Radiological Anatomy \& Investigations of Urinary System

DR. HUSAIN ALTURKISTANI ASSISTANT PROFESSOR \& CONSULTANT

Objectives

- Introduction about medical imaging
- To know the anatomic location and normal size of structures of the urinary tract
- To know the different types of modalities used in imaging the urinary tract
- To identify the kidneys, ureters, urinary bladder and urethra on different imaging modalities

Basic understanding of the image and its reflection is important

What is medical imaging?

A medical specialty that employs the use of imaging to both diagnose and treat diseases within the human body

Urinary System

Kidneys
Ureters
Urinary bladder
Urethra

Imaging Modalities

Plain X-Ray
Intravenous Urogram (IVU)
US
CT
MRI
Scintigraphy

Plain X-Ray

First imaging modality
Cheap
Useful for radio-opaque stones

Image features:

Projectional image
Image contrast determined by tissue density

Good evaluation of radio-opaque stones

IVU

Conventional x-ray + IV contrast
Cheap
Recently replaced by CT and MRI

Provides functional and anatomical
information

Image features:

Projectional image
Image contrast determined by tissue density and IV contrast

Good evaluation of collecting system and radio-opaque stones

US

Uses high frequency sound waves

(NO RADIATION)

Contrast between tissue is determined by sound reflection

Image features:

Operator dependant
Good resolution
Used for stones, hydronephrosis, and focal lesions

Same basic principle of radiography
More precise
Costly
+/- contrast
Useful for trauma, stone, tumor and infection

Image features:

Cross sectional images
Image contrast determined by tissue density +/- contrast

Better evaluation of soft tissue
Q) Where is the left kidney?

MRI

Better evaluation of soft tissue Uses magnetic field
(NO RADIATION)

Expensive

Useful for soft tissue pathology:
tumor, infection

Image features:

Cross sectional images
Image contrast determined by tissue properties

Excellent for soft tissue evaluation

Nuclear medicine

Utilizes a gamma camera and radioactive isotopes

Functional test

Less expensive
Useful for: obstruction and
split function

Image features:

Projectional image
Image contrast by tissue uptake and metabolism

Anatomy

To know the abnormal in radiology

You should know the normal in radiology
You should know anatomy

Transverse

Frontal

Kidneys

Bean shaped structure
On either side of the lower thoracic and upper lumbar spine

Usual location - between (T11-L3)

Useful when we suspect renal stone

Kidneys are retroperitoneal organs and may be obscured by bowel loops

Kidneys

Right kidney is 2 cm lower than the left kidney
Long axis of the kidneys is directed downward and outward, parallel to the lateral border of the psoas muscles

Lower pole is 2-3 cm anterior to the upper pole

MRI showing Left Kidney is higher than Right Kidney

At this level the superior pole of the left kidney is seen.

CT Scan showing left kidney higher than right

Long axis of the kidneys is directed downward and outward, parallel to the lateral border of the psoas muscles

Kidneys

Normal size : in adults 9-12 cm

Why is it important to know the normal size?

1. Bilateral small kidneys - chronic disease (GN)
2. Bilateral normal or large kidneys:
i. Polycystic Kidney Disease
ii. Amyloidosis
iii. Diabetes Mellitus iv. Acute GN
3. One small, other large - consider: RENAL ATRTERY STENOSIS

Ultrasound is the best method to measure the size of the Kidney

Kidneys

Kidneys are visualized on the X-Ray due to presence of perirenal fat

They are contained within the renal capsule and surrounded by perirenal fat and enclosed within the Gerota's fascia

Perirenal hemorrhage, pus and urine are contained within the fascia and detected on CT and US

Kidneys are surrounded by perinephric fat. Fat appears dark in CT.

MRI: Fat is bright in T2

Ultrasound of Right Kidney

ULTRASOUND OF KIDNEYS

NORMAL STUDY

DILATED RENAL PELVIS

CT Scan of the Kidneys

Renal Vasculature

Renal Vasculature

Renal arteries branch from the abdominal aorta laterally between L1 and L2, below the origin of the superior mesenteric artery

The right renal artery passes posterior to the IVC
There may be more than one renal artery (on one or both sides) in $20-30 \%$ cases

Renal Vasculature

Renal veins drain into inferior vena cava
Renal veins lie anterior to the arteries
Left renal vein is longer and passes anterior to the aorta before draining into the inferior vena cava

The left gonadal vein will drain into to left renal vein while the right gonadal vein drains directly into the inferior vena cava

RENAL ANGIOGRAPHY

NORMAL SUPPLY OF BOTH KIDNEYS BY SINGLE RENAL ARTERY

LEFT KIDNEY SUPPLIED BY TWO RENAL ARTERIES

Coronal CT reformat

Left Renal Vein Passes Anterior to the Abdominal Aorta

Relationships of the Kidneys

Adrenal
Glands are
superior to the Kidneys

Renal Structure

Cortex

- Renal cortex consists of glomeruli and renal tubules
- Normal thickness is 2.5 cm

Medulla

- Consists of multiple renal pyramids

Ultrasound of Right Kidney

MRI of Kidneys

Contrast enhanced CT scan through the kidneys in nephrogram phase (showing corticomedullary differentiation)

This is approximately 100 seconds following contrast administration and would show renal lesions well

Contrast enhanced CT scan through the kidneys in pyelogram phase (showing excretion of contrast into the collecting system)

This is approximately 8 minutes following contrast administration and would show urothelial lesions well, such as transitional cell carcinoma, stones, blood clots

3D reconstructed image from CT scan of the abdomen and pelvis known as CT urography

Nowadays, this exam is quickly replacing the conventional IVU

3D reconstruction is performed through the right kidney (K) and follows the normal ureter (arrows) all the way to the ureter's insertion into the bladder

Renal Collecting System

Calyces

- Medulla sits in the fornix of the minor calyx
- Papillae drain into minor calyces
- Minor calyces coalesce to form 3 or 4 major calyces
- Major calyces combine to form the pelvis

Renal Collecting System

Pelvis

- broad dilated part of the urine collecting system, located in the hilum
- renal pelvis drains into the ureter

Internal Gross Anatomy of the Kidneys

(a) Photograph of right kidney, frontal section
(b) Diagrammatic view

MR KIDNEY

Fat and fluid appear white in this MR sequence. Urine filled collecting system appears white.

Fat

Ureters

Ureters

$25-30 \mathrm{~cm}$ in length and 3 mm diameter

Areas of Narrowing

Three areas of normal narrowing:
Ureteropelvic Junction
Bifurcation of the iliac vessels
Ureterovesical Junction

NOTE RELATIONSHIP OF URETERS TO PSOAS

 AND THE TRANSVERSE PROCESSES.

Urinary Bladder

Urinary Bladder

Size and shape vary considerably
When empty, it is completely within the pelvis
Dome is rounded in male and flat or slightly concave in female

Urinary Bladder

Bladder is relatively free to move except at the neck which is fixed by the puboprostatic ligaments (males) and pubovesicle ligaments (females)

Peritoneal reflection - Rectovesicle pouch in males and vesicouterine and rectouterine pouch in females

Anatomy of Female Pelvis showing the Urinary Bladder

Anatomy of Male Pelvis showing the Urinary Bladder

Voiding Cystourethrogram

Urinary Bladder

Unenhanced CT scan through a normal bladder (B) shows a normal fluid density structure (less than 10 Hounsfield units on CT density scale)

Urinary Bladder

3D reconstructed image of a normal bladder in the sagittal plane following CT urography

This is delayed image 10 minutes following IV contrast administration, excreted contrast fills an otherwise normal bladder (B)

Urinary Bladder

Prostate Gland

Prostate Gland

Largest accessory gland of male reproductive system
Lies around the first part of the urethra at the base of the bladder
(Tr) $4 \mathrm{~cm} \times 3 \mathrm{~cm}$ (height) $\times 2 \mathrm{~cm}$ (AP) in size
Surrounded by dense fibrous capsule

Prostate Gland
Base - closely related to neck of bladder
Apex
Posterior surface
Anterior surface
Anterolateral surfaces

Prostate Gland

Prostate gland can be divided into

- An inner gland -transition zone
- An outer gland - central and peripheral zones

Transition zone which lies in periurethral location is the site of benign prostate hypertrophy which can occlude the urethra

Peripheral zone is the primary tumor site in 70\% patients

TRANSRECTAL ULTRASOUND

NOTE; PROSTATE CAPSULE BETTER SEEN WITH MRI

Thank You For Your Attention

