Body Cations: K and Ca

Dr. Riyadh Al Sehli, MBBS, FRCPC Transplant Nephrologist Medicine 341 November 28, 2016

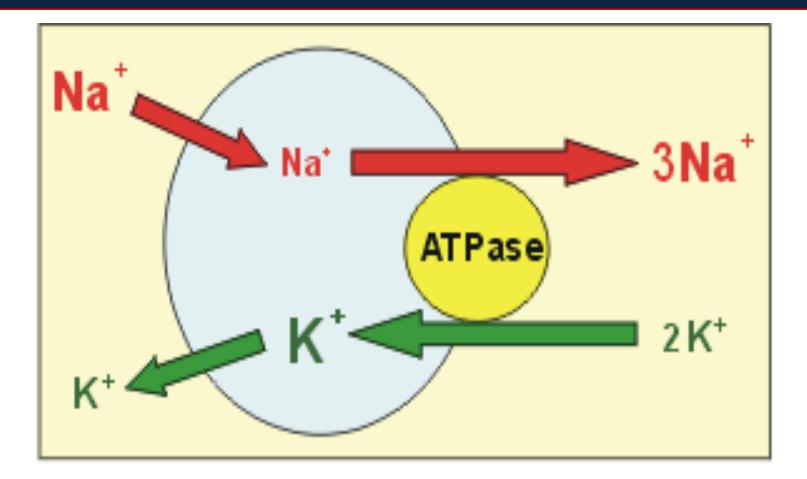
POTASSIUM

- Where does <u>K</u> come form?
- How much <u>K</u> do we eat every day?
- How do we loose the <u>K</u>?
- Where does <u>K</u> in the body live?
- How does <u>K</u> move?
- Is <u>K</u> important?
- What keeps <u>K</u> in normal range ?
- What happens if $\underline{\mathbf{K}}$ level is abnormal?
- What causes high <u>K</u>?
- What causes low <u>K</u> ?

Where does <u>K</u> come form?

- Depending on diet, the normal daily intake can vary
- Fruits, potatoes, beans, and grains
- High-fat diets usually contain low amounts of potassium
- Average daily intake approximately 50 to 100 mmol

Table 1 Potassium content of selected foods	
Foods and drinks	Potassium content (mmol)
1 small banana (85 g)	8.6
Blueberries (100 g)	1.9
White much some (75 c)	8.1
White mushrooms (75 g)	
Broccoli, cooked (75 g)	5.8
Green beans, cooked (75 g)	3.9
Onions, cooked (75 g)	1.5
French fries (150 g)	17.7
Parboiled rice (150 g)	2.2
Spaghetti, without egg (150 g)	2.3
Orange juice (200 ml)	7.9
Milk, full fat (200 ml)	7.7
Coca Cola (200 ml)	0.1
Potato crisps (20 g)	5.1
Milk chocolate bar (20 g)	2.4
White chocolate (20 g)	1.8
Wine gums (20 g)	1.8


How do we loose <u>K</u>?

- Renal clearance
- primary mechanism
- Very efficient until GFR < 30 ml/min</p>
- Intestinal excretion
- ➢Only handles 10 % of the daily K load
- Efficiency can be enhanced in renal failure but it is variable form one person to another

Where does <u>K</u> live in the body ?

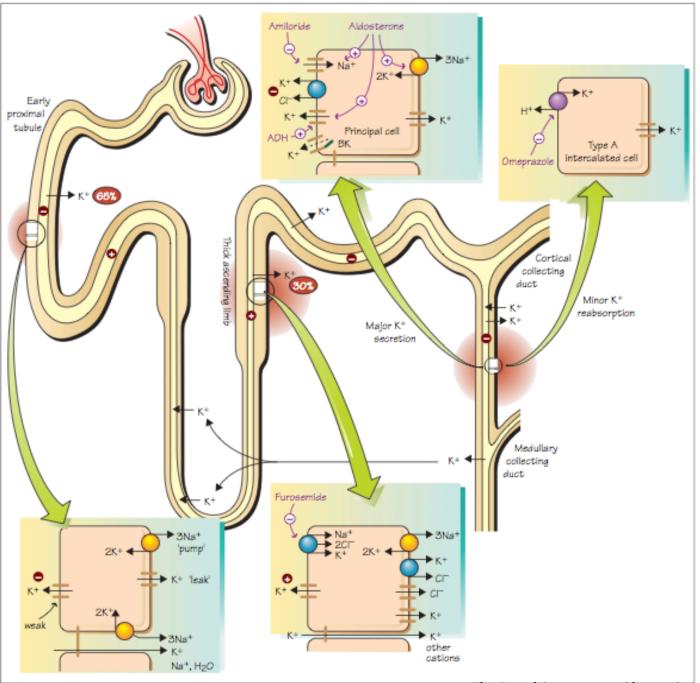
- Total body K is approximately 50 mmol/kg body weight
- K is the most abundant intracellular cation (100- 150 mmol/l) → 98 % of total body K
- Extracellular K concentration (3.4 − 5.5 mmol/L) → 2% of total body K

What keeps the IC <u>K</u> high ?

Insulin, Beta agonists enhance the pump function
 Beta Blockers inhibit the pump function

Cvphysiology.com

What keeps EC K low?

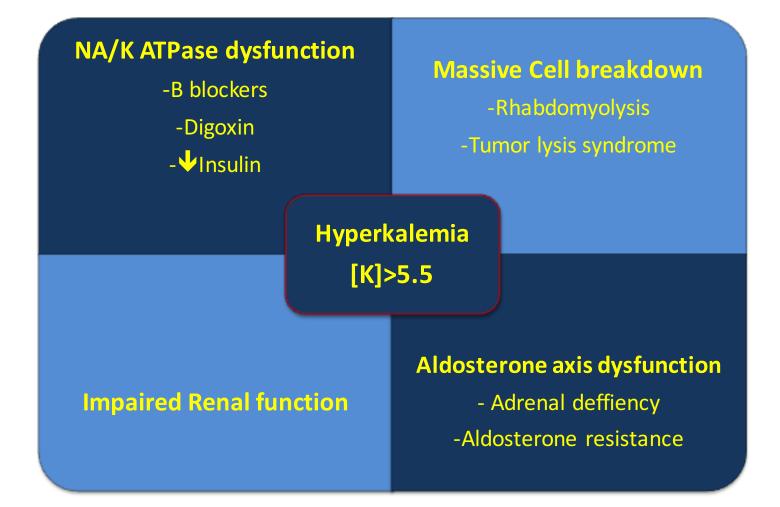

- The Na/K ATPase pump
- Renal clearance : requires normal GFR and normal aldosterone axis
- Intestinal excretion

What happens when we eat <u>K</u>?

- Oral **K** intake is initially absorbed in the intestine and enters portal circulation
- increased ECF K stimulates insulin release
- insulin facilitates K entry into intracellular compartment by stimulating cell membrane Na/K ATPase pump
- The transient rise in serum K stimulates renal and intestinal clearance of extra K

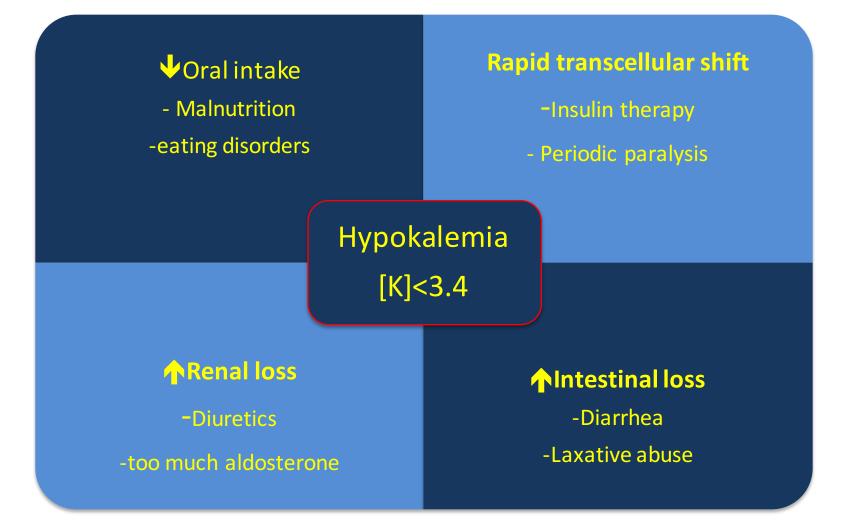
In order to Keep serum K in normal range, we need:

- 1. Normally functioning Na/K ATPase pump
- 2. intact renal response


The Renal System at a Glance, 3e. By Chris O'Callaghan

Why is <u>K</u> important ?

- Maintains electrical gradient across cell membranes i.e.
- resting membrane potential essential for generation of action potential
- Essential for intracellular metabolism e.g protein synthesis


What happens of <u>K</u> level is abnormal?

- Skeletal muscle dysfunction: weakness and paralysis
- Cardiac cell irritability: arrhythmia

Can you eat too much <u>K</u>?

- If GFR is normal, renal clearance of **K** has a huge adaptive capacity
- K intake is restricted only if:
- ➢ GFR is reduced
- existing aldosterone axis dysfunction
- ➢ Na/K ATPase is not efficient (blocked by drugs, Insulin ♥)

How to raise <u>K</u> level?

- Stop the loss
- Replace lost K with K (PO or IV if rapid correction is urgently needed)

How to lower <u>K</u> level ?

- Reduce Cardiac muscle irritability with Ca gluconate (only if EKG changes)
- Push K into cells: Insulin , Beta agonists
- Remove the K load
- > Through the kidney: diuretics, dialysis
- Through the gut : Laxatives, K chelation(Ca resonium)

Calcium balance

Calcium

- Where does <u>**Ca</u>** come form?</u>
- How much <u>**Ca</u>** do we eat every day?</u>
- How do we loose the <u>Ca</u>?
- Where does <u>**Ca**</u> in the body live?
- How does <u>Ca</u> move?
- Why is <u>**Ca</u>** important?</u>
- What keeps <u>Ca</u> in normal range ?
- What happens if <u>**Ca</u>** level is abnormal?</u>
- What causes high <u>Ca</u>?
- What causes low <u>Ca</u>?

Where does Ca come from?

• Diet : 1000 – 1500 mg /day in average

• Total body Ca = 1000 g

Where does Ca live ?

- The vast majority of total body calcium (99%) is present in the skeleton
- Non-bone calcium represents 1% of total body calcium
- ✓ free ions (51%)

Non Ionized

- ✓ protein-bound complexes (40%)
- ✓ ionic complexes (9%) [calcium phosphate, calcium carbonate, and calcium oxalate]

Why Ca is important ?

- Bone Ca
- ✓ skeletal strength
- ✓ dynamic store
- Non-Bone Ca
- \checkmark extra- and intracellular signaling
- ✓ nerve impulse transmission
- ✓ muscle contraction

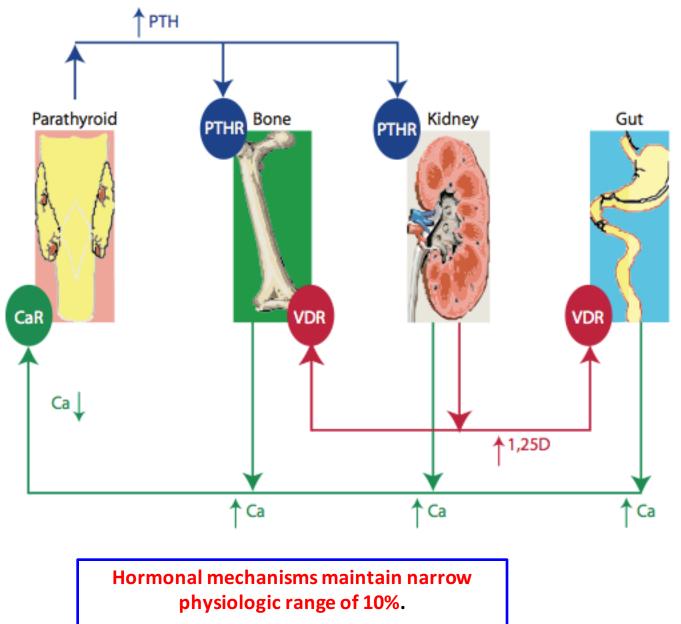
What keeps Ca in balance ?

- Total intake
- Rate of intestinal absorption
- Intestinal excretion
- Renal reabsorption
- Renal excretion
- Bone turnover

All these parameters are controlled by 1- PTH 2- Active Vitamin D 3-Serum Ionized Ca level

PTH is a hyper-calcemic hormone

Release of Ca form bones (bone resorption)

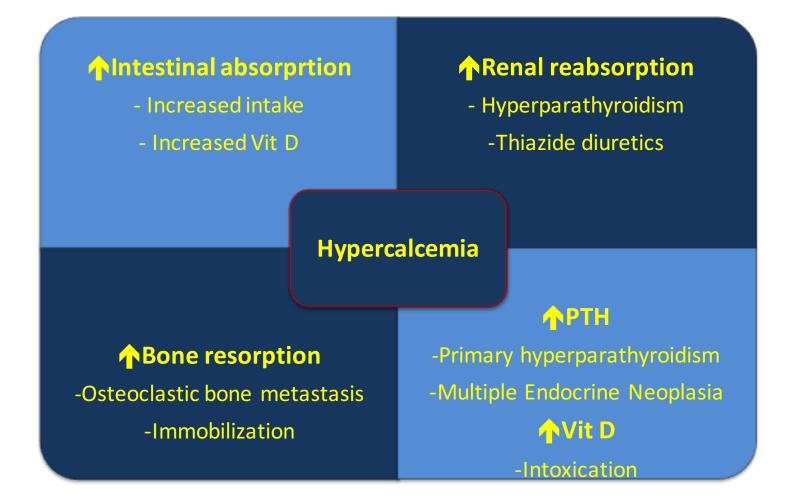

Renal absorption of Ca

• Activates Vitamin D in the kidney

Active Vitamin D is also hyper-calcemic

•
↑Intestinal absorption of Ca

• **†**Bone resorption



Clin J Am Soc Nephrol 5: S23–S30, 2010

What can go wrong ?

- Oral intake
- Intestinal absorption
- Renal reabsorption
- Renal excretion
- Intestinal excretion
- Bone turnover

- PTH
- Active Vitamin D

Clinical Manifestations of Hypercalcemia

Renal "stones"

Nephrolithiasis Nephrogenic diabetes insipidus Dehydration Nephrocalcinosis

Skeleton "bones"

Bone pain

Arthritis

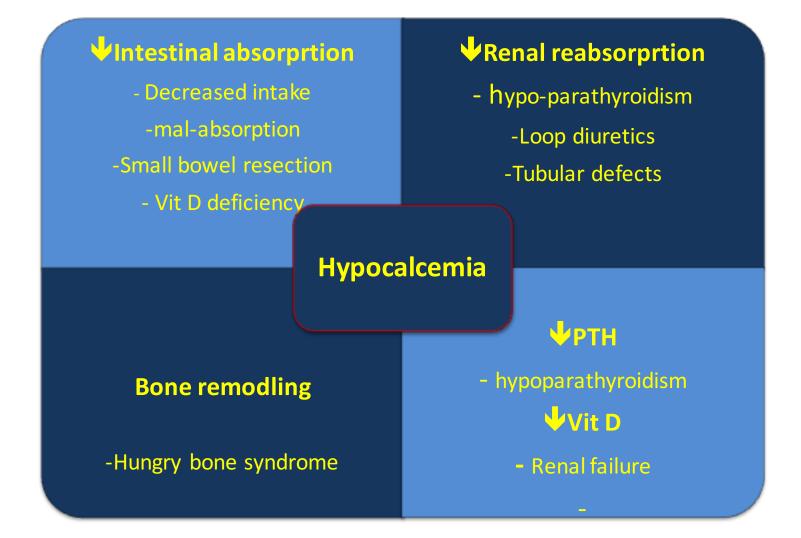
Osteoporosis

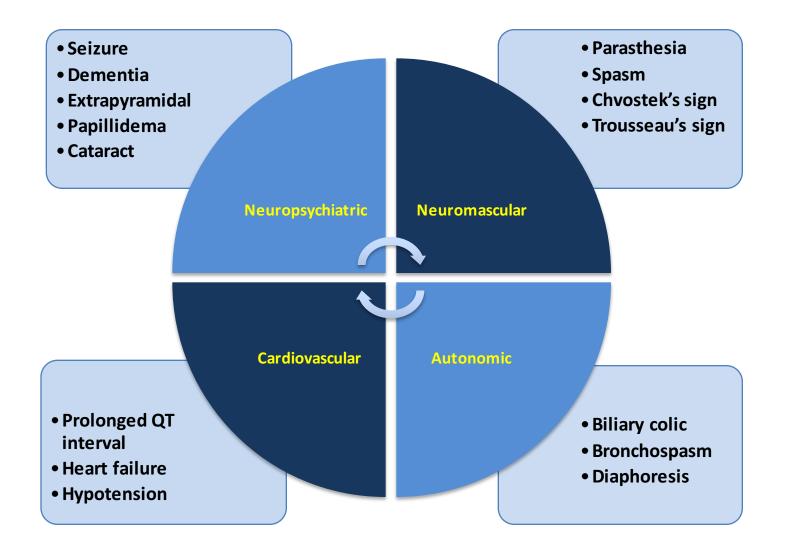
Osteitis fibrosa cystica in hyperparathyroidism (subperiosteal resorption, bone cysts)

Gastrointestinal "abdominal moans"

Nausea, vomiting Anorexia, weight loss Constipation Abdominal pain Pancreatitis Peptic ulcer disease

Neuromuscular "psychic groans"


Impaired concentration and memory Confusion, stupor, coma Lethargy and fatigue Muscle weakness Corneal calcification (band keratopathy)


Cardiovascular

Hypertension Shortened QT interval on electrocardiogram Cardiac arrhythmias Vascular calcification

Other

Itching Keratitis, conjunctivitis

Thank You