

Radiology of rheumatic diseases and bone infection and tumors

[Color index: Important | Notes | Extra | Editing file]

• Objectives:

The main focus and objective of this lecture is to help student to be familiar in looking at MSK images and interpreting findings, by learning:

- Normal radiological anatomic landmarks System of analyzing findings "Where to look & What to look for"
- Recognize features of certain disease entity
 - Resources:
 - 435 slides
 - 434 team
 - Done by:
 - Sara Alkhalifah
 - Team Leader:
 - Amjad Alduhaish
 - Mohammed Alsahil
 - Revised by:
 - Ahmed Al Yahya

Bone diseases

Case 1: 54-year-old female with low back pain. X-ray of lumbosacral spine requested *not important for the exam

- 1st picture: an X-ray of lumbosacral spine that shows a decreased bone density of the vertebra. Which is obvious by looking at the margins which is markedly increased when compared to the body of vertebra
- Osteoporosis is the most common metabolic disease in the world
- X-ray is not very sensitive for osteoporosis
- The only way for diagnosis is <u>DEXA</u> scan
- 4th picture: very severe osteoporosis in cadaver
 - Osteopenia (bone is darker).
 - Black lines are loss of trabeculations (loss of white lines). You normally don't see trabeculations unless some of them are lost.
 - Borders of the spine are white

CASE 2: 27 year-old male with long standing history of renal failure¹. X-ray of lumbosacral spine is requested.

Osteosclerosis "Rugger Jersey Spine"

Findings:

 Rugger jersey spine *specific finding for renal osteodystrophy (lucent with White margins)

Renal osteodystrophy:

- Osteoporosis (darker bones)
- Osteomalacia (bones are softer)
- Secondary
 Hyperparathyroidism
- Osteosclerosis

None of those are specific for renal osteodystrophy except for jersey spine.

¹ Patient with renal failure → No absorption & metabolism of vitamin D.

CASE 3: 20 year-old lady presented with weakness and lower limb pain.

Looser zones² (osteomalacia)

- rule out infection first
- X-ray: Medial aspect of the femur neck
- MRI: check changes in the bone marrow → most important for diagnosis.
- CT: check texture of the cortex
- Insufficient fracture of the femur neck due to softening of the bone
- Looser zones: presents as pain during movement, lower limb weakness
- Can also happen in the scapula and ribs, but it occurs most commonly in the femur neck.

Differences between osteomalacia and osteoporosis:

Patient A (Osteomalacia)

Patient (A): Osteomalacia "Rickets in children" Bone density may be normal but bone is soft and there is a defect in mineralization and ill defined margins with no vertically oriented trabeculae.

Patient B (Osteoporosis)

Patient (B): Osteoporosis There is reduction in bone density, sharp margins of the vertebral body with obvious vertically oriented trabeculae.

Hyperparathyroidism

- 1. Bone Resorption
- 2. Bone Softening
- 3. Brown Tumors
- 4. Osteosclerosis
- 5. Soft tissue calcifications

★Bone Resorption

- Subperiosteal resorption in hyperparathyroidism.
- Finding: Middle phalanx: irregularity of the margin (subperiosteal bone resorption) radial aspect

Theses changes usually happen in the middle phalanx, radial aspect in the 2nd or 3rd finger. (pathognomonic for hyperparathyroidism)

*The choices will be very similar in the exam. Memorise this well!

*****Brown Tumors

- There's Lytic Lesions, Brown tumors features:
 - 1. Affect long or flat bones.
 - 2. Single or multiple
 - 3. Have a sharp outline but with no obvious margins
- Whenever you see a bony lesion in a hyperparathyroid patient always think of brown tumors
- Always think of brown tumors in younger patients with multiple tumors
- It represents excessive metabolic (osteoclastic) activity in a certain area

Case 4: 45 year old male presented with a history of bone enlargement. X-ray of skull and hand are requested.

- Frontal bossing due to enlarged frontal sinus
- Enlarged mandible/jaw
- Occipital protuberance
- Rounded & enlarged sella turcica which may indicate pituitary pathology that caused the acromegaly (e.g. pituitary adenoma)
- Thickening of the calvarium (thick skull)
- Hands: Enlargement of the soft tissue, early osteoarthritis
- Foot x-ray: thickening of the heel fat pad

Arthritis

*In arthritis, the doctor only focused on theoretical findings. He said that we won't be asked about the diagnosis from the x-ray image.

Osteoarthritis:

Case5: 48-year-old female presented with joint pain of the hands & feet. X-ray of hand requested.

- •Carpals aren't clear, proximal disease
- •Changes involve the head of the metacarpal, metacarpal phalangeal joints

Osteoarthritic classic changes in sequence: (seen in every joint)

- 1. Joint space narrowing
- 2. Sclerosis
- 3. Friction of the bone will cause a reaction
 - a. osteophytes
 - b. subchondral sclerosis could lead to subchondral cyst

Rheumatoid arthritis

- Decreased bone density
- Oblique view: alignment is disturbed (first metacarpal)
- Carpal bones are destroyed and eroded
- Reduced distance between radius and carpal bones
- Some of the signs of rheumatoid arthritis are: Periarticular Erosions (periarticular osteopenia), loss of joint spaces.

Rheumatoid Arthritis

- <u>Proximal</u> joints more affected than distal
- Loss of joint space
- Carpal bones not clear (eaten up and collapsed)
- Erosions
- Subluxation and dislocation
- Periarticular osteopenia
- Erosive arthropathy: caused by the rheumatoid arthritis
- Swan neck deformity of the neck, extensive erosive
- Early radiological sign: decreased density around the joint
- Malalignment of the fingers, ulnar deviation of left hand & dislocation of the thumb of the left hand.

Psoriatic Arthritis *

- <u>Distal</u> affected more than proximal
- Swelling of fingers "sausage digits"
- Ivory phalanx (circle): one finger is whiter than the others
- You could argue that this patient has a Z
 deformity but it doesn't necessarily mean that
 this patient has RA it could mean that the joint is
 destroyed

♦ Gouty arthritis: ★

Findings:

- Erosions (no specific distribution)
- Swelling around fingers (Gouty tophi) which give a characteristic "Lumpy Bumpy" appearance
- *Note that gouty arthritis most commonly involves the big toe
- Erosive changes ring finger
- •Soft tissue swelling (white area means it is dense)
- Erosive arthropathy with soft tissue component, seen in Gout

In summary:

Osteoarthritis \rightarrow joint space narrowing, sclerosis, osteophytes, and subchondral cyst

Psoriasis → distal involvement and sausage digits

RA → proximal involvement and ulnar deviation

Gout → no specific distribution and lumpy bumpy appearance

Acromegaly → thick skull, frontal bossing, enlarged mandible and sella turcica, thickened heel fat pad

Tumors

- Osseous
 - Types: 1-Sclerotic 2-Mixed 3-Lytic
- Chondral
- Fibrous
- Soft tissue

Key Features: This is what you need to know about each tumor

- Morphology
- Behavior of lesion (Benign or aggressive)
- Age of patient
- Site (location)

Morphology Geographic Moth eaten **Permeative Outlined lesion** Fuzzy edges Aggressive Aggressive lesion Benign lesion Worst type Causes: bone cyst, benign Causes: infection, tumor ill defined margins fibrous tumor non-homogenous wide zone transition Geographic lesions: widen margin aggressive malignant transition zone is wider sharp outline process or malignant non-malignant as infection

Behavior

Periosteal reaction

- It means that the body is trying to heal
- If there is a fracture the normal reaction would be periostitis and it would heal
- In cases of tumors there is continuous inflammation so the body tries to stop it by forming a layer of periosteal reaction (white line around bone). Then the infection/tumor becomes more aggressive and it stops (black line). Then the body will react again (white line). All of this will give an "onion peel/lamellated" appearance
- the periosteum is intact with cortex
- looser in the pediatric
- any violation to the cortex and the bone will react to the tumor by forming callus and periosteom
- slow growing tumors allow the periosteum to grow
- periosteum will be thick
- benign

♦ Case 5:

A 13-year-boy patient presented with knee pain and swelling. X-ray of the knee requested.

Pattern: Geographic Location: metaphyseal

Diagnosis: Aneurysmal bone cyst. Do MRI or CT to

know the extent

Treatment: surgical or injection with sclerosing

material

Lytic expansile lesion located on the

metaphysis(benign)

Fluid fluid level indicating a hemorrhagic component There are some spots that suggest presence of blood CT or MRI might be done to check the texture of the lesion.

- Within the metaphysis, doesn't extent to the epiphysis
- Geographical
- •X ray: expansile lytic lesion, cortex is thinned out
- •CT: fluid level blood, vascular benign lesion
- •Cause: aneurysm bone cyst (age, location, appearance)

On CT there are some spots that suggest that it contains blood Aneurysmal Bone cyst.

Frontal view: looks clearL, ateral view: nothing is clear Diagnosis: Giant cell tumor (benign with aggressive behavior)

- •Expansile •lytic lesion •sub-articular surface
- •violated cortex •Aggressive bone lesion

Lesion is pushing the bone (the bone is thinned out) Everything else is normal (if it were malignant it will be destroying everything)

- Moth eaten, permeated (no margins)
- Aggressive

- In these cases we depend more on X ray
- Moth eaten, permeated (no margins)
- Violating the cortex

Leukemia, lymphoma, sarcoma

♦ Case 6:★

Adult female patient presented with hand swelling. X ray of the hand was requested.

Findings:

Swelling between thumb and index finger

In X ray:

Black → fat (think of lipoma), air (think of bacterial infection)

White → bone, calcification

- •no bone destruction
- •Soft tissue swelling but no bone is disrupted, so it is only a swelling.

The image is adjusted to cancel out fat (black) to make sure it's a fatty lesion.

Diagnosis: Lipoma

- •MRI: lesion is white
- Possible lesions: Lipoma, fibroma, rhabdomyoma, fibrous histiocytoma, hemangioma, neurofibroma MRI is done and the lesion appeared white "subcutaneous fat".

♦ Case 7:

57-year-old patient with a history of breast cancer presented with bone ache.

Findings:

Dots everywhere (metastasis)

Metastasis can be lytic or sclerotic (sclerotic in breast and prostate cancer)

Summary

- •Metabolic & Endocrine Disorders:
 - Osteomalacia: looser zone
 - Osteoporosis: loss of trabeculations
 - •HPT³: Brown tumors •ROD⁴: jersey spine
 - •Acromegaly: 1-frontal bossing 2-protruding jaw 3-enlarged sella turcica 4-thickened heel pad
- •Arthritis:
 - •Rheumatoid Arthritis: proximal joint, periarticular osteopenia
 - •Osteoarthritis: loss of joint space, osteophytes, and subchondral cyst.
 - Psoriatic Arthritis: distal joint
 - Gout: lumpy bumpy
- •Musculoskeletal Tumors:
 - Benign (Non-aggressive)
 - Malignant (Aggressive)
- •Matrix is chondroid tissue, deposited with phosphorus and calcium
- •Osteopenia: is not a disease, but reduction in bone density
- •Osteoporosis: can be secondary to trauma, immobilization, medicine such as heparin because the mass is reduced and not the minerals
- •Osteomalacia: caused a by defect in minerals (inadequate amounts of available phosphorus and calcium, or because of overactive reabsorption of calcium from the bone as a result of hyperparathyroidism)
- •Osteomalacia In children is called Rickets

³Hyperparathyroidism/

⁴Renal osteodystrophy