Tabular \& Graphical Presentation of data

Dr. Shaik Shaffi Ahamed

Associate Professor
Department of Family \& Community Medicine

Objectives of this session

- To know how to make frequency distributions and its importance
- To know different terminology in frequency distribution table
- To learn different graphs/diagrams for graphical presentation of data.

Investigation

Data Presentation
Tabulation Diagrams Graphs

Descriptive Statistics
Measures of Location
Measures of Dispersion Measures of Skewness \& Kurtosis

Frequency Distributions

"A Picture is Worth a Thousand Words"

Frequency Distributions

- Data distribution - pattern of variability.
- The center of a distribution
- The ranges
- The shapes
- Simple frequency distributions
- Grouped frequency distributions

Simple Frequency Distribution

- The number of times that score occurs
- Make a table with highest score at top and decreasing for every possible whole number
- N (total number of scores) always equals the sum of the frequency
- $\Sigma f=\mathrm{N}$

Categorical or Qualitative Frequency Distributions

- What is a categorical frequency distribution?

A categorical frequency distribution represents data that can be placed in specific categories, such as gender, blood group, \& hair color, etc.

Categorical or Qualitative Frequency Distributions -- Example

Example: The blood types of 25 blood donors are given below. Summarize the data using a frequency distribution.

AB	B	A	O	B
O	B	O	A	O
B	O	B	B	B
A	O	AB	AB	O
A	B	AB	O	A

Categorical Frequency Distribution for the Blood Types -- Example Continued

Class (Blood Type)	Frequency, f
A	$\mathbf{5}$
B	$\mathbf{8}$
O	$\mathbf{8}$
AB	$\mathbf{4}$
Total	$\mathbf{n = 2 5}$

Note: The classes for the distribution are the blood types.

Quantitative Frequency Distributions -- Ungrouped

- What is an ungrouped frequency distribution?

An ungrouped frequency distribution simply lists the data values with the corresponding frequency counts with which each value occurs.

Quantitative Frequency Distributions Ungrouped -- Example

- Example: The at-rest pulse rate for 16 athletes at a meet were $57,57,56,57,58,56,54,64,53,54,54$, $55,57,55,60$, and 58 . Summarize the information with an ungrouped frequency distribution.

Quantitative Frequency Distributions - Ungrouped -- Example Continued

Class (pulse Rate)	Frequency, f
53	1
54	3
55	2
56	2
57	4
58	2
60	1
64	1
Total	$n=16$

Note: The (ungrouped)
classes are the observed values themselves.

Example of a simple frequency distribution (ungrouped)

- 5781593422349714568943521 (No. of children in 25 families)

- 93
- 82
- 72
- 61
- 54
- 44
- 33
- 23

3

$$
\Sigma f=25 \text { (No. of families) }
$$

Relative Frequency Distribution

- Proportion of the total N
- Divide the frequency of each score by N
- Rel. $f=f / \mathrm{N}$
- Sum of relative frequencies should equal 1.0
- Gives us a frame of reference

Relative Frequency Distribution

Class (pulse Rate)	Frequency, f	Relative Frequency
53	1	0.0625
54	3	0.1875
55	2	0.1250
56	2	0.1250
57	4	0.2500
58	2	0.1250
60	1	0.0625
64	$\mathbf{1}$	0.0625
Total	$\mathbf{n}=16$	1.0000

Note: The relative frequency for a class is obtained by computing \mathbf{f} / \mathbf{n}.

Example of a simple frequency distribution

- 5781593422349714568943521
f relf
- 93.12
- 820.08
- 7 . 28
- 61 . 04
- 54 . 16
- $4 \quad 4$. 16
- 3 . 12
- 23 . 12
$\begin{array}{ll}-1 & 3\end{array}$

$$
\sum f=25 \quad \sum \operatorname{rel} f=1.0
$$

Cumulative Frequency Distributions

- cf = cumulative frequency: number of scores at or below a particular score
- A score's standing relative to other scores
- Count from lower scores and add the simple frequencies for all scores below that score

Example of a simple frequency distribution

- 5781593422349714568943521

-	f	relf	$c f$
- 9	3	.12	3
- 8	2	.08	5
- 7	2	.08	7
-	6	1	.04
- 5	4	.16	12
-	4	4	.16
-	3	3	.12
-	2	3	.12
-	1	3	.12
	$\sum f=25$	\sum rel $f=1.0$	

Example of a simple frequency distribution (ungrouped)

- 5781593422349714568943521

		cf	relf	rel.cf
- 9	3	3	. 12	. 12
- 8	2	5	. 08	. 20
- 7	2	7	. 08	. 28
- 6	1	8	. 04	. 32
- 5	4	12	. 16	. 48
- 4	4	16	. 16	. 64
- 3	3	19	. 12	. 76
- 2	3	22	. 12	. 88
- 1	3	25	. 12	1.0
		$=25$	$\sum \mathrm{rel} f=1.0$	

Quantitative Frequency Distributions -- Grouped

- What is a grouped frequency distribution? A grouped frequency distribution is obtained by constructing classes (or intervals) for the data, and then listing the corresponding number of values (frequency counts) in each interval.

Tabulate the hemoglobin values of $\mathbf{3 0}$ adult male patients listed below

Patien t No	Hb $(\mathrm{g} / \mathrm{dl})$	Patien t No	Hb $(\mathrm{g} / \mathrm{dl})$	Patien t No	Hb $(\mathrm{g} / \mathrm{dl})$
1	12.0	11	11.2	21	14.9
2	11.9	12	13.6	22	12.2
3	11.5	13	10.8	23	12.2
4	14.2	14	12.3	24	11.4
5	12.3	15	12.3	25	10.7
6	13.0	16	15.7	26	12.5
7	10.5	17	12.6	27	11.8
8	12.8	18	9.1	28	15.1
9	13.2	19	12.9	29	13.4
10	11.2	20	14.6	30	13.1

Steps for making a table

Step1 Find Minimum (9.1) \& Maximum (15.7)

Step 2 Calculate difference $15.7-9.1=6.6$

Step 3 Decide the number and width of the classes (7c.1) 9.0-9.9, 10.0-10.9,----

Step 4 Prepare dummy table -
$\mathrm{Hb}(\mathrm{g} / \mathrm{dl})$, Tally mark, No. patients

DUMMY TABLE

H1 (g/dl)	Tall marks	No. patients
$\mathbf{9 . 0 - \mathbf { 9 . 9 }}$		
$\mathbf{1 0 . 0 - \mathbf { 1 0 . 9 }}$		
$\mathbf{1 1 . 0 - \mathbf { 1 1 . 9 }}$		
$\mathbf{1 2 . 0 - 1 2 . 9}$		
$\mathbf{1 3 . 0 - 1 3 . 9}$		
$14.0-\mathbf{1 4 . 9}$		
$\mathbf{1 5 . 0 - 1 5 . 9}$		
Total		

$\mathrm{Hb}(\mathrm{g} / \mathrm{dl})$	Tall marks	No. patients
9.0-9.9	1	1
10.0-10.9	111	3
11.0 - 11.9	IIII 1	6
12.0-12.9	111811	10
13.0-13.9	1 11	5
14.0-14.9	111	3
15.0-15.9	11	2
Total	11	30

Table Frequency distribution of $\mathbf{3 0}$ adult male patients by Hb

$\mathrm{Hb}(\mathrm{g} / \mathrm{dl})$	No. of patients
$9.0-9.9$	1
$10.0-10.9$	3
$11.0-11.9$	6
$12.0-12.9$	10
$13.0-13.9$	5
$14.0-14.9$	3
$15.0-15.9$	2
Total	30

Table Frequency distribution of adult patients by Hb and gender

Elements of a Table

Ideal table should have
Number
Title
Column headings
Foot-notes

Number -
Table number for identification in a report

Title, place - Describe the body of the table, variables,
Time period (What, how classified, where and when)
Column - Variable name, No. , Percentages (\%), etc., Heading

Foot-note(s) - to describe some column/row headings, special cells, source, etc.,

DIAGRAMS/GRAPHS

Qualitative data (Nominal \& Ordinal)
--- Bar charts (one or two groups)
--- Pie charts
Quantitative data (discrete \& continuous)
--- Histogram
--- Frequency polygon (curve)
--- Stem-and -leaf plot
--- Box-and-whisker plot
Scatter diagram

Example data

$\begin{array}{llllllll}68 & 63 & 42 & 27 & 30 & 36 & 28 & 32\end{array}$
$\begin{array}{llllllll}79 & 27 & 22 & 28 & 24 & 25 & 44 & 65\end{array}$
$\begin{array}{llllllll}43 & 25 & 74 & 51 & 36 & 42 & 28 & 31\end{array}$
$\begin{array}{llllllll}28 & 25 & 45 & 12 & 57 & 51 & 12 & 32\end{array}$
$\begin{array}{llllllll}49 & 38 & 42 & 27 & 31 & 50 & 38 & 21\end{array}$
$\begin{array}{llllllll}16 & 24 & 64 & 47 & 23 & 22 & 43 & 27\end{array}$

49	28	23	19	11	52	46	31

$30 \quad 43 \quad 49 \quad 12$

Histogram
 Continuous Data

No segmentation of data into groups

Polygon

Example data

$\begin{array}{llllllll}68 & 63 & 42 & 27 & 30 & 36 & 28 & 32\end{array}$
$\begin{array}{llllllll}79 & 27 & 22 & 28 & 24 & 25 & 44 & 65\end{array}$
$\begin{array}{llllllll}43 & 25 & 74 & 51 & 36 & 42 & 28 & 31\end{array}$
$\begin{array}{llllllll}28 & 25 & 45 & 12 & 57 & 51 & 12 & 32\end{array}$
$\begin{array}{llllllll}49 & 38 & 42 & 27 & 31 & 50 & 38 & 21\end{array}$
$\begin{array}{llllllll}16 & 24 & 64 & 47 & 23 & 22 & 43 & 27\end{array}$

49	28	23	19	11	52	46	31

$30 \quad 43 \quad 49 \quad 12$

Stem and leaf plot

```
Stem-and-leaf of Age N = 60
Leaf Unit = 1.0
6 1122269
19212233445557777788888
11 3 00111226688
1342223334567999
    5 501127
    463458
    2749
```


Box and Whiskers Plots

Descriptive statistics report: Boxplot

- minimum score
- maximum score
- lower quartile
- upper quartile
- median
- mean
- The skew of the distribution
positive skew: mean > median \& high-score whisker is longer
negative skew: mean < median \& low-score whisker is longer

Box and Whisker Plots

Popular in Epidemiologic Studies Useful for presenting comparative data graphically

Application of a box and Whisker diagram

Number of Traffic Accidents

Pie Chart

```
-Circular diagram - total-100%
-Divided into segments each
representing a category
-Decide adjacent category
-The amount for each category is
proportional to slice of the pie
```


The prevalence of different degree of Hypertension in the population

Top 10 causes of death: pie chart

Each slice represents a piece of one whole. The size of a slice depends on what percent of the whole this category represents.

- Heart Disease
- Cancer
\square Stroke
\square Chronic Respiratory Disease
- Accidents
\square Diabetes
- Pneumonia/Influenza
- Alzheimer's Disease
- Kidney Disease
\square Septicemia

Bar Graphs

Heights of the bar indicates frequency

Frequency in the Y axis and categories of variable in the X axis

The bars should be of equal width and no touching the other bars

The distribution of risk factor among cases with Cardio vascular Diseases

HIV cases enrolment in USA by gender

 Bar chart

HIV cases Enrollment in USA by gender

Figure 4.7 Relation berween dose of growth hormone and change in height velocity standard devtation score over one year (after Hindmarsh and Brook, 1987, with permission)

Fig. 3-9 Scarter plot showing the relationsh; zevereer FEV, and age in 636 childnen living in a deprived
suburb of Lima pery

General rules for designing graphs

- A graph should have a self-explanatory legend
- A graph should help reader to understand data
- Axis labeled, units of measurement indicated
- Scales important. Start with zero (otherwise // break)
- Avoid graphs with three-dimensional impression, it may be misleading (reader visualize less easily

Tabular and Graphical Procedures

Any Questions?

