

# Introduction to Radiology

[ Color index: Important | Notes | Extra ]

[ Editing file | Feedback | Share your notes | Shared notes ]

### Objectives:

- 1. Introduce the various Medical Imaging Modalities.
- 2. Understand the basics of image generation.
- 3. Relate imaging to gross anatomy.
- 4. Appreciate constraints and limitations.
- 5. Develop imaging vocabulary in the interpretation.

#### • Resources:

- 435 Slides
- 434 Team
- 435 Notes
- Done by:
- Abdulnasser Alwabel
- Turki Alnasser
- Team Leader:
- Mohammed Alsahil
- revised by:
- Ahmed Al Yahya
- Sara Alenezy



### Introduction



#### WHAT IS RADIOLOGY?

Supervises & perform then interpret the Images and reports the findings to the physicians to help patient's management.

| Radiological Modalities |    |                            |                        |     |            |
|-------------------------|----|----------------------------|------------------------|-----|------------|
| Plain X-Ray             | СТ | Angiography                | Nuclear Medicine       | MRI | Ultrasound |
| Ionizing Radiation      |    | Minimal Ionizing radiation | Non-Ionizing Radiation |     |            |

### **Contrast Media**

### Natural contrast in the body:

- Air.
- Fat.
- Bone.

### Added contrast in the body:

- Barium sulfate: only orally.
- Iodine (Water Soluble): IV, orally.

- It is a form of **ELECTROMAGNETIC ENERGY** that travel at the speed of light.
- Discovered and named by Dr. W. C. Röentgen at University of Würzburg, 1895.
- Electromagnetic energy wave spectrum:



X-Rays are emitted (produced) and detected in cassette generating, either a hard copy film or a digital image. The X-Ray beam (Emission of electromagnetic radiation or particles from the X-Ray tube) interaction with body tissue can:

#### 1. Pass all the way through the body

- Render (make) the film DARK, BLACK, Radio-LUCENT.
- Air has a low atomic number  $\rightarrow$  X-rays get through  $\rightarrow$  image is **DARK.**

#### 2. Be deflected, scattered or absorbed

- Render (make) the film LIGHT, WHITE, Radio-OPAQUE.
- Bone has a high atomic number  $\rightarrow$  X-Rays are blocked  $\rightarrow$  image is **light**.

In conclusion, the darkness of the image depends on the thickness of the tissue.



| ADVANTAGES                | DISADVANTAGES                 |  |
|---------------------------|-------------------------------|--|
| Widely available.         | ☐ Ionizing Radiation.         |  |
| Inexpensive.              |                               |  |
| Doesn't require advanced  | Relatively insensitive        |  |
| technologist knowledge.   | (superimposed structures).1   |  |
| Can be performed quickly. |                               |  |
| Can be Portable.          | Requires patient cooperation. |  |

<sup>&</sup>lt;sup>1</sup> Structures lay on top of each other, so you can't see anatomical or pathological structures clearly.

## **Fluoroscopy**

#### **Combination of:**

- 1. X-Rays.
- 2. Contrast agents.

### Technique:

- **Real-time imaging**: dynamic, detect the movement of the contrast fluid in certain organs e.g. to assess esophagus leakage after swallow in the GIT).
- **Using intensifier:** to magnify the X-Rays without increasing the amount of radiations for patient's safety.

#### Used in:

- 1. GIT imaging.
- 2. Genitourinary imaging (commonly used for UTIs).
- 3. Angiography (vascular system).
- 4. Intraoperative (during surgery).
- 5. Foreign body removal.
- 6. MSK.

| ADVANTAGES                                                                                                                                   | DISADVANTAGES                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>□ Widely Available.</li> <li>□ Inexpensive.</li> <li>□ Functional + Anatomical imaging.</li> <li>□ No sedation required.</li> </ul> | <ul> <li>Requires ingestion/injection of contrast medium.</li> <li>Patient cooperation.</li> <li>Time consuming.</li> </ul> |

### **Computed Tomography**

#### **How does CT work?**

By rotating an X-Ray tube with the X-Ray detector, and the patient will go through these rays. Then, we will receive cross-sectional images (like slices). Each slice is an image by itself. We reconstruct these images to create other images from different views (coronal for example), which are 3D images.

- Relies on X-Rays transmitted through the body.
- Images consist of sections (slices) through the body, and are taken horizontally.
- To show coronal (frontal) or Sagittal images, data are manipulated (reconstructed)
   by a computer.
- Differs from conventional radiography (traditional X-Ray) in that a more sensitive X-Ray detection system is used.
- It has the capability to measure the density by analyzing the chemical component of tissue.

#### It has two windows:

- 1. <u>Wide window:</u> to visualize <u>more</u> structure within a certain <u>organ</u> such as bronchi, vessels and alveoli in the lung (Lung window).
- 2. <u>Narrow window:</u> to visualize <u>certain</u> structures within certain <u>region</u> such as major vessels and heart in mediastinum (mediastinum window).
- CT often requires a contrast. however, an example that doesn't require a contrast is stone imaging.
- Density is measured by Hounsfield Unit<sup>2</sup> (HU).
- Has very small differences in X-Ray absorption values compared with conventional radiography; the range of densities recorded is increased approximately 10-fold.

| Densities |      |       |             |       |           |
|-----------|------|-------|-------------|-------|-----------|
| Air       | Fat  | Water | Soft Tissue | Blood | Bone / Ca |
| -1000     | -150 | 0     | 20-80       | 45-75 | >100->100 |

| ADVANTAGES                                                                                        | DISADVANTAGES                  |
|---------------------------------------------------------------------------------------------------|--------------------------------|
| <ul><li>Can give: Cross sectional, Sagittal and Coronal Images.</li><li>More sensitive.</li></ul> | ☐ High radiation. ☐ Expensive. |

<sup>&</sup>lt;sup>2</sup> Read more about it here.

| Uses of CT               |                                                                                                                                                                                                                                                                                                                              |  |  |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Neuro-imaging            | <ul> <li>Acute head trauma, acute intracranial hemorrhage.</li> <li>We can use CT on patient that presents with headache to diagnose brain tumor.</li> <li>Low sensitivity for: <ol> <li>Early ischemic stroke.</li> <li>Intracranial metastatic disease.</li> <li>White matter degenerative disease.</li> </ol> </li> </ul> |  |  |  |
| Head and Neck imaging    | Soft tissue of neck, paranasal sinuses, temporal bone, and orbital wall.                                                                                                                                                                                                                                                     |  |  |  |
| Body imaging             | <ul> <li>Chest, Abdomen, Pelvis (with enteric and IV contrast)</li> <li>Pulmonary nodules, Renal Calculi (without contrast).</li> <li>Acute appendicitis (with enteric and IV contrast).</li> </ul>                                                                                                                          |  |  |  |
| Specialized protocols    | Liver masses, pancreatic tissue, renal masses, and adrenal masses.                                                                                                                                                                                                                                                           |  |  |  |
| Acute abdomen            | Decrease rate of false laparotomy (a surgical incision into the abdominal cavity, for diagnosis or in preparation for surgery).                                                                                                                                                                                              |  |  |  |
| Trauma spine imaging     | (cervical, thoracic, lumbar) It can miss fractures.                                                                                                                                                                                                                                                                          |  |  |  |
| Other osseous structures | (pelvis and extremities).                                                                                                                                                                                                                                                                                                    |  |  |  |
| Vascular imaging         | CT angiography i.e. coronary arteries.                                                                                                                                                                                                                                                                                       |  |  |  |

So gradations of density within soft tissues can be recognized, e.g. brain substance from cerebrospinal fluid, or tumor from surrounding normal tissues.

### There is major risk behind CT scan:

- 1. One brain CT scan radiation = 200 X-Ray radiation.
- 2. One pelvic CT radiation = 400 X-Ray radiation.

So don't request a CT scan unless needed, and we can't use it for a pregnant women unless absolutely necessary.

### **Magnetic Resonance Imaging**

- MRI sees tissues based upon sub-atomic characteristics (magnetism).
- Proton nucleus of Hydrogen has small magnetic field that can be used to detect tissues containing hydrogen.

### Hydrogen Atoms (protons) in water molecules and lipids:

- 1. Magnetism affects all protons causes them to line up in one direction.
- 2. Magnets can be switched on and off to change the direction of the magnetic field.
- 3. Whenever the water molecule spin around they give a light radio wave.
- 4. MRI machine can detect it and shows it as an images.
- 5. Like CT, gradation of density within soft tissues can be recognized.

| ADVANTAGES                                                                                                                                                                                       | DISADVANTAGES                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>□ Best for soft tissue imaging (tumors and infections).</li> <li>□ No ionization.</li> <li>□ Can be done for pregnant women.</li> <li>□ Images can be obtained in any plane.</li> </ul> | <ul> <li>Expensive.</li> <li>Time consuming.</li> <li>May evoke phobias Claustrophobia (narrow places).</li> <li>No metals allowed.</li> <li>Motion.</li> </ul> |

### **Ultrasound**

- Ultrasound is sound waves with frequencies which are higher than those audible to humans (>20,000 Hz).
- Ultrasonic images also known as sonograms are made by sending pulses of ultrasound into tissue using a probe.
- The sound echoes off the tissue; with different tissues reflecting varying degrees of sound.
- The echoes are recorded and displayed as an image to the operator.

#### White areas:

shows echogenic structure which transmit & reflect sound waves e.g. fat, vessels, nodes, soft tissue.

#### Black areas:

shows anechoic areas Fluids transmit but does not reflect sound waves.

#### Advantages:

No radiation Can be portable Relatively inexpensive

#### Lines:

occur at boundary of two markedly different tissue reflectors "boundary of organs"

### **Nuclear Medicine**

- Uses gamma rays to produce an image (Counts or Activity).
- Radioactive nuclide given IV, per os, per rectum etc.
- Rays emitted from the patient.
- Physiologic imaging (Abnormal function, metabolic activity).
- Poor for anatomical information.
- Radioactivity stays with the patient until cleared or decayed.