Heart Failure Etiology And Diagnosis

Dr Hanan ALBackr

Heart failure (HF) is a complex clinical syndrome that can result from any structural or functional cardiac disorder that impairs the ability of the ventricle to fill with or eject blood.

Prevalence

- Prevalence 0.4-2% overall, 3-5 % in over 65s, 10% of over 80s
- Commonest medical reason for admission
- Annual mortality of 60% over 80s
- > 10% also have AF
- Progressive condition median survival 5 years after diagnosis

REMEMBER LEFT VENTRICULAR FAILURE IS A TRUE LIFE THREATENING EMERGENCY

- It is a common end point for many diseases of cardiovascular system
- It can be caused by :
 - -Inappropriate work load (volume or pressure

overload)

- -Restricted filling
- -Myocyte loss

Causes of left ventricular failure

- Volume over load:
- Pressure overload:
- Loss of muscles:

• Restricted Filling:

Regurgitate valve High output status

- Systemic hypertension Outflow obstruction
- Post MI, Chronic ischemia Connective tissue diseases Infection, Poisons

(alcohol,cobalt,Doxorubicin)

Pericardial diseases, Restrictive cardiomyopathy, tachyarrhythmia

Heart failure pathophysiology

- Index event
- Compensatory mechanisms
- Maladaptive mechanisms

Hemodynamic changes

Neurohormonal changes

Cellular changes

Hemodynamic changes

From hemodynamic stand point HF can be secondary to systolic dysfunction or diastolic dysfunction

Neurohormonal changes

N/H changes	Favorable effect	Unfavor. effect
↑ Sympathetic activity	↑ HR ,↑ contractility, vasoconst. → ↑ V return, ↑ filling	Arteriolar constriction \rightarrow After load $\rightarrow \uparrow$ workload $\rightarrow \uparrow O_2$ consumption
↑ Renin-Angiotensin – Aldosterone	Salt & water retention→↑ VR	Vasoconstriction → ↑ after load
↑ Vasopressin	Same effect	Same effect
† interleukins &TNFα	May have roles in myocyte hypertrophy	Apoptosis
↑Endothelin	Vasoconstriction→↑ VR	↑ After load

Cellular changes

- Changes in Ca⁺² handling.
- Changes in adrenergic receptors:
 - Slight \uparrow in a_1 receptors
 - β_1 receptors desensitization \rightarrow followed by down regulation
 - Changes in contractile proteins
 - Program cell death (Apoptosis)
 - Increase amount of fibrous tissue

Body-Fluid Volume

- Renal Na and water excretion
 - Dependent on arterial circulation
 - Cardiac output and peripheral resistance
- Decrease in circulation leads to *arterial underfilling*
 - Decreased effective circulating volume
- Neurohormonal reflexes are triggered

Arterial Underfilling

- Causes and consequences
- Counter-regulation

- SOB, Orthopnea, paroxysmal nocturnal dyspnea
- Low cardiac output symptoms

 Abdominal symptoms: Anorexia, nausea, abdominal fullness, Rt hypochondrial pain

Physical Signs

- High diastolic BP & occasional decrease in systolic BP (decapitated BP)
- JVD
- Rales (Inspiratory)
- Displaced and sustained apical impulses
- Third heart sound *low* pitched sound that is heard during rapid filling of ventricle

Physical signs (cont.)

 Mechanism of S₃ sudden deceleration of blood as elastic limits of the ventricles are reached

 Vibration of the ventricular wall by blood filling

Common in children

Physical signs (cont.)

Fourth heart Sound (S₄)

- Usually at the end of diastole
- Exact mechanism is not known
 Could be due to contraction of atrium against stiff ventricle

Pale, cold sweaty skin

Framingham Criteria for Dx of Heart Failure

- Major Criteria:
 - PND
 - JVD
 - Rales
 - Cardiomegaly
 - Acute Pulmonary Edema
 - S₃ Gallop
 - Positive hepatic Jugular reflex
 - \uparrow venous pressure > 16 cm H₂O

Dx of Heart Failure (cont.)

Minor Criteria

LL edema,

Night cough

Dyspnea on exertion

Hepatomegaly

Pleural effusion

Tachycardia 120 bpm

Weight loss 4.5 kg over 5 days management

Forms of Heart Failure

Systolic & DiastolicHigh Output Failure

- Pregnancy, anemia, thyrotoxisis, A/V fistula, Beriberi, Pagets disease
- Low Output Failure

Acute

Iarge MI, aortic valve dysfunction---

Chronic

Forms of heart failure (cont.)

Right vs Left sided heart failure:

Right sided heart failure :

Most common cause is left sided failure Other causes included : Pulmonary embolisms Other causes of pulmonary htn. RV infarction MS Usually presents with: LL edema, ascites hepatic congestion cardiac cirrhosis (on the long run)

Differential diagnosis

- Pericardial diseases
- Liver diseases
- Nephrotic syndrome
- Protein losing enteropathy

Laboratory Findings

- Anemia
- Hyperthyroid
- Chronic renal insuffiency, electrolytes abnormality
- Pre-renal azotemia
- Hemochromatosis

Electrocardiogram

- Old MI or recent MI
- Arrhythmia
- Some forms of Cardiomyopathy are tachycardia related
- LBBB→may help in management

- Size and shape of heart
- Evidence of pulmonary venous congestion (dilated or upper lobe veins → perivascular edema)
- Pleural effusion

Echocardiogram

- Function of both ventricles
- Wall motion abnormality that may signify CAD
- Valvular abnormality
- Intra-cardiac shunts

Cardiac Catheterization

- When CAD or valvular is suspected
- If heart transplant is indicated

In conclusion, congestive heart failure is often assumed to be a disease when in fact it is a syndrome caused by multiple disorders.

TREATMENT

Correction of reversible causes

- Ischemia
- Valvular heart disease
- Thyrotoxicosis and other high output status
- Shunts
- Arrhythmia
 - A fib, flutter, PJRT
- Medications
 - Ca channel blockers, some antiarrhythmics

Diet and Activity

- Salt restriction
- Fluid restriction
- Daily weight (tailor therapy)
- Gradual exertion programs

Diuretic Therapy

- The most effective symptomatic relief
- Mild symptoms
 - HCTZ
 - Chlorthalidone
 - Metolazone
 - Block Na reabsorbtion in loop of henle and distal convoluted tubules
 - Thiazides are ineffective with GFR < 30 --/min</p>

Diuretics (cont.)

Side Effects

- Pre-renal azotemia
- Skin rashes
- Neutropenia
- Thrombocytopenia
- Hyperglycemia
- Hepatic dysfunction

Diuretics (cont.)

■ More severe heart failure → loop diuretics

- Lasix (20 320 mg QD), Furosemide
- Bumex (Bumetanide 1-8mg)
- Torsemide (20-200mg)

Mechanism of action: Inhibit chloride reabsortion in ascending limb of loop of Henle results in natriuresis, kaliuresis and metabolic alkalosis

Adverse reaction:

pre-renal azotemia Hypokalemia Skin rash ototoxicity

K⁺ Sparing Agents

- Triamterene & amiloride acts on distal tubules to ↓ K secretion
- **Spironolactone** (Aldosterone inhibitor)

recent evidence suggests that it may improve survival in CHF patients due to the effect on reninangiotensin-aldosterone system with subsequent effect on myocardial remodeling and fibrosis

Inhibitors of renin-angiotensinaldosterone system

- Renin-angiotensin-aldosterone system is activation early in the course of heart failure and plays an important role in the progression of the syndrome
- Angiotensin converting enzyme inhibitors
- Angiotensin receptors blockers
- Spironolactone

Angiotensin Converting Enzyme Inhibitors

- They block the R-A-A system by inhibiting the conversion of angiotensin I to angiotensin II
 → vasodilation and ↓ Na retention
- \downarrow Bradykinin degradation \uparrow its level \rightarrow \uparrow PG secretion & nitric oxide
- Ace Inhibitors were found to improve survival in CHF patients
 - Delay onset & progression of HF in pts with asymptomatic LV dysfunction
 - \downarrow cardiac remodeling

Side effects of ACE inhibitors

- Angioedema
- Hypotension
- Renal insuffiency
- Rash
- cough

Angiotensin II receptor blockers

- Has comparable effect to ACE I
- Can be used in certain conditions when ACE I are contraindicated (angioneurotic edema, cough)

Digitalis Glycosides (Digoxin, Digitoxin)

- The role of digitalis has declined somewhat because of safety concern
- Recent studies have shown that digitals does not affect mortality in CHF patients but causes significant
 - Reduction in hospitalization
 - Reduction in symptoms of HF

Digitalis (cont.) Mechanism of Action

- +ve inotropic effect by ↑ intracellular Ca & enhancing actin-myosin cross bride formation (binds to the Na-K ATPase → inhibits Na pump → ↑ intracellular Na → ↑ Na-Ca exchange
- Vagotonic effect
- Arrhythmogenic effect

Narrow therapeutic to toxic ratio

Non cardiac manifestations

Anorexia, Nausea, vomiting, Headache, Xanthopsia sotoma, Disorientation

Digitalis Toxicity

Cardiac manifestations

- Sinus bradycardia and arrest
- A/V block (usually 2nd degree)
- Atrial tachycardia with A/V Block
- Development of junctional rhythm in patients with a fib
- PVC's, VT/V fib (bi-directional VT)

Digitalis Toxicity Treatment

- Hold the medications
- Observation
- In case of A/V block or severe bradycardia → atropine followed by temporary PM if needed
- In life threatening arrhythmia → digoxinspecific fab antibodies
- Lidocaine and phenytoin could be used try to avoid D/C cardioversion in non life threatening arrhythmia

- Has been traditionally contraindicated in pts with CHF
- Now they are the main stay in treatment on CHF & may be the only medication that shows substantial improvement in LV function
- In addition to improved LV function multiple studies show improved survival
- The only contraindication is severe decompensated CHF

Vasodilators

- Reduction of afterload by arteriolar vasodilatation (hydralazin) → reduce LVEDP, O₂ consumption,improve myocardial perfusion, ↑ stroke volume and COP
- Reduction of preload By venous dilation

(Nitrate) $\rightarrow \downarrow$ the venous return $\rightarrow \downarrow$ the load on both ventricles.

 Usually the maximum benefit is achieved by using agents with both action.

Positive inotropic agents

- These are the drugs that improve myocardial contractility (β adrenergic agonists, dopaminergic agents, phosphodiesterase inhibitors),
 - dopamine, dobutamine, milrinone, amrinone
- Several studies showed ↑ mortality with oral inotropic agents
- So the only use for them now is in acute sittings as cardiogenic shock

- Atrial fibrillation
- H/o embolic episodes
- Left ventricular apical thrombus

- Most common cause of SCD in these patients is ventricular tachyarrhythmia
- Patients with h/o sustained VT or SCD \rightarrow ICD implant

Antiarrhythmics (cont.)

- Patients with non sustained ventricular tachycardia
 - Correction of electrolytes and acid base imbalance
 - In patients with ischemic cardiomyopathy → ICD implant is the option after r/o acute ischemia as the cause
 - In patients wit non ischemic cardiomyopathy management is ICD implantation

- Implantable ventricular assist devices
- Biventricular pacing (only in patient with LBBB & CHF)
- Artificial Heart

Cardiac Transplant

- It has become more widely used since the advances in immunosuppressive treatment
- Survival rate
 - 1 year 80% 90%
 - 5 years 70%

Prognosis

- Annual mortality rate depends on patients symptoms and LV function
- 5% in patients with mild symptoms and mild \downarrow in LV function
- 30% to 50% in patient with advances LV dysfunction and severe symptoms
- 40% 50% of death is due to SCD