuse elements of previous 
solutions to address new CDS problems that 
require different domain knowledge or different 
problem-solving procedures.    

22.5     Translating CDS to the 
Clinical Enterprise 

 So far in this chapter, you have learned about the 
foundational elements of CDS systems. We have 
emphasized the research challenges that confront 
the informatics community to offer more useful 
CDS and to make it easier for developers to 
encode clinical knowledge in electronic form. 
Bringing CDS technology to the point of care, 
however, requires a parallel set of challenges that 
concern integration of CDS systems both within 
the information infrastructure available in real-
world settings and within the workfl ows of their 
users. Deployment of CDS systems within the 
clinical enterprise requires an understanding of 
the complexities of existing HIT and of the pro-
cesses by which the HIT vendor community 
adopts the standards that enable interoperation 
among different HIT components. 

 Over the past several decades, advanced CDS 
systems have been developed and deployed in a 
number of academic medical centers. The tech-

nology slowly has diffused into commercial EHR 
systems and into routine practice (Chaudhry et al. 
 2006 ). The uptake has been greater in medium-to-
large hospitals and in medical- center–based net-
works, including affi liated practices, and has been 
much less in smaller hospitals, clinics, and inde-
pendent practices. Although these trends have 
been sluggish, the recent advent of “meaningful 
use” regulations for HIT promises to accelerate 
the adoption of CDS technology dramatically. 

 In general, the CDS systems deployed to date 
in vendor EHR systems are relatively limited in 
scope. The greatest uptake has been in the form 
of simple alerts and reminders, standard physi-
cian order sets, CPOE-based prescription tem-
plates with dose checks, allergy checks, 
identifi cation of drug–lab and drug–drug interac-
tions, and some use of infobuttons or access to 
context-specifi c knowledge resources. In some 
specifi c settings, rule-based systems have been 
used to drive the intelligent collection of clinical 
information in a comprehensive, structured form 
(Schnipper et al.  2008b ). 

 A few vendors have been successful at distrib-
uting knowledge resources, making available 
clinical knowledge in the form of drug- interaction 
databases, order sets for common indications, 
rule-based knowledge, documentation templates, 
and information resources for infobutton-based 
queries. 

 Nonetheless, even these kinds of resources 
have had relatively limited adoption to date. 
There are several reasons for the slow uptake of 
CDS, as enumerated in the sections that follow. 

22.5.1    Lack of a Standard Patient 
Information Model 

 CDS rules and other knowledge forms need to 
operate on specifi c patient data. If those data are 
stored in a proprietary format and with non- 
standard encodings, then a set of rules needs to be 
customized to use data in that form, or the data 
need to be translated to a common information 
model. The former has been the usual process, 
and, as a result, vendor EHR systems tend to have 
libraries of rules that operate only in their own 
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systems, using their proprietary data dictionaries 
and data models; sharing across platforms and 
systems has been limited, and considerable work 
is required to integrate vendor HIT products with 
external CDS systems. 

 The informatics community is responding to 
this problem through the creation of new stan-
dards (see Chap.   7    ). For example, HL7 has devel-
oped an XML mark-up specifi cation for the 
 Continuity of Care Document  (CCD), provid-
ing a standard mechanism for structuring in a 
static form the many data elements that are 
needed to record clinical encounters. Although 
industry adoption of the CCD specifi cation has 
been slow, the use of the CCD standard offers 
considerable opportunity for CDS systems to 
interoperate across vendor platforms. 

 As discussed in Sect.  22.4.2 , in 2012, a  vir-
tual medical record  (vMR) based on the HL7 
version 3.0  Reference Information Model  
(RIM) was approved by HL7 as a draft standard 
for trial use for linking dynamically at runtime 
the arbitrary data elements available in the 
patient database of an EHR to CDS systems 
that assume the standard vMR framework for 
data encoding (Kawamoto et al.  2010 ). The 
vMR thus acts as an interface between propri-
etary database formats and standards- based 
CDS systems that developers might plug into 
any EHR that can make its data available in a 
vMR-compliant manner (Fig.  22.8 ). HL7 is 
supporting ongoing work to map the vMR to 
standard terminologies and clinical data ele-
ment defi nitions.

Virtual Medical Record (HL7 Standard)

GELLO Expression Language (HL7 Standard)

MLM

Triggering event Conditional expression Action

Electronic Health Record
(Proprietary)

Patient Data Base
(Proprietary)

  Fig. 22.8    HL7 Version 3 offers a solution to the “curly 
braces problem” that has to date impeded the sharing of 
MLMs. In Version 3, EHR vendors may adopt a standard 
 virtual medical record  (vMR) interface that provides a 
common framework (a “wrapper”) for accessing patient 
data stored in diverse, proprietary EHR databases. In 
Version 3, developers of medical logic modules (MLMs) 

can use a standard object-oriented query language, 
GELLO, to access the vMR. Although it has been hoped 
that use of standards such as GELLO and the vMR will 
encourage widespread sharing of libraries of MLM deci-
sion rules, the vMR is based on the HL7 Reference 
Information Model (RIM), which to date has received 
limited adoption by the vendor community       
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22.5.2        Lack of Adoption of 
Standard Knowledge 
Representation Models 

 Although Arden Syntax has been an HL7 and 
ANSI standard since 1999, only a few vendor sys-
tems manage their libraries of decision rules using 
Arden Syntax. Even doing so, of course, the rules 
still need to be customized for use with vendor-
specifi c patient databases on a tedious, rule-by-
rule basis to overcome the infamous curly-braces 
problem described in Sect.  22.4.2 . As noted in 
that section, HL7 and ANSI adopted a query lan-
guage called GELLO. GELLO can be used in 
rules written in Arden Syntax (and in other lan-
guages) as a standard approach for writing down 
the logical expressions and data queries needed 
for the rules to access patient-specifi c information 
stored in an EHR. GELLO assumes that the EHR 
data can be accessed in a manner that is consistent 
with the HL7 Version 3.0 RIM. GELLO itself is 
based on the  Object Constraint Language  
(OCL) developed by the Object Management 
Group (OMG), and has the expressivity required 
both to compose complex  references to clinical 
data elements and to construct queries. It has been 
hoped that GELLO will be incorporated into sub-
sequent versions of Arden Syntax to obviate the 
need for curly braces. However, the HL7 Version 
3 RIM has had limited uptake by vendors, who 
continue to rely mostly on the message-oriented 
HL7 Version 2 syntax for communication between 
systems. As a result, adoption of the GELLO 
query language also has been slow. 

 HL7 approved a standard for the Infobutton 
Manager in 2010 and a draft standard for order- set 
specifi cation in 2012. In 2011, the organization 
approved a specifi cation for a  service - oriented 
architecture  (SOA) to drive CDS, called the 
Decision Support Service (DSS). 

 Notably lacking from all this standards work 
is a shared ontology for representing clinical 
practice guidelines in a form suitable for execu-
tion at run time. The  Guideline Element Model  
(GEM; Shiffman et al.  2000 ) is an XML mark-up 
specifi cation that is an American National 
Standards Institute (ANSI) standard, now in its 
third revision, that guideline authors can use to 
annotate their narrative guidelines to identify key 

elements for both quality assessment and execu-
tion. GEM allows authors to demarcate the text 
that identifi es guideline actions or eligibility cri-
teria, and thus can serve an intermediary purpose 
in work to transform a prose guideline into a 
computable specifi cation, but the standard does 
not itself provide a mechanism to translate a 
marked-up guideline document into a structure 
that a computer can interpret and execute. 

 A goal of some proponents is to have an ontol-
ogy of clinical practice guidelines, such as the one 
adopted by ATHENA-CDS (see Fig.  22.6 ), that 
can inform the creation of computer- understandable 
knowledge bases that are able to capture knowl-
edge about specifi c guidelines. Such knowledge 
bases then could allow a CDS system to use 
knowledge about the guideline, data from the 
EHR, and information concerning patient prefer-
ences and available resources to offer situation-
specifi c, guideline-directed advice. An underlying 
infrastructure known as EON (Musen et al.  1996 ) 
drives the ATHENA- CDS system. Other ontology-
based approaches have appeared over the years, 
including GLIF, GUIDE, PRODIGY, Pro forma , 
Asbru, and GLARE (deClerq et al.  2004 ). Peleg 
and colleagues ( 2003 ) compared many of these 
guideline models, and showed signifi cant com-
monalities among them. Despite the large degree 
of agreement, however, work in this area has not 
yet led to anything near a standard. Part of the 
problem is that there is wide variation in the struc-
ture, granularity, and specifi city of existing clinical 
practice guidelines, making it diffi cult to develop a 
single comprehensive and yet readily applicable 
guideline model. Analysis of the use of guidelines 
also indicates that guidelines themselves are rarely 
“executed” without considerable adaptation, 
except in situations such as protocol-driven care 
(for example, in clinical trials or in very specifi c 
procedures such as renal dialysis). ATHENA-CDS 
thus dispenses with offering specifi c guideline-
based recommendations, and instead suggests to 
the clinicians when certain treatment options 
might be “compellingly indicated” or “relatively 
contraindicated.” In highly regimented settings 
such as the administration of chemotherapy for 
cancer, however, a CDS system generally would 
need to be much more “prescriptive” in offering 
recommendations to clinicians.  
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22.5.3    Limited Modes of 
Deployment of CDS 

 One of the impediments to widespread adoption 
of CDS, particularly the use of rules and alerts, is 
clinician annoyance with popups, messages, 
emails, and other notifi cations that interrupt 
workfl ow. Ideally CDS systems should be inte-
grated into the organization and presentation of 
information to facilitate workfl ow and decision 
making, by anticipating what information is 
needed for a decision, pre-fetching it, displaying 
it in ways that support visualization of trends or 
relationships, and tying these analyses to care 
plans or actions that can be offered immediately 
and quickly selected by the user. Order sets, as 
stated earlier, form a good example of use of 
CDS both to suggest appropriate actions in a 
given setting and to make it easy to accomplish 
those actions, by immediately enabling the orders 
in the set to be entered automatically into the 
EHR, perhaps with modifi cation. 

 There is much ongoing research to develop 
methods for managing the processes of data cap-
ture, data presentation, data visualization, and 
selection of actions, but this work is usually 
being done outside of vendor EHRs. Given lim-
ited interoperability and access to the internals of 
proprietary systems, this kind of experimentation 
is now tending to take place in the form of “apps” 
and services that operate on externally extracted 
data (Mandl and Kohane  2012 ). Close interoper-
ation with underlying EHRs is not currently fea-
sible in most cases, and it remains to be seen 
whether the push to “apps” and services will 
become a force to change the industry.  

22.5.4     Workfl ow and Setting-
Specifi c Factors 

 As noted in Sect.  22.4.2 , applications based on 
single-step situation–action rules are among the 
most prevalent and useful types of CDS systems. 
Such systems can be invoked in many contexts to 
provide either recommendations in real time or 
reminders or alerts that are processed in batch, 
based on time-oriented triggers or data- evaluation 
events. Rules can invoke other knowledge 

resources—providing new information content, 
triggering other rules, or offering order sets. 

 Rule content is ideally based on analysis of 
clinical evidence, such as recommendations or 
guidelines emanating from the U.S. Preventive 
Services Task Force, or from professional society 
studies of best practices for specifi c diseases. The 
job of formalizing these recommendations into 
executable logic requires that they be expressed 
in a formal way, but even having done so, such 
rules are not typically ready to execute in a par-
ticular environment, even if they are expressed in 
a rule execution language “understood” by an 
EHR system, and if they refer to the data ele-
ments in the EHR in its expected format. The rea-
son they are not readily executable is also the 
reason that rules that work well in one environ-
ment are often not able to be successfully 
deployed elsewhere without substantial modifi -
cation (even if in the same representation format 
and if using the same data model). 

 The reason for the failure is lack of adaptation 
to what we refer to as  setting - specifi c factors  
(SSFs). To work effectively, rules need to inte-
grate well with the clinical setting, workfl ow, 
users, application environment, and other factors. 
These requirements are refl ected in how and 
when the rule should be triggered—on various 
events such as examination of some element of 
the EHR, on login to the system, or on the avail-
ability of laboratory test results. Rules may also 
be in developed in the form of reminders that are 
triggered when the CDSS evaluates on a batch 
basis a practice’s list of patients to be seen on a 
given day, the patients who have a birthday in a 
given month, the passage of a specifi c interval of 
time since a previous comparison event, and so 
on. The rules additionally may vary based on the 
practice setting (the emergency department, an 
offi ce practice, an inpatient unit); particular 
inclusion or exclusion criteria or threshold modi-
fi cations that may be site-specifi c; how the rec-
ommendation should be transmitted (electronic 
mail, popup windows, sidebar messages); 
whether the recommendation requires acknowl-
edgment by the recipient; whether it can be over-
ridden; whether the alert should be escalated to 
supervising clinicians, and so on. Rules that have 
been custom tailored in such ways by means of 
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executable code naturally are less sharable than 
are generic rules. Failure to capture the kinds of 
customizations that are needed, however, makes 
it time consuming for individual sites to adapt 
generic medical recommendations to their par-
ticular requirements or to capitalize on the expe-
riences of others. What is needed is a way to 
represent useful experience in terms of SSF com-
binations that work, without needing to do so at 
the level of detailed code that is diffi cult for users 
to visualize and modify.  

22.5.5    Lack of a Mode for Sharing 
Best-Practice Knowledge 
for CDS 

 There is no established mechanism for accessing 
reliable, vetted libraries of best-practice knowl-
edge in computational form that are relevant to 
particular clinical problem areas—for example, 
management of diabetes. It generally falls on 
each health care organization, user group, or other 
entity to undertake its own process of identifying 
and managing the best-practice knowledge it 
wants to deploy in its CDS systems. Even having 
a national or international repository of such 
knowledge would not preclude the need for cus-
tomization, but it would certainly make it easier 
for each health care entity to start with a trusted 
source. Where such a repository should be hosted, 
how it might integrate public and private knowl-
edge sources, who would have oversight over it, 
how knowledge would be peer reviewed and 
quality-rated, and how it would be sustained are 
among the many questions that have not yet been 
answered. As a consequence, health care organi-
zations continue to perform this kind of knowl-
edge-curation work for their own constituencies, 
and pilot projects often have no clear pathway to 
becoming operational, sustainable activities.   

22.6    Future Research and 
Development for CDS 

 Workers in biomedical informatics have studied 
problems in assisting with complex decision 
making for more than half a century. It seems that 

it is only now, with the very recent adoption of 
HIT on a widespread basis, that the foundations 
are fi nally in place for the rapid advance of CDS 
technology in clinical settings. Although consid-
erable logistical problems still must be sur-
mounted as outlined in Sect.  22.5 , this is an 
extremely exciting time in which to study CDS 
and its translation from the laboratory to the point 
of care. 

22.6.1    Standards Harmonization 
for Knowledge Sharing and 
Implementation 

 Many implementation challenges remain for the 
broad adoption and effective use of CDS in EHR 
systems. As mentioned, one of the most active 
areas of current research focuses on development 
of standard approaches to knowledge sharing for 
CDS. Knowledge sharing may take the form of 
human-readable artifacts, machine-interpretable 
artifacts, or executable Web services (Osheroff 
et al.  2007 ). A capability for CDS sharing, as well 
as CDS functionality itself, would be substan-
tially facilitated by the continued development 
and use of common standards designed to serve 
health care CDS needs. As noted, several stan-
dards currently exist that are aimed at specifi c 
areas of CDS and types of CDS artifacts, or that 
could be leveraged to benefi t CDS. For example, 
the Clinical Decision Support Consortium, a 
large collaborative research and development 
group supported by the Agency for Healthcare 
Research and Quality has adopted an enhanced 
version of the Continuity of Care Document 
(CCD) to serve as the foundation for input data 
for multi-institutional trials of CDS technology 
(Middleton  2009 ). The CDS Consortium will 
soon leverage the HL7 vMR standard as the input 
patient information model. When taking advan-
tage of most current standards, systems develop-
ers tend to adopt not only the standards but also 
particular implementation approaches, more as 
ad hoc solutions to specifi c problems than as inte-
grated components to be used within a compre-
hensive framework for CDS. 

 To date, standards and related efforts address-
ing CDS overall have heavily emphasized  specifi c 
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CDS execution methods and representation of the 
clinical context of the patient. For example, as we 
have noted previously, a variety of frameworks 
for working with rules, including Arden Syntax, 
Drools, JESS, and several proprietary formats, 
have worked their way into vendor offerings. 
This diversity has inhibited the exchange of best-
practice knowledge. The unfortunate situation is 
that there are simply no repositories of clinical 
rules that are ready for “plug and play” adoption. 
Further work needs to be done to establish a com-
mon patient information model with a formal 
ontology, an event model for triggering events, an 
action model for CDS intervention recommen-
dations, a workfl ow model for appropriately 
inserting CDS interventions into the clinical 
workfl ow, a knowledge- representation schema 
with a standard regular expression language, 
and, ideally, a measurement standard to assess 
CDS performance in use. In 2012, the US Offi ce 
of the National Coordinator launched the Health 
e-Decisions initiative within its Standards and 
Interoperability Framework to promote coordi-
nated community-based collaboration that 
would address this need. A goal of the Health 
eDecisions process is to create a model-driven 
framework for representing decision-support 
knowledge that can be translated among differ-
ent implementation languages. As of the end of 
2012, this work is being considered by HL7 as a 
possible standard.  

22.6.2    Usability Research and CDS 

 The use of CDS within EHRs, and that of health 
IT in general, have been identifi ed as double- 
edged swords: technology may provide benefi t, 
but it also may cause considerable harm. Clinician 
error when using information systems that may 
result in untoward outcomes and unintended con-
sequences (Karsh et al.  2010 ; Sittig and Singh 
 2009 ) may be an emerging property that is dem-
onstrated only after system implementation or 
widespread use. Medical errors related to use of 
health IT are problematic, since they may repre-
sent a mismatch between the user’s model of the 
task being performed and the actual outcome of a 
computation (National Research Council (US) 

Committee on Engaging the Computer Science 
Research Community in Health Care Informatics 
et al.  2009 ), the application’s intended function-
ality and the resulting action or event (Harrison 
et al.  2007 ), or a latent health IT-related error yet 
to happen (Ash et al.  2007 ). Excessive alert 
fatigue can undermine the effi cacy of clinical 
decision support in CPOE (Isaac et al.  2009 ; 
Strom et al.  2010 ), and in other IT functions 
(Chused et al.  2008 ), and result in very high user 
override rates (Shah et al.  2006 ; van der Sijs et al. 
 2006 ; Weingart et al.  2003 ). Critical research 
questions need to focus on the potential mis-
match between the user’s mental model or intent 
and the application design and use case (Zhang 
and Walji  2011 ; Patel et al.  2010 ). Further atten-
tion needs to be given to basic principles of 
human-factors engineering, such as the use of 
colors and layout within the application interface. 
Additional questions remain regarding the ideal 
design of methods and controls with which a user 
might interact to choose a medication from a long 
list, or identify and encode patient problems. 
More advanced research will enable visualization 
and decision making by matching problems with 
care plans, and facilitation of continuity and 
coordination of care based on underlying CDS 
rules and guideline-based workfl ows. Especially 
challenging is addressing the need for structured 
data to support clinical decision support, and 
quality reporting, in a manner that is effi cient for 
the end-user, perhaps combining structured docu-
mentation during data entry, and natural language 
processing for data abstraction from the clinical 
narrative. Most important, however, are methods 
to direct CDS to the right user, at the right time, 
with the right level of alerting.  

22.6.3    Data-Driven CDS 

 A major area of research in informatics concerns 
methods for deriving knowledge from large data 
sets using a variety of techniques. With the adop-
tion of health IT broadly, investigators are draw-
ing on large-scale data-mining methods to 
provide CDS for population monitoring, public 
health surveillance, and even to offer patient- 
specifi c recommendations based on cohort data 
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when there is no specifi c evidence that could oth-
erwise guide therapy. With the increasing avail-
ability of data from diverse sources relevant to 
patient care, large data sets may be created and 
used for both discovery of previously unknown 
associations, and novel clinical predictions. 
Critical research questions here will include how 
to defi ne like cohorts of patients, how to structure 
and frame the index decision, what methods to 
use to assess the likelihood of alternate  prediction 
scenarios, and how to model and elicit the 
patient’s preferences for each scenario. The 
Institute of Medicine ( 2011b ) has articulated a 
long-term vision for a Learning Health System, in 
which clinical and administrative data of all kinds 
will begin to inform and enhance clinical practice 
on a national level in a wide variety of ways.   

22.7    Conclusions 

 The future of CDS systems inherently depends 
on progress in developing useful compu-
ter programs and in reducing logistical barriers to 
implementation. Although ubiquitous computer- 
based decision aids that routinely assist physi-
cians in most aspects of clinical practice are 
currently the stuff of science fi ction, progress has 
been real and the potential remains inspiring. 
Early predictions about the effects that such inno-
vations would have on medical education and 
practice have not yet come to pass (Schwartz 
 1970 ), but growing successes support an optimis-
tic view of what technology will eventually do to 
assist practitioners with processing of complex 
data and knowledge. The research challenges 
have been identifi ed much more clearly, legisla-
tive mandates are creating not only new fi nancial 
incentives but also the practical substrate of 
increased EHR adoption and convergence toward 
data interoperability, and the implications for 
health-science education are much better under-
stood. The basic computer literacy of health pro-
fessional students can be generally assumed, but 
health-science educators now must teach the con-
ceptual foundations of biomedical informatics if 
their graduates are to be prepared for the techno-
logically sophisticated world that lies ahead. 

 Equally important, we have learned much 
about what is not likely to happen. The more that 
investigators understand the complex and chang-
ing nature of medical knowledge, the clearer it 
becomes that trained practitioners of biomedical 
informatics will always be required as partici-
pants in fostering a cooperative relationship 
between physicians and computer-based decision 
tools. There is no evidence that machine capabili-
ties will ever equal the human’s ability to deal 
with unexpected situations, to integrate visual 
and auditory data that reveal subtleties of a 
patient’s problem, to work with patients to incor-
porate their values and priorities in care plans, or 
to deal with social and ethical issues that are 
often key determinants of proper medical deci-
sions. Considerations such as these will always 
be important to the humane practice of medicine, 
and practitioners will always have access to 
information that is meaningless to the machine. 
Such observations argue cogently for the discre-
tion of health care workers in the proper use of 
decision-support tools.  
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 Questions for Discussion 
     1.    Researchers in medical AI have argued 

that CDS systems should reason from 
clinical data in a way that closely 
matches the reasoning strategies of the 
very best clinical experts, as such 
experts are the most clever diagnosti-
cians and the most experienced treat-
ment specialists that there are. Other 
researchers maintain that expert reason-
ing, no matter how excellent, is at some 
level inherently fl awed, and that CDS 
systems must be driven from the mining 
of large amounts of solid data. How do 
you account for the apparent difference 
between these views? Which view is 
valid? Explain your answer.   

   2.    Transitioning CDS systems from 
one clinical setting to another has 
always been problematic. The Leeds 
Abdominal Pain System was installed 
in several major clinical settings, and 
yet the system never performed as 
well elsewhere as it had done in Leeds. 
The Arden Syntax, created expressly 
to facilitate knowledge sharing across 

institutions, has yet to meet this goal 
to a signifi cant degree. Why kinds of 
setting-specifi c factors make it diffi cult 
to transplant decision-support technol-
ogy from one environment to another? 
What kinds of research might lead to 
better methods for knowledge sharing 
in the future?   

   3.    In one evaluation study, the decision-
support system ONCOCIN provided 
advice concerning cancer therapy 
that was approved by experts in only 
79 % of cases (Hickam et al.  1985 ). 
In another study, the HyperCritic 
CDS system for the management of 
hypertension offered the same com-
ments that were generated by a panel 
of experts in only 45 % of cases (Van 
der Lei, et al.  1991 ). Such system per-
formance is fairly typical for computer 
programs that suggest patient therapy. 
Do you believe that this performance is 
adequate for a computational tool that 
is designed to help physicians to make 
decisions regarding patient care? What 
problems might CDS systems encoun-
ter as their developers attempt to make 
the systems more comprehensive in the 
advice that they offer? Why might it be 
more diffi cult for computer systems to 
offer acceptable recommendations for 
patient therapy than seems to be the 
case for diagnosis? What safeguards, 
if any, would you suggest to ensure the 
proper use of such systems? Would you 
be willing to visit a particular physician 
if you knew in advance that she made 
decisions regarding treatment that were 
approved by expert colleagues less 
than 80 % of the time? If you would 
not, what level of performance would 
you consider adequate? Justify your 
answers.   

   4.    A large international organiza-
tion once proposed to establish an 
independent laboratory—much like 
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or less attracted to CDS than is the case 
today?   

   6.    There is considerable untapped poten-
tial for CDS to help in managing patients 
with multiple complex conditions. What 
are the challenges in dealing with such 
patients, and how can CDS be helpful? 
What are the features required of an 
algorithm that might integrate recom-
mendations from the multiple clinical- 
practice guidelines that a CDS system 
could apply?   

   7.    CDS is often implemented poorly, result-
ing in dissatisfaction, if not outright 
annoyance. What are the human factors 
that need to be taken into consideration in 
implementing CDS effectively? Discuss 
issues and approaches to enhancing 
usability. What are situations in which 
graphics and visualization might be used? 
How can CDS be used to enhance rather 
than to impede workfl ow? What are strat-
egies to help avoid unintended conse-
quences of poorly implemented CDS?     

Underwriters Laboratory in the 
United States—that would test CDS 
systems from all vendors and research 
laboratories, certifying the effective-
ness and accuracy of those systems 
before they might be put into clinical 
use. What are the possible dimensions 
along which such a laboratory might 
evaluate decision-support systems? 
What kinds of problems might such a 
laboratory encounter in attempting to 
institute such a certifi cation process? 
In the absence of such a credential-
ing system for CDS systems, how can 
health- care workers feel confi dent in 
using a clinical decision aid?   

   5.    Why did the United States federal 
government move to stimulate the 
adoption of EHRs in 2009? What 
mechanisms have been put in place to 
encourage adoption of EHRs and of 
CDS? What challenges remain to make 
CDS more pervasive in health care? 
Why might future clinicians be more 
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