How to select study subjects using Sampling Techniques

Dr. Shaik Shaffi Ahamed Ph.D., Professor
Department of Family \& Community Medicine College of Medicine
King Saud University

Objectives of this session:

To understand:

- Why we use sampling methods
- Definitions of few concepts
- Sampling and non-sampling methods
- And able to use sampling methods appropriately

Sampling

Sampling is the process or technique of selecting a study sample of appropriate characteristics and of adequate size.

Sampling in Epidemiology

- Why Sampling?
\square Unable to study all members of a population
\square Reduce selection bias
\square Save time and money
\square Measurements may be better in sample than in entire population
\square Feasibility

Definitions

- Population - group of things (people) having one or more common characteristics
- Sample - representative subgroup of the larger population
\square Used to estimate something about a population (generalize)
\square Must be similar to population on characteristic being investigated

Population:

a set which includes all measurements of interest to the researcher
(The collection of all
responses, measurements counts that are of interest)

Sample:

A subset of the population

Def. - Cont.

Sampling Frame

- This is the complete list of sampling units in the target population to be subjected to the sampling procedure.
- Completeness and accuracy of this list is essential for the success of the study.

Sampling Units

These are the individual units / entities that make up the frame just as elements are entities that make up the population.

Def. - Cont.

Sampling Error

This arises out of random sampling and is the discrepancies between sample values and the population value.

Sampling Variation

- Due to infinite variations among individuals and their surrounding conditions.
- Produce differences among samples from the population and is due to chance.
- Example: In a clinical trail of 200 patients we find that the efficacy of a particular drug is 75%
If we repeat the study using the same drug in another group of similar 200 patients we will not get the same efficacy of 75%. It could be 78% or 71%. "Different results from different trails though all of them conducted under the same conditions"

Representativeness (validity)

A sample should accurately reflect distribution of relevant variable in population

- Person e.g. age, sex
- Place e.g. urban vs. rural
- Time

Representativeness essential to generalise
Ensure representativeness before starting,
Confirm once completed

Validity of a Study

Two components of validity:
\square Internal validity
\square External validity

Illustration of the Difference Between Precision and Accuracy

Hulley \& Cummings, Designing Clinical Research, 1988.

Illustration of the Difference Between Precision and Accuracy

Good
Precision
Poor
Accuracy

Poor
Precision
Good
Accuracy

Good
Precision
Good
Accuracy Accuracy Hulley \& Cummings, Designing Clinical Research, 1988.

Internal validity

- A study is said to have internal validity when there have been proper selection of study group and a lack of error in measurement.
o For example, it is Concerned with the appropriate measurement of exposure, outcome, and association between exposure and disease.

External validity

- External validity implies the ability to generalize beyond a set of observations to some universal statement.

Sampling and representativeness

Target Population $\boldsymbol{\rightarrow}$ Sampling Population \rightarrow Sample

How to sample?

In general, 2 requirements

1. Sampling frame must be available, otherwise develop a sampling frame.
2. Choose an appropriate sampling method to draw a sample from the sampling frame.

The Sampling Design Process

Types of Sampling Methods

Simple Random Sampling

- Equal probability
- Techniques
\square Lottery method
\square Table of random numbers
- Advantage
\square Most representative group
- Disadvantage
\square Difficult to identify every member of a population

Table of random numbers

$$
\begin{aligned}
& 684257954125632140 \\
& 582032154785962024 \\
& 362333254789120325 \\
& 985263017424503686
\end{aligned}
$$

Random Number table

1	2	3	4	5
49486	93775	88744	80091	92732
94860	36746	04571	13150	65383
10169	95685	47585	53247	60900
12018	45351	15671	23026	55344
45611	71585	61487	87434	07498
89137	30984	18842	69619	53872
94541	12057	30771	19598	96069
89920	28843	87599	30181	26839
32472	32796	15255	39636	90819

How to select a simple random sample

1. Define the population
2. Determine the desired sample size
3. List all members of the population or the potential subjects

- For example:
$\square 4^{\text {th }}$ grade boys who have demonstrated problem behaviors
\square Lets select 10 boys from the list

Potential Subject Pool

1. Ahamed
2. Munir
3. Khalid
4. Ameer
5. Junaid
6. Khadeer
7. Shaffi
8. Rafi
9. Ghayas
10. Fayaz
11. Riyaz
12. Yaseen
13. Jaffar
14. Sattar
15. Ghouse
16. Imran
17. Khaleel
18. Shabu
19. Shanu
20. Javid
21. Fahad
22. Iqbal
23. Jabbar
24. Aziz
25. Anwar
26. Shohail
27. Shohaib
28. Rehaman
29. Naeem
30. Rahim

So our selected subjects are with numbers 10, 22, $24,15,6,1,25,11,13, \& 16$.

1. Ahamed
2. Munir
3. Khalid
4. Ameer
5. Junaid
6. Khadeer
7. Shaffi
8. Rafi
9. Ghayas
10. Fayaz
11. Riyaz
12. Yaseen
13. Jaffar
14. Sattar
15. Ghouse
16. Imran
17. Khaleel
18. Shabu
19. Shanu
20. Javid
21. Fahad
22. Iqbal
23. Jabbar
24. Aziz
25. Anwar
26. Shohail
27. Shohaib
28. Rehaman
29. Naeem
30. Rahim

- Simple random sampling

\square Estimate hemoglobin levels in patients with sickle cell anemia

1. Determine sample size
2. Obtain a list of all patients with sickle cell anemia in a hospital or clinic
3. Patient is the sampling unit
4. Use a table of random numbers to select units from the sampling frame
5. Measure hemoglobin in all patients
6. Estimate the levels (normal \& abnormal) of hemoglobin

Systematic random Sampling

- Technique
\square Use "system" to select sample (e.g., every 5th item in alphabetized list, every 10th name in phone book)
- Advantage
\square Quick, efficient, saves time and energy
- Disadvantage
\square Not entirely bias free; each item does not have equal chance to be selected
\square System for selecting subjects may introduce systematic error
\square Cannot generalize beyond population actually sampled

Example

- If a systematic sample of 500 students were to be carried out in a university with an enrolled population of 10,000 , the sampling interval would be:
- $\mathrm{I}=\mathrm{N} / \mathrm{n}=10,000 / 500=20$
- All students would be assigned sequential numbers. The starting point would be chosen by selecting a random number between 1 and 20. If this number was 9 , then the 9th student on the list of students would be selected along with every following 20th student. The sample of students would be those corresponding to student numbers 9, 29, 49, 69, 9929, 9949, 9969 and 9989.

Systematic sampling

Systematic random sampling

\square Select a random starting point and then select every $\mathrm{k}^{\text {th }}$ subject in the population

Stratified Random Sampling

- Technique
\square Divide population into various strata
\square Randomly sample within each strata
\square Sample from each strata should be proportional
- Advantage
\square Better in achieving representativeness on control variable
- Disadvantage
\square Difficult to pick appropriate strata
\square Difficult to Identify every member in population

Stratified random Sampling

- Divide the population into at least two different groups with common characteristic(s), then draw subjects randomly from each group (group is called strata or stratum)

List of Clients

Strate!

Reandom substanples of n/N

Sampling in Epidemiology

Stratified random sample

\square Assess dietary intake in adolescents

1. Define three age groups: 11-13, 14-16, 17-19
2. Stratify age groups by sex
3. Obtain list of children in this age range from schools
4. Randomly select children from each of the 6 strata until sample size is obtained
5. Measure dietary intake

Cluster (Area) random sampling

- Randomly select groups (cluster) - all members of groups are subjects
- Appropriate when
\square you can't obtain a list of the members of the population
\square have little knowledge of population characteristics
\square Population is scattered over large geographic area

Cluster sampling

Cluster Sampling

Cluster (Area) Sampling

- Advantage
\square More practical, less costly
- Conclusions should be stated in terms of cluster (sample unit - school)
- Sample size is number of clusters

Multistage random sampling

- Stage 1
--randomly sample clusters (schools)
- Stage 2
--randomly sample class rooms from the schools selected
- Stage 3
--random sample of students from class rooms

Multi-stage Sampling

\square
\square
\square
Second stage: within each school, randomly select y clusters (class rooms)

Third stage: randomly select x number of people from the class room

Random . . .

- Random Selection vs. Random Assignment
\square Random Selection = every member of the population has an equal chance of being selected for the sample.
\square Random Assignment = every member of the sample (however chosen) has an equal chance of being placed in the experimental group or the control group.
- Random assignment allows for individual differences among test participants to be averaged out.

Subject Selection (Random Selection)

Choosing which potential subjects will actually participate in the study

Subject Assignment (Random Assignment)

Deciding which group or condition each subject will be part of

Group A

Group B

Sampling Methods

Probability Sampling

- Simple random sampling
- Stratified random sampling
- Systematic random sampling
- Cluster (area) random sampling
- Multistage random sampling

Non-Probability Sampling

- Deliberate (quota) sampling
- Convenience sampling
- Purposive sampling
- Snowball sampling
- Consecutive sampling

Deliberate (Quota) Sampling

- Similar to stratified random sampling
- Technique
\square Quotas set using some characteristic of the population thought to be relevant
\square Subjects selected non-randomly to meet quotas (usu. convenience sampling)
- Disadvantage
\square selection bias
\square Cannot set quotas for all characteristics important to study

Convenience Sampling

■ "Take them where you find them" nonrandom

- Intact classes, volunteers, survey respondents (low return), a typical group, a typical person
- Disadvantage: Selection bias

Purposive Sampling

- Purposive sampling (criterion-based sampling)
\square Establish criteria necessary for being included in study and find sample to meet criteria.
- Solution: Screening
\square Obtain a sample of larger population and then those subjects that are not members of the desired population are screened or filtered out. EX: want to study smokers but can't identify all smokers

Snowball Sampling

In snowball sampling, an initial group of respondents is selected.
\square After being interviewed, these respondents are asked to identify others who belong to the target population of interest.
\square Subsequent respondents are selected based on the referrals.

Consecutive sampling
\square Outcome of 1000 consecutive patients presenting to the emergency room with chest pain
\square Natural history of all 125 patients with HIV-associated TB during 5 year period

Explicit efforts must be made to identify and recruit ALL persons with the condition of interest

Choosing probability vs. non-probability sampling method

Probability sampling	Evaluation Criteria \longrightarrow	Non-probability sampling
Conclusive	Nature of research	Exploratory
Larger sampling errors	Relative magnitude sampling vs. non-sampling error	Larger non-sampling error
High $[$ Heterogeneous]	Population variability	Low [Homogeneous]
Favorable	Statistical Considerations	Unfavorable
High	Sophistication Needed	Low
Relatively Longer	Budget Needed	Relatively shorter
High	Low	

In Conclusion,
For any research, based on its study design and objectives an appropriate random sampling technique should be used.

