

The Objectives of this Lecture are:

1. To be able to recognize the definition of hypertension
2. To be able to identify the Stages of Hypertension
3. To find out the complication of Hypertension
4. To learn how to measure blood pressure
5. To acquire knowledge on how to treat hypertension

Case

47 year old man came to your clinic with headache for 3 weeks. The nurse measure his Blood Pressure and was found to be $150 / 95 \mathrm{mmHg}$:

1. Does he have Hypertension?
2. What is the stage of Hypertension?
3. What investigation should you perform?
4. What could be your management on his case?

HYPERTENSIOR

$>$ Worldwide high BP affects>40\% of adults older than the age of 25 years
$>$ Onset stage $\mathbf{2 5 - 5 5}$ years mainly in 40-50y
$>$ Occurs over 30% of persons older than 65 y
\Rightarrow The $4^{\text {th }}$ most common cause of death worldwide
$>$ global BP control remains at 32.5\%.

NHANES $10 \|$ Prevalence of Hypertension* According to Sex, Age,

 and BMI$>$ High prevalence of hypertension in the community is currently being driven by two phenomena:
-the increased age of population -the growing prevalence of obesity
$>$ High dietary salt intake is also a major factor

Men

\square BMI $<25 \square$ BMI 25-<27 \square BMI 27-<30 \square BMI >30

Prevalence, Awaremess, Treatment, and Control of

 Hypertension among Saudi Adult Population: A National Survey> select 4758 adult participants (2011)
> The overall prevalence of hypertension in Saudia was 1213 (25.5\%)
> Only 545 (44.7\%) of hypertensives were aware
> 389 (71.8\%) of them received pharmacotherapy (32%)
> Only 144 (37.0\%) were controlled.(12\%)
> Risk of hypertension increased among men, with age, obesity, diabetes, and hypercholesterolemia

Mechanism of Blood Pressure:

Blood Pressure = Cardiac output X

$$
\begin{aligned}
& \text { Systemic Vascular Resistance } \\
= & \text { CO X SVR } \\
= & \text { Stroke volume X HR X SVR }
\end{aligned}
$$

-An overactive Renin-angiotensin system leads to vasoconstriction and retention of sodium and water. The increase in blood volume leads to hypertension.
-An overactive sympathetic nervous system, leading to increased stress responses.
-Blunting of pressure-natriuresis
-Variation of cardiovascular \& renal devolpment

- Elvated intracellular Na or Ca

renin-angiotensin-aldosterone
 system (RAAS)

Renin-angiotensin-aldosterone system

Hypertension

* primary hypertension (essential)In 90% - 95% of cases no cause can be found it familiar (more common in black)
* result between environmental , \& genetic factors (more than 50 genes)
\& Secondary hypertension 5-10\%

Essential HTN

+ Risk factors
x Obesity---metabolic syndrome- DM
x Excessive salt intake---low potassium intake
\times Excessive alcohol intake
\times Polycythemia
\times Lack of exercise
\times Family history of essential HTN
\times Vit D deficiency
\times Aging
x smoking; increase risk of complication
* Caffeine increase the BP acutely but are not risk factors for the development of chronic essential HTN

Secondary Hypertension

+ Primary renal disease
+ Oral contraceptives
+ Sleep apnea syndrome
+ Primary hyperaldosteronism
+ Renovascular disease
+ Cushing's syndrome
+ Pheochromocytoma
* Other endocrine disorders
* Coarctation of the aorta
+ Drug; NSAID,Cyclosporin,decongestions, erythropoiesis-stimulatin agent
Expected if - onset high blood pressure before age 30 or after age 55
- Sever or resistant hypertension

European Society of Nephrology Classification of Blood Pressure Levels

Category	Systolic blood pressure (mmHg)	Diastolic blood pressure (mmHg)
Optimal blood pressure	<120	<80
Normal blood pressure	<130	855
High-normal blood pressure	$130-139$	$90-99$
Grade 1 hypertension (mild)	$160-179$	$100-109$
Grade 2 hypertension (moderate)	>140	$>/=110$
Grade 3 hypertension (severe)	<90	
Isolated systolic hypertension		

Diagnosis of hypertension by office and out-of-office blood pressure levels

Mothode of diagnosis hypertension
Office BP
Ambulatory BP
Daytime (or awake)
Nighttime (or sleep)
mean 24 h
Home BP
AOBP(Automated office blood
Types Of EP Apparatuses

Half automated device

Automated Device

Automated Blood Pressure Tru Device (Automated office Blood pressure)

AOBP ≥ 135 or more than 85

Ambulatory Pressure

Monitoring

Definitions of hypertension by office and out-of-office blood pressure levels

Category	Systolic BP (mmHg)		Diastolic (mmHg)
Office BP	≥ 140	and/or	≥ 90
Ambulatory BP			
Daytime (or awake)	≥ 135	and/or	≥ 85
Nighttime (or sleep)	≥ 120	and/or	≥ 70
Mean 24 h	≥ 130	and/or	≥ 80
Home BP	≥ 135	and/or	≥ 85
AOBP(Automated office blood pressure)	≥ 135	and/or	≥ 85

Blood Pressure

* Apply to adults on no antihypertensive medications and who are not acutely ill.
+ Measure blood pressure to arm the high reading.

Office blood pressure measurement

* To allow the patients to sit for 3-5 minutes before beginning BP measurements
+ Back straight and arm supported at heart level
+ Take at least two BP measurements, spaced 1-2 min apart, and additional measurements if the first two are quite different.
* Consider the average BP if deemed appropriate.
* To use a standard bladder (12-13 cm wide and 35 cm long)
* A larger bladder for larger arm (circumference >32 cm)

* The bladder of the pressure cuff should encircle at least 80% of the upper arm

Office blood pressure measurement

* Place the cuff at the heart level, whatever the position of the patient.
* Measure BP in both arms at first visit to detect possible differences. In this instance, take the arm with the higher value as the reference.
* Measure BP in sitting and standing position in elderly subjects and diabetic patients
* Use phase I and V (disappearance) Korotkoff sounds to identify systolic and diastolic BP, respectively.

Korotkoff sounds

White Coat Hypertension

* Approximately 20 to 25% of patients with mild office hypertension
* More common in elderly
*The diagnosis of mild hypertension should not be made until the blood pressure has been measured on at least three to six visits

COMPLICATIONS

Stroke, Ischemia,
Hemorrhage, Alzheimer's Disease, Cognitive, retinal
hemorrhage

Hypertension

Peripheral Vascular Disease

Hypertensive Emergency
And Increase Emergency Morbidity

The left ventricle is markedly thickened in this patient with severe hypertension that was untreated for many years. The myocardial fibers have undergone hypertrophy.

Malignant (Accelerated)Hypertension

+ Marked hypertension with encephapapathy\& retinal hemorrhages, exudates, or papilledema
* Associated with a diastolic pressure above 120 mmHg

Hypertensive Emergency
Severe hypertension (diastolic blood pressure above 120 mmHg) in end organ damage (MI,STROKE,AKI,CHF

HYPERTENSIVE RETINOPATHY

	Description
	Minimal narrowing of retinal arteries
	Narrowing of retinal arteries in conjunction with regions of focal narrowing and arterio-venous nipping
	retinal hemorrhages, hard exudation and cotton wool spots.
	papilledema swelling of the optic nerve head and macular star

Hypertensive Retinopathy Grade 1

Generalized arteriolar constrictionseen as `silver wiring ${ }^{\prime}$ and
Vascular tortuosities

Copper wiring

\$9. Online joumal of Ophitimeleg -wwicnicphicom

Hypertensive Retinopathy Grade 2

Arteriovenous nicking in association with hypertension Grade 2
(yellow arrow)

Hypertensive Retinopathy Grade 3

Flame-shaped hemorrhage in association with severe hypertension Grade 3 (yellow arrow)

Hypertensive Retinopathy Grade 4

Papilledema from malignant hypertension. There is blurring of the borders of the optic disk with hemorrhages (yellow arrows) and exudates (white arrow)

Diagnosis Hypertension

Clinical Presentations:

+ Asymptomatic
+ Headache
+ Epistaxis
+ Chest discomfort
+ Symptom of complications
Screening:
\& Every two years for persons with systolic and diastolic pressures below 120 mmHg and 80 mmHg
+ Yearly for persons high risk or High-normal blood pressure(130-139 or 85-89)

Physical Examination

1. Confirm the diagnosis of hypertension
2. Detect causes of secondary hypertension
3. Assess CV risk
4. Organ damage
5. Concomitant clinical conditions.

Important aspects of the physical examination in the hypertensive patient

Accurate measurement of blood pressure

General appearance

Distribution of body fat
Skin lesions
Muscle strength
Alertness

Fundoscopy

Hemorrhage
Papilledema
Cotton-wool spots

Neck

Palpation and auscultation of carotids
Thyroid
Heart
Size
Rhythm
Sounds
Lungs
Rhonchi
Rales
Abdomen
Renal masses
Bruits over aorta or renal arteries
Femoral pulses

Extremities

Peripheral pulses
Edema

Neurologic assessment

Visual disturbance
Focal weakness
Confusion

Laboratory Tests

\& Routine Tests
\times Electrocardiogram
x Urinalysis
\times Serum sodium, serum potassium, creatinine, or the corresponding estimated GFR, and calcium, uric acid
\times Blood glucose, and hematocrit
\times Lipid profile, after 9- to 12-hour fast, that includes high density and low-density lipoprotein cholesterol, and triglycerides
\neq Optional tests
x Measurement of urinary albumin excretion or albumin/creatinine ratio
\& More extensive testing for identifiable causes is not generally indicated unless BP control is not achieved

Who should be treated? LOW risk

1-If the visit 1 mean office systolic BP is 180 mm Hg and/or DBP is 110 mm Hg then hypertension is diagnosed 2-At visit 2, mean office BP measurement is 140 mm Hg systolic and/ or 90 mm Hg diastolic in patients with macrovascular target organ damage, diabetes mellitus, or chronic kidney disease (glomerular filtration rate $<60 \mathrm{~mL} / \mathrm{min} / 1.73 \mathrm{~m} 2$
3- At visit 3, mean office BP measurement is 160 mm Hg systolic or 100 mm Hg diastolic

- 4-At visit 4-5, mean office BP measurement is 140 mm Hg systolic or 90 mmHg diastolic without risk factor
- Treat all cardiovascular risk factors

EVALUATING THE PATIENT

> High blood pressure is only one of several cardiovascular risk factors that require attention
> Before starting treatment for hypertension, it is useful to evaluate the patient more thoroughly :

- Risk factors include age, male sex, smoking, dyslipidemia, glucose intolerance, obesity and family history of premature CVD. Asymptomatic organ damage mainly involves left ventricular hypertrophy, evidence of vascular damage and microalbuminuria; CKD; CVD, DM

Patient Monitoring and Support CVD Risk Check

Framingham Risk Score ${ }^{1}$

Risk assessment tool for estimating a patient's 10 -year risk of developing cardiovascular disease

This online assessment pod Is
imended as a allical practos ald for
se by experienosa neathcare
protessionals. Results ovtained fom
gude tor patent care.

Calculate risk
The risk assessment tool above uses information from the Framingham Heart Study as recommended by the 2009 CCS Canadian Cholesterol Guidelines to predict a person's chance of developing cardiovascular disease in the next 10 years, modified for family history (double the CVD risk percentage if any CVD present in a first degree relative before age 60). In men over 50 or women over 60 of intermediate risk whose LDL-C does not already suggest treatment, hsCRP can be used for risk stratification. Please enter your patient's information in the fields below.
The time is 11/9/2016 11:32:06 AM

Patient Monitoring and Support CVD Risk Check

Framingham Risk Score-RESULTS ${ }^{1,4}$
Your patient's Framingham Risk Score is
25.3\%

2009 CCS Canadian Cholesterol Guidelines Recommendation ${ }^{1}$

Risk Level	Initiate/consider treatment if any of the following:	Primary LDL-C targets
High *		Ether:
$($ FRS $>20 \%$. Consider treatment in all patients.	.
RRS $>20 \%)$		$.0 .0 \mathrm{mmol} / \mathrm{L}$ or

Adapted from Genest et al. Can J Cardiol. 2009. ${ }^{1}$
"The high-risk includes patients with evidence of atherosclerosls in any vascular bed, diabetc men over 45 and dabatc women over 50.

In high-risk patiente, pharmacological therapy should be considered concomilantly with ifestyle changes. Please consult guldellines for complete recommendations
Cliniclans should exerclise Judgment when Implementing lipld-lowering therapy; Illestyle moditcations wil have an Important long-term Impact on heath and the long-term effects of pharmacotherapy must be welghed against potentlal side-effects.

Benefits of Lowering BP

Average Percent Reduction	
Stroke incidence	$35-40 \%$
Myocardial infarction	$20-25 \%$
Heart failure	50%
Renal Failure	$35-50 \%$

Blood Pressure Reductions as Little as 2 mmHg Reduce the Risk of Cairdiovascular Events by up to 10%

7% reduction in risk of
IHD mortality

10\% reduction in risk stroke mortality

Meta-analysis of 61 prospective, observational studies conducted by Lewington et al involving one million adults with no previous vascular disease at baseline mmHg

TREATMENT OF HYPERTENSION

* Lifestyle modifications
\times High normal SBP >130-139 mmHg
DBP $85-89 \mathrm{mmHg}$
- in high risk patients
\& Drug therapy
\times Low risk : If BP is $140 / 90 \mathrm{mmHg}$
x High risk: If BP is $130-140 / 90 \mathrm{mmHg}$

Lifestyle changes:

* Salt restriction to 5-6 gm/day.
* Increased consumption of vegetables, fruits and low-fat dairy products.
+ 7-8 servings/day of grain/grain products, 45 vegetable, 4-5 fruit
* Reduction of weight to BMI of $25 \mathrm{~kg} / \mathrm{m}^{2}$.
* Regular exercise ($\geq 30 \mathrm{~min}$ of moderate dynamic exercise on 5-7 days per week)
+ Smoking cessation
+ Vit D replacement

Summary of

antihypertensive

 drug treatment low risk group

WHHS

National Institute for

Health and Clinical Excellence
${ }^{12}$ Choose a low-cost ARB.
${ }^{13}$ A CCB is preferred but consider a thiazide-like diuretic if a CCB is not tolerated or the person has edema, evidence of heart failure or a high risk of heart failure.

Step 1
British Hypertension Society

Step 2

$$
A(B)+C \text { or } A(B)+D
$$

+Combination therapies mal provide additional efficacy with few fr adverse effects.
+Optimal formulation should provide 24hour efficacy with once-daily dose.

Resistant hypertension
A + C + D + consider further diuretic ${ }^{14,15}$ or alpha- or beta-blocker ${ }^{16}$

Consider seeking expert advice

* Possible combinations of classes of antihypertensive drugs. Green continuous lines: preferred combinations; green dashed line: useful combination (with some limitations); black dashed lines: possible but less well-tested combinations; red continuous line: not recommended combination.
* Although verapamil and diltiazem are sometimes used with a beta-blocker to improve ventricular rate control in permanent atrial fibrillation, only dihydropyridine calcium antagonists should normally be combined with beta-blockers.

High Risk Group Therapy

*Drug therapy (If BP is $130-140 / 85-90 \mathrm{mmHg}$)
\& CHF - Thiazide, ACE-1, Aldosterone Antagonists, BB

* Post Myocardial Infarction - BB, ACEi
\& Diabetes Mellitus - ACEI, ARB, Thiazide, CCB
\neq CKD - ACEi, ABB, Thiazide
+ Stroke - CCB +ACEi

Recommended Office BP

Treatment Targets
Treatment consists of health behaviour \pm pharmacological management

Population	SBP	DBP
High Risk	≤ 120	85
Diabetes	<130	<80
All others* TIA,Stroke	<140	<90

* Target BP with AOBP < 135/85

Additional cardiovascular disease (CVD) risk
Clinical or subclinical CVD (excluding stroke)
Chronic kidney disease (CKD), defined as eGFR $20-<60 \mathrm{ml} / \mathrm{min} / 1.73 \mathrm{~m}^{2}$
Framingham Risk Score for 10-year CVD risk $\geq 15 \%$
Age ≥ 75 years
**In selected high cardiovascular risk populations where a treatment is being targeted to $<120 \mathrm{mmHg}$ systolic, close follow up of patients is recommended to identify treatment related adverse effects including hypotension, syncope, electrolyte abnormalities and acute kidney injury.

Patient Monitoring and Support CVD Risk Check

Framingham Risk Score ${ }^{1}$

Risk assessment tool for estimating a patient's 10 -year risk of developing cardiovascular disease

This online assessment pod Is
imended as a allical practos ald for
se by experienosa neathcare
protessionals. Results ovtained fom
gude tor patent care.

Calculate risk
The risk assessment tool above uses information from the Framingham Heart Study as recommended by the 2009 CCS Canadian Cholesterol Guidelines to predict a person's chance of developing cardiovascular disease in the next 10 years, modified for family history (double the CVD risk percentage if any CVD present in a first degree relative before age 60). In men over 50 or women over 60 of intermediate risk whose LDL-C does not already suggest treatment, hsCRP can be used for risk stratification. Please enter your patient's information in the fields below.
The time is 11/9/2016 11:32:06 AM

Patient Monitoring and Support CVD Risk Check

Framingham Risk Score-RESULTS ${ }^{1,4}$
Your patient's Framingham Risk Score is
25.3\%

2009 CCS Canadian Cholesterol Guidelines Recommendation ${ }^{1}$

Risk Level	Initiate/consider treatment if any of the following:	Primary LDL-C targets
High *		Ether:
$($ FRS $>20 \%$. Consider treatment in all patients.	.
RRS $>20 \%)$		$.0 .0 \mathrm{mmol} / \mathrm{L}$ or

Adapted from Genest et al. Can J Cardiol. 2009. ${ }^{1}$
"The high-risk includes patients with evidence of atherosclerosls in any vascular bed, diabetc men over 45 and dabatc women over 50.

In high-risk patiente, pharmacological therapy should be considered concomilantly with ifestyle changes. Please consult guldellines for complete recommendations
Cliniclans should exerclise Judgment when Implementing lipld-lowering therapy; Illestyle moditcations wil have an Important long-term Impact on heath and the long-term effects of pharmacotherapy must be welghed against potentlal side-effects.

Anti-hypertensive Medications and Complications

\#Diuretics \rightarrow Hypokalemia

* β-Adrenergic Blocking Agents \rightarrow Bradycardia
*Angiotensin-Converting Enzyme Inhibitors \rightarrow
Hyperkalemia + cough
*Angiotensin II Receptor Blockers \rightarrow Hyperkalemia
+Calcium Channel Blocking Agents \rightarrow Edema + Tachycardia + Bradycardia
* α-Adrenoceptor Antagonists $\rightarrow 1^{\text {st }}$ dose hypotension
+ Drugs with Central Sympatholytic Action \rightarrow Drowsiness
*Arteriolar Dilators \rightarrow Tachycardia + Edema

Follow-up And Monitoring

\$Patients should return for follow-up after 2-4 weeks and adjustment of medications until the BP goal is reached
*More frequent visits for stage 2 HTN or with complicating co-morbid conditions.
\$Serum potassium and creatinine monitored 1-2 times per year.

Hypertension Renal Denervation

 od to a cur 5 Fr shath. (A) 5 Fr shouh. (B) 6 Fr mull shoth. (C)VR arhetir. (D) Tip of the radiofrapuency atheter.

A Controlled Trial of Renal Denervation for Resistant Hypertension. This blinded trial did not show a significant reduction of systolic blood pressure in patients with resistant hypertension 6 months after renalartery denervation as compared with a sham control

Source: The New England Journal of Medicine
April 10, 2014

An implantable device designed to activate baroreceptors to reduce blood pressure does not appear to reduce blood pressure

Thangryon

National Institute for Health and Clinic Excellence Hypertension Guidelines 2011 (UK)

* Stage 1

X Clinical Blood Pressure - 140/90 mmHg
x Ambulatory Blood Pressure day time Monitoring (ABPM) $135 / 85 \mathrm{mmHg}$
\times Home Blood Pressure Monitoring (HBPM) - $135 / 85 \mathrm{mmHg}$

* Stage 2
\times Clinical Blood Pressure $-160 / 100 \mathrm{mmHg}$
\times Ambulatory Blood Pressure day time Monitoring (ABPM) $150 / 95 \mathrm{mmHg}$
\times Home Blood Pressure Monitoring (HBPM) - $150 / 95 \mathrm{mmHg}$
+ Severe hypertension (Stage 3)
\times Clinical Blood Pressure $-180 / 110 \mathrm{mmHg}$

