

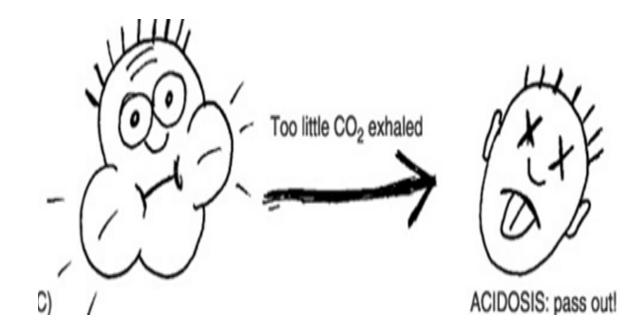
Acid base balance

Mohammed Al-Ghonaim MD, FFRCPC, FACP

Objectives

At the end of this tutorial participant will be able to:

- State the normal value for PH,PCO2,HCO3
- Understand the basic mechanism of acid base disturbance
- Interpret basic acid base disturbance
- List common differential diagnosis for different acid base disorder


Normal Value

Normal arterial blood pH = 7.35 - 7.45
 P_aCO₂ = 35-45
 Serum HCO₃⁻.= 22-26
 Anion gap = 8-12

primary disturbance

Primary Disorder				
Primary Disorder	Problem	рН	HCO ₃	P _a CO ₂
Metabolic acidosis	gain of H⁺ or loss of HCO₃	Ļ	Ļ	\downarrow
Metabolic alkalosis	gain of HCO₃ or loss of H⁺	Ţ	Ţ	Ţ
Respiratory acidosis	hypoventilation	Ļ	ſ	¢
Respiratory alkalosis	hyperventilation	1	Ļ	\downarrow

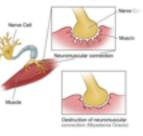
Respiratory acidosis

Respiratory acidosis

• Primary mechanism:

Hypoventilation

- CNS
- Peripheral nerve
- Neuro muscular junction
- Chest wall
- Bronchial tree



Myasthenia Gravi

Acute respiratory acidosis Causes:

- Respiratory pathophysiology airway obstruction, severe pneumonia, chest trauma/pneumothorax
- Acute drug intoxication (narcotics, sedatives)
- Residual neuromuscular blockade
- CNS disease (head trauma)

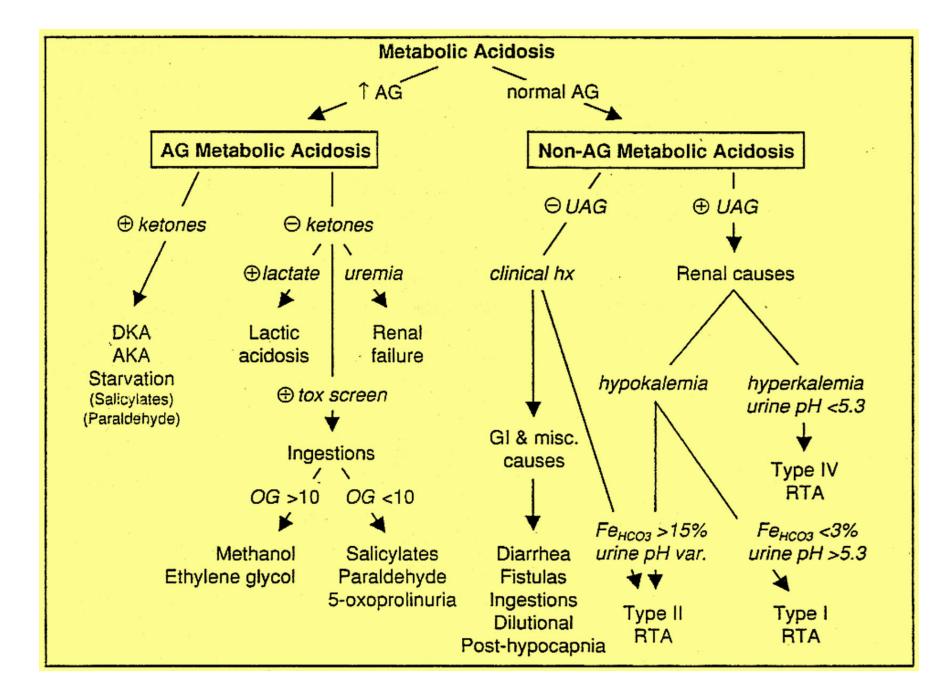
Chronic Respiratory Acidosis

- paCO₂ is elevated with a pH in the acceptable range
- Renal mechanisms increase the excretion of H⁺ within 24 hours and may correct the resulting acidosis caused by chronic retention of CO₂ to a certain extent

Chronic Respiratory Acidosis Causes

- Chronic lung disease (COPD)
- Neuromuscular disease
- Extreme obesity
- Chest wall deformity

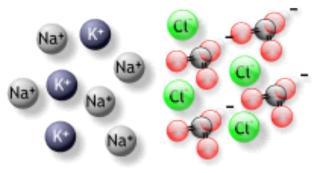
Respiratory alkalosis

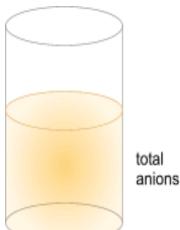


Respiratory Alkalosis

- Pain
- Drugs
- Sepsis
- Fever
- Thyrotoxicosis
- Pregnancy
- Overaggressive mechanical ventilation
- Hepatic failure
- Anxiety
- Hypoxemia
- Restrictive lung disease

Metabolic acidosis

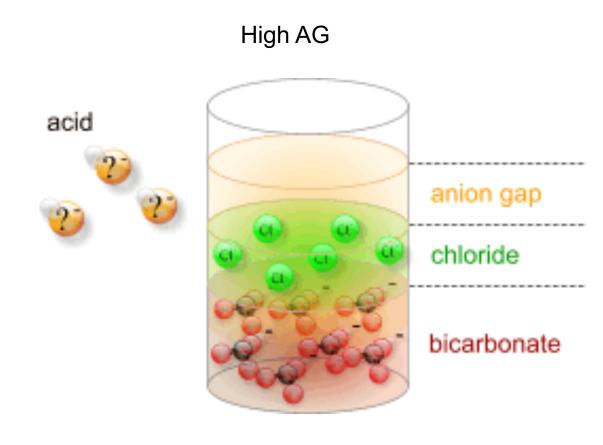

- Increase acid production
- Decrease acid excretion
- Loss of bicarbonate



Metabolic acidosis

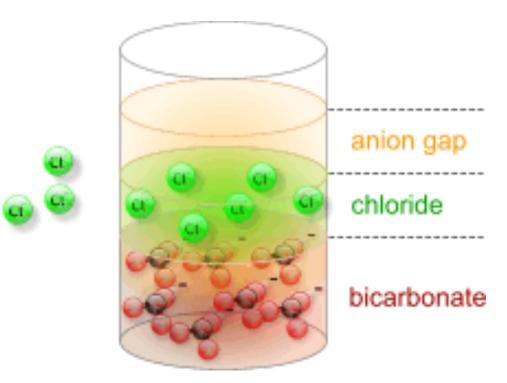
- Anion gap = [Sodium] ([Chloride] + [Bicarbonate]) Or
 AG = [Na⁺] - ([Cl⁻] + [HCO₃⁻]).
- OR

Anion gap = $([Na^+] + [K^+]) - ([Cl^-] + [HCO_3^-])$ Anion gap = cations - anions

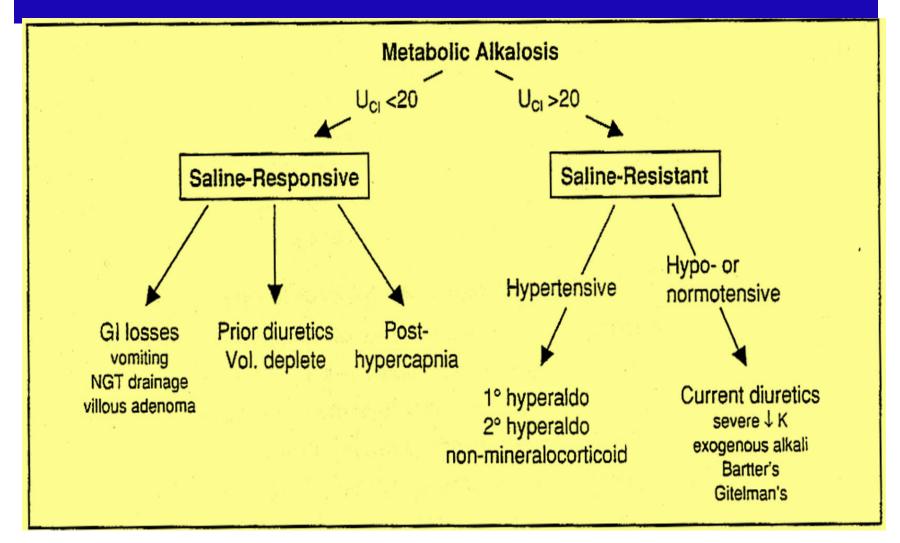


Increased anion gap metabolic acidosis

- Methanol other alcohols, and ethylene glycol intoxication
 - Uremia (renal failure)
 - Lactic acidosis
 - Ethanol
 - Paraldehyde and other drugs
 - Aspirin


Ketones (starvation, alcoholic and diabetic ketoacidosis)

Anion Gap


Normal AG

Etiologies of AG Metabolic Acidosis				
Ketoacidosis	Diabetes mellitus, alcoholism, starvation			
Lactic	Type A: impairment in tissue oxygenation, eg. Circulatory or			
acidosis	Respiratory failure, sepsis, ischemic bowel, carbon monoxide			
	Type B: no impairment in tissue oxygenation, eg. Malignancy,			
	alcoholism,			
	meds (metformin, NRTIs, salicylates)			
	D-lactic acidosis: short bowel syndrome glc metab by colonic			
	bacteria			
	To D-lactate, which is absorbed; not detected by standard			
	lactate assay			
Renal failure	Accumulation of organic anions such as phosphates, sulfates,			
	etc.			
Ingestions	Methanol: manifestations include blurred vision			
	Ethylene glycol: manifestations include AMS , cardiopulmonary			
	failure,			
	calcium oxalate crystals and renal failure			
	Paraldehyde			
	Salicylates: metabolic acidosis (from lactate, ketones) +			
	respiratory			
	alkalosis due to stimulation of CNS respiratory center			
	Acetaminophen: glutathione depletion accumulation of the			
	Endogenous organic acid 5-oxoproline in susceptible host			

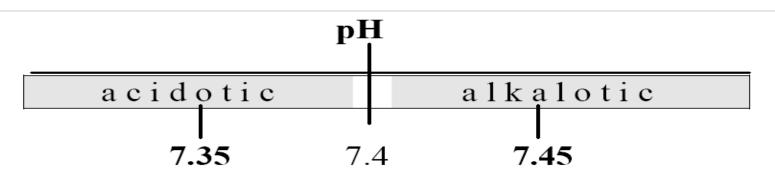
Etiologies of Non-AG Metabolic Acidosis			
GI losses of			
HCO ₃	Diarrhea, intestinal or pancreatic fistulas or drainage		
RTAs	See section on renal tubular acidoses below		
Early renal			
failure	Impaired generation of ammonia		
Ingestions	Acetazolamide, sevelamer, cholestyramine, toluene		
Dilutional	Due to rapid infusion of bicarbonate-free intravenous fluids		
Post-	Respiratory alkalosis renal wasting of HCO ₃ rapid		
hypocapnia	correction →		
	Of resp. alk. Transient acidosis until HCO ₃ ;		
	regenerated		
Ureteral			
diversion	Colonic Cl ⁻ /HCO ₃ ⁻ exchange, ammonium reabsorption		

Metabolic alkalosis

Etiologies of Metabolic Alkalosis

Etiologies of Metabolic Alkalosis			
Saline –	GI loss of H ⁺ : vomiting, NGT drainage, villous		
responsive	adenoma Diuretic use posthypercapina		
Saline –	Hypertensive (mineralocorticoid excess)		
resistant	1 ⁰ hyperaldosteronism (eg. Conn's)		
	2 ⁰ hyperaldosteronism (eg, renovascular dis. Rennin-		
	secreting tumor)		
	Non-aldo (eg. Cushing's, Liddle's,		
	exogenousmineralocorticoids)		
	Normotensive		
	Severe hypokalemia		
	Exogenous alkali load		
	Bartter's syndrome, Gitelman's syndrome		

primary disturbance


Primary Disorder				
Primary Disorder	Problem	рН	HCO ₃	P _a CO ₂
Metabolic acidosis	gain of H⁺ or loss of HCO₃	Ļ	Ļ	\downarrow
Metabolic alkalosis	gain of HCO₃ or loss of H⁺	Ţ	Ţ	Ţ
Respiratory acidosis	hypoventilation	Ļ	ſ	¢
Respiratory alkalosis	hyperventilation	1	Ļ	\downarrow

Steps in Acid-Base Analysis

- Step 1: Acidemic or Alkalemic?
- Step 2: Is the primary disturbance respiratory or metabolic?
- Step 3: Is the respiratory disturbance acute or chronic?
- Step 4: For a metabolic acidosis, is there an increased anion gap?
- Step 5: Are there other metabolic processes present in a patient with an increased anion gap metabolic acidosis?
- Step 6: Is the respiratory system compensating adequately for a metabolic disturbance

Step 1: Acidemic or Alkalemic?

- The pH of the arterial blood gas measurement identifies the disorder as alkalemic or acidemic.
- Normal arterial blood pH = 7.35 7.45
- Acidemic: pH < 7.35

Step 2: Is the primary disturbance respiratory or metabolic?

- To determine whether the disturbance affects primarily
 - The arterial P_aCO_2 or
 - The serum HCO_3^- .
- Respiratory disturbances alter the arterial P_aCO₂ (normal value 35-45)
- Metabolic disturbances alter the serum HCO₃⁻ (normal value 22-26)

	рН	pCO2	HCO3	Interpretation
1	7.41	40	24	
2	7.5	42	35	
3	6.72	40	5	
4	7.26	63	25	
5	7.52	18	25	

	рН	pCO2	HCO3	Interpretation
1	7.41	40	24	normal
2	7.5	42	35	metabolic alkalosis
3	6.72	40	5	metabolic acidosis
4	7.26	63	25	respiratory acidosis
5	7.52	18	25	respiratory alkalosis

Step 3: Is the respiratory disturbance acute or chronic?

Acute respiratory acidosis:

- HCO_3^{-1} increase by 1 mEq/l for every 10 mmHg increase in PaCO2

- Chronic respiratory acidosis:
 HCO₃⁻ increase by 3-3.5 mEq/l for every 10 mmHg increase in PaCO2
- Acute respiratory alkalosis:

 $-HCO_3^{-}$ decrease by 2 mEq/l for every 10 mmHg decrease in PaCO2

• Chronic respiratory alkalosis:

- HCO_3^{-} decrease by 4-5 mEq/l for every 10 mmHg decrease in PaCO2

Case study -1

• pH =7.2, pCO2 = 60, HCO2 = 24.

- What it is the primary problem? Compensation?
- Differential diagnosis?
- Treatment ?

Respiratory acidosis

- Is it acute or chronic?
- Note that the PH is abnormal
- Note the HCO2 is with in normal
- Remember:
- Acute respiratory acidosis:
 HCO₃⁻ increase by 1 mEq/l for every 10 mmHg increase in PaCO2
- Chronic respiratory acidosis:

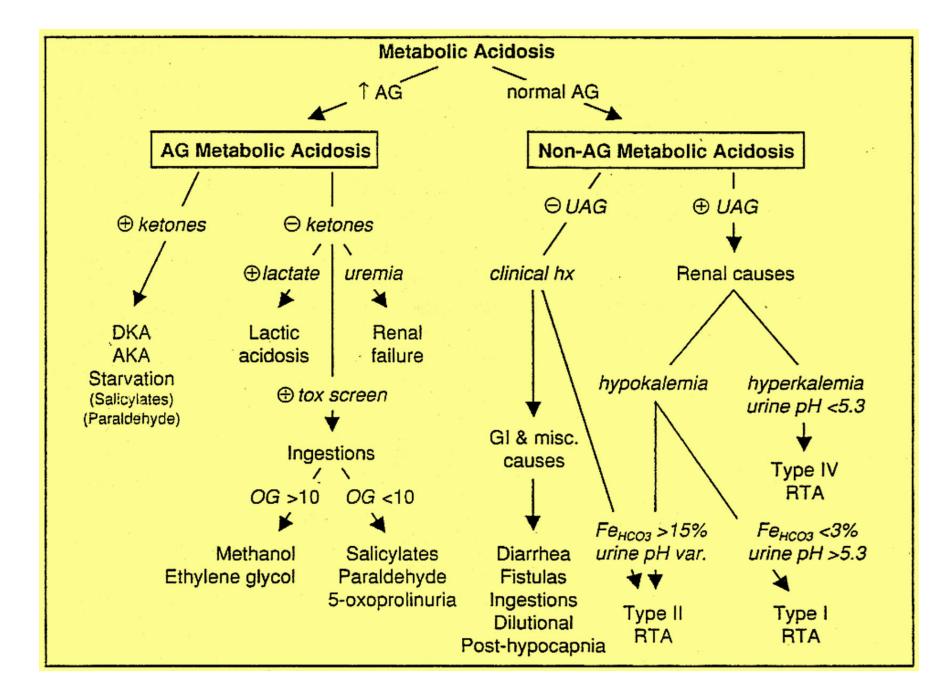
– $HCO_3^{-increase by 3-3.5 mEq/l for every 10 mmHg increase in PaCO2$

- What do you expect the ABG in the following patients to be:
- 24 years old male with acute SOB, and wheezes for 2days.
- Past hx: Bronchial asthma
- 67 years old women, HTN, DMII, COPD presenting with cough and SOB

- pH: 7.25
- [HCO₃⁻]: 20 mEq/L
- PaCO₂: 52 mmHg

- What it is the primary problem? Compensation?
- Differential diagnosis?

- pH: 7.32
- [HCO₃⁻]: 19 mEq/L
- PaCO₂: 55 mmHg



- What it is the primary problem? Compensation?
- Differential diagnosis?
- What other investigation you want to do?

Step 4: For a metabolic acidosis, is there an increased anion gap?

- Anion gap = [Sodium] ([Chloride] + [Bicarbonate]) Or
 AG = [Na⁺] - ([Cl⁻] + [HCO₃⁻]).
- Normal AG 8-16

Serum Osmolality = (2 x (Na + K)) + (BUN) + (glucose)

Step 5: Are there other metabolic processes present in a patient with an increased anion gap metabolic acidosis? Step 6: Is the respiratory system compensating adequately for a metabolic disturbance

- Metabolic acidosis:
 - PCO2 decreases by 1 mmHg for every 1 mEq/l decrease in HCO3
- Metabolic alkalosis:
- PCO2 increases by 0.6 mmHg for every 1 mEq/l increases in HCO3

 56 yo M with Hx of COPD is admitted with 1wk Hx of dyspnea, productive cough and diarrhea

(Na) 125, (Cl) 103 , (BUN) 42, (Glucose) 100, (K) 3.5, (HCO3-) 10, (Creat) 1.4

- ABG 7.14 pCO₂ 30 pO₂ 50
- What is the predominant acid base disorder ?

Case 5 continue

- What pCO2 is expected with normal respiratory compensation? 40 – (1.2 * (24-10)) = 23.2, this is not full compensation b/c pCO2 is 30 – indicates an underlying primary respiratory acidosis, suggested by the Hx of COPD, dyspnea, and productive cough (lungs not able to appropriately compensate)
- What is the Anion Gap ? 125 (103+10) = 12
 normal AG ∴ etiology is either diarrhea or
 RTA most likely diarrhea b/c of the history

- 32 y/o male present w/ 2d Hx of intractable vomiting. ; pH 7.51, pCO₂ 41
 Na132, Cl 90 32 K3.4 HCo2= 33 creatinine1.6
- What is the predominant acid-base disorder? Alkalosis (Metabolic)

Case 6 continue

- What pCO₂ is expected w/ normal respiratory compensation? = 40 + (32 24) * (~ 0.6 ⇔ 0.7) = 44.8 ⇔ 45.6 mmHg; since the measured pCO₂ < 44.8 ⇔ 45.6, there is also a primary respiratory alkalosis (inappropriate hyperventilation)
- <u>Tx:</u> Isotonic saline to correct for volume depletion –

- A 58- year old man presents to the Emergency Department with abdominal pain and hypotension. Investigation reveal the following:
- Na 140 K 4 Cl 90 HCO3 = 5
 PH 6.8 PCO2 36 PO2 7
- Analyze the acid-base disorder(s) seen in the patient.

Summary

- First, does the patient have an acidosis or an alkalosis
 Look at the pH
- Second, what is the primary problem metabolic or respiratory
 - Look at the pCO₂
 - If the pCO₂ change is in the opposite direction of the pH change, the primary problem is respiratory

Summary

- Third, is there any compensation by the patient do the calculations
 - For a primary respiratory problem, is the pH change completely accounted for by the change in pCO₂
 - if yes, then there is no metabolic compensation
 - if not, then there is either partial compensation or concomitant metabolic problem