King Banb United

Division of Cardiac Surgery Department of Cardiac Sciences King Saud University Medical city King Saud University, Riyadh.

Presentation and management of cardiac surgical diseases

Objectives of the lecture

- Overview of diseases of heart, where surgery can play a role
- Surgical indications
- Understanding of the Basic Principles of Cardiac Surgery

Cardiac Diseases

- Coronary Artery Disease
- Valvular Heart Diseases
- Congenital Heart Diseases

Miscellaneous :

- Aortic Diseases
- Pericardial Disease
- Cardiac Tumors
- Trauma
- Heart failure
- Arrhythmia surgery

Approach:

- 1. History
- 2. Physical examination
- 3. Chest x-ray
- ◆4. E.C.G.

5. Investigations (non-invasive & invasive).

Modes of Presentation of Cardiac Diseases

- Chest pain
- Shortness of Breath
- Palpitations
- Dizziness, Syncope
- Congestive Cardiac Failure
- Cyanosis and Clubbing in Congenital Defects
- Other Symptoms (fever, sweating, G.I. symptoms, embolic symptoms, loss of weight)

Chest pain

Differential diagnosis:

- 1. Cardiac causes
- 2. Non-cardiac causes

Life threatening causes:
Myocardial infarction
Aortic dissection
Pulmonary embolism.

Shortness of breath

- Cardiac causes: Heart failure, myocardial ischemia, congenital heart disease, arrhythmias, pericardial diseases, and valvular heart diseases.
- Respiratory causes: COPD, pneumothorax, infections, pulmonary embolism, pleural effusion, restrictive ling disease.

Shortness of breath

Others:

Anemia, renal failure, obesity, anxiety and hyperthyroidism.

Ischemic Heart Disease

- Clinical manifestations:
- 1. Asymptomatic
- 2. Symptomatic:
 - -angina pectoris: stable- unstable
 - -myocardial infarction

-V.S.D., Ischemic mitral regurge, Ventricular aneurysm, Heart failure, Conduction defects. **Ischemic Heart Disease**

- Indications of surgery:
 - 1. Failure of medical therapy or percutaneous intervention.
 - 2. Left main disease more than 50%.
 - 3. proximal LAD & proximal Cx more than 70%.
 - 4. 3-vessel disease with left ventricular dysfunction
 - 5. Mechanical complications of myocardial infarction.
 - 6. Associated valve disease

What is a CABG ?

 A vascular graft is sutured to the coronary artery beyond the stenosis

Coronary conduits:

- 1. Arterial: Internal thoracic artery
- 2. Venous : Long saphenous vein.

Types of surgery:

1. Conventional: using the heart lung machine, and cardioplegic arrest

2. Off-pump (beating heart surgery)

Saphenous vein graft

Internal thoracic artery graft

From: The Society of Thoracic Surgeons Web site http://www.sts.org

Other arterial grafts

Radial artery

Coronary Artery Bypass Grafting

Coronary Artery Bypass Surgery

CABG – Operative technique

Under ECC with cardioplegia

Video

Beating-heart surgery (without ECC)

Video

Valvular Heart Diseases

- 1. Mitral stenosis:
- Etiology: Rheumatic, Congenital
- The natural progression of MS causes the mitral valve area to reduce by 0.1-0.3 cm per year.
- The progression from the onset of rheumatic fever to onset of signs of MS takes 10-20 years.
- The progression from signs of MS to mild symptoms of MS takes 10-20 years.
- The progression from mild symptoms to decompensation takes 10-20 years
- In patients with severe PH the mean survival is 3 years.
 Surgery for Cardio-thoracic

Symptoms of mitral stenosis

- 1.Asymptomatic for many years.
- 2. Easy fatiguability.
- 3. Dyspnea, Orthopnea and PND.
- 4. Palpitations
- 5. Dysphagia, compression of left main bronchus

Signs of mitral stenosis

- 1. Low volume pulse.
- 2. Irregular pulse.
- 3. Tapping non-displaced apex beat.
- ♦ 4. Loud S1
- 5. Mid-diastolic rumbling murmur.
- 6. signs of PH: central cyanosis, Loud P2, T.R. P.R.

Mitral Stenosis

- Treatment:
- 1. Medical
- 2. Balloon valvuloplasty
- 3. Closed mitral commissurotomy
- 4. Open mitral commissurotomy
- 5. Mitral valve replacement / repair

Mitral Valve

 A Mitral Regurgitation: Etiology: Rheumatic, Degenerative, Endocarditis, Ischemic, Traumatic

Chronic mitral regurgitation: Rheumatic fever, Myxomatous degeneration, ischemic cardiomyopathy.

Acute mitral regurgitation: chordal rupture, infective endocarditis, papillary muscle rupture following MI.

Mitral Regurgitation

 Asymptomatic patients can have a long latent period before the onset of symptoms as chronic M.R is well tolerated if L.V function is still preserved.

Mitral Regurgitation

Symptoms of mitral regurgitation:

- 1. fatigue and weakness
- 2. Dyspnea, Orthopnea, PND

3. Pulmonary hypertension and right heart failure.

Mitral Regurgitation

- Signs of mitral regurgitation:
- 1. displaced apex beat
- 2. apical thrill
- 3. apical pan-systolic murmur
- 4.signs of pulmonary hypertension

Mitral Valve

Mitral Valve replacement

Mitral Valve Repair

Aortic stenosis

Etiology: Rheumatic, Congenital, Degenerative.

Symptoms:

- 1. Asymptomatic
- 2. Chest pain
- 3. Syncopal attacks
- 4. Dyspnea and CHF

Aortic stenosis

- Signs of aortic stenosis:
- 1. slow-rising pulse
- 2. small amplitude pulse
- 3. sustained apical pulse
- 4. harsh ejection systolic murmur.

Aortic Valve

Aortic Stenosis

Aortic regurgitation

Etiology: Rheumatic, Endocarditis, Connective tissue disorders, Aortic dissection or aneurysm.

Surgery for Cardio-thoracic Diseases

Aortic Valve

Aortic Regurgitation

Biologic

- Lasts 8-10 years
- No anticoagulation
- No Click

Mechanical

- Lasts > 20 years
- Lifelong anticoagulation
- Click

Valvular Prostheses

Surgery for Cardio-thoracic Diseases

Valvular Prostheses

- Complications of prosthetic values:
- 1. Thrombosis
- 2. Bleeding complications
- 3. Infective endocarditis
- 4. Paravalvular leak
- 5. Degeneration of biological valves

Endocarditis

Table 2. Indications for and Timing of Surgery in Patients with Left-Sided, Native-Valve Infective Endocarditis.*		
Indication	Timing of Surgery†	
Heart failure		
Aortic or mitral-valve infective endocarditis with severe acute regurgitation or obstruction caus- ing refractory pulmonary edema or cardiogenic shock	Emergency	
Aortic or mitral-valve infective endocarditis with fistula into a cardiac chamber or pericardium causing refractory pulmonary edema or cardiogenic shock	Emergency	
Aortic or mitral-valve infective endocarditis with severe acute regurgitation or obstruction and persistent heart failure or signs of poor hemodynamic tolerance (early mitral-valve closure or pulmonary hypertension)	Urgent	
Aortic or mitral-valve infective endocarditis with severe regurgitation and heart failure easily con- trolled with medical treatment	Elective	
Uncontrolled infection		
Locally uncontrolled infection (abscess, false aneurysm, fistula, enlarging vegetation, or dehis- cence of prosthetic valve)	Urgent	
Persistent fever and positive blood cultures for >5–7 days	Urgent	
Infection caused by fungi or multidrug-resistant organisms, such as <i>Pseudomonas aeruginosa</i> and other gram-negative bacilli	Elective	
Prevention of embolism		
Aortic or mitral-valve infective endocarditis with large vegetations (>10 mm in length) after one or more embolic episodes, despite appropriate antibiotic therapy, especially during the first 2 weeks of therapy	Urgent	
Aortic or mitral-valve infective endocarditis with large vegetations (>10 mm) and other predictors of complicated course (heart failure, persistent infection, or abscess)	Urgent	
Isolated, very large vegetations (>15 mm); surgery may be preferred if a procedure preserving the native valve is feasible	Urgent	

Heart Failure

Ventricular Assist Devices:

published with the permission of the American Heart Association.

Indications	Absolute Contraindications
Frequent hospitalisations for HF	Irreversible hepatic disease
Intolerance to neurohormonal antagonists	Irreversible renal disease
NYHA IIIb–IV functional limitations despite	Irreversible neurological disease
OMT	
End-organ dysfunction owing to low CO	Medical nonadherence
Increasing diuretic requirement	Severe psychosocial limitations
CRT nonresponder	
Inotrope dependence	
Low peak Vo ₂ (<14mL/kg/min)	
HF = Heart failure; OMT = optimal medical therapy	; NYHA = New York Heart Association;

Heart Failure

Indications for Heart Transplant:

- Cardiogenic shock requiring mechanical assistance.
- Refractory heart failure with continuous inotropic infusion.
- NYHA functional class 3 and 4 with a poor 12 month prognosis.
- Progressive symptoms with maximal therapy.
- Severe symptomatic hypertrophic or restrictive cardiomyopathy.
- Medically refractory angina with unsuitable anatomy for revascularization.
- Life-threatening ventricular arrhythmias despite aggressive medical and device interventions.
- Cardiac tumors with low likelihood of metastasis.
- Hypoplastic left heart and complex congenital heart disease.

Heart Failure

Table 3. Contraindications to cardiac transplantation.⁵

- Pulmonary hypertension (TPG > 15 mm Hg, SPAP > 50 mm Hg, PVR > 4 WU, PVRI > 6)
- Systemic disease (anticipated to limit long-term survival)
- Elevated creatinine (>200 µmol/L)
- Active infection
- Psychosocial (substance abuse, smoking, medical noncompliance)
- Malignancy (within 5 years)
- Morbid obesity (>140% ideal body weight)
- Marked cachexia (< 60% ideal body weight)
- Osteoporosis
- Peripheral or cerebrovascular disease
- Diabetes mellitus with end organ damage

Arrhythmia

Recommendations	Class ^a	Level®
Surgical ablation of AF should be considered in patients with symptomatic AF undergoing cardiac surgery.	lla	
Surgical ablation of AF may be per- formed in patients with asymptoma- tic AF undergoing cardiac surgery if feasible with minimal risk.	ШЬ	C
Minimally invasive surgical ablation of AF without concomitant cardiac surgery is feasible and may be per- formed in patients with symptomatic AF after failure of catheter ablation.	ШЬ	c

Thoracic Aortic Disease

 1. Thoracic aortic aneurysm
 Symptoms are usually due to pressure on surrounding stuctures.

2. Aortic dissection:

Tear in the intima allowing blood to enter and flow in a false channel. There are 2 lumens separated by the dissecting membrane

Type A dissections

- Arising in the ascending aorta
- Are a medical emergency and require immediate surgery.
- Mortality rate up to 5% per hour.

Surgery for Cardio-thoracic Diseases

Type B dissections

- Arising in the descending aorta
- Carry a lower mortality rate and can be managed medically
- May cause symptoms due to vascular compromise to other areas e.g. acute limb ischemia, renal ischemia, paraplegia, mesenteric ischemia.

Aortic Dissection

DeBakey classification system

Type I - Originates in ascending aorta, propagates at least to the aortic arch and often beyond it distally.

Type II – Originates in and is confined to the ascending aorta.

Type III – Originates in descending aorta, rarely extends proximally but will extend distally.

Daily (Stanford) classification system

Divided into 2 groups; A and B depending on whether the ascending aorta is involved.

- A = Type I and II DeBakey
- **B** = **Type III** DeBakey

Classification of aortic dissection

Aortic Disease

Asymptomatic/ Low Risk Patients

Copyright @2010 American College of Cardiology Foundation. Restrictions may app

Aortic Surgery

Cardiac Tumors

Table I – Primary cardiac tumors		
Benign (75% of the cases)	Myxoma	
	Rhabdomyoma	
	Fibroma	
	Lipoma	
	Atrioventricular node tumor	
	Papillary fibroelastoma	
	Hemangioma	
Malign (25% of the cases)	Angiosarcoma	
-	Rhabdomyosarcoma	
	Fibrosarcoma	

Basic Principles of Cardiac Surgery

Adequate Exposure

- Full or Partial Sternotomy / Thoracotomy / Robotic or Endoscopic
- Bloodless Operative Field
 - Suction and re-transfusion / Snaring or clamping of bleeding vessels
- Static Operative Target
 - Cardiac Arrest / Ventricular Fibrillation / Mechanical Stabilizers
- Preservation of body perfusion
 - Use of Heart Lung Machine / Off-pump Techniques
- Preservation of Myocardium
 - Off-pump Techniques / Hypothermia / Cardiac Arrest with cardioplegia

Surface Cooling Hypothermia (28c°) for ASD Closure in Children, 1952

Natural Heart/Lung Machine (the parent)

- Cross Circulation 1954-1955
- Controversy- 200% Mortality
 - (parent and child)

In 1953, John Gibbon reported the first successful ASD closure using his heart-lung machine. It took him 20 years of work and experiments!

Heart Lung Machine

Aim of cardiopulmonary bypass:

The principal aim of CPB is to facilitate cardiac and thoracic aortic procedures by excluding the heart and lungs from the circulation whilst providing:

- 1. adequate gas exchange
- 2. systemic organ perfusion
- 3. controlling body temp.

Heart Lung Machine

Components :

- Roller pumps
- Blood Reservoir (cardiotomy reservoir)
- Oxygenator
- Heater-cooler unit
- Tubing and Monitoring console etc
- Limitation/Problems :
 - Requires full anticoagulation
 - Can cause micro embolism
 - Initiates Systemic Inflammatory Response

Operation under ECC (1)

Sternotomy

- Opening of the pericardium & exposure of the heart
- Confection of pursestring

• Heparin: high dose

From : Manual of Cardiac Surgery, Harlan & Starr, Springer-Verlag, New York , 1995

Cannulation, connections to tubing

Operation under ECC (2) Initiation of ECC

Operation under ECC (3)

Cardioplegic arrest

- ing of the porta
- Clamping of the aorta
- K⁺ injection into the coronary system:
- « chemical arrest » of the heart » , flaccid heart

Operation under ECC (4)

CEC

Release of the aortic clamp

- Sinusal rhythm
- Ventricular fibrillation: defibrillator
- Block: pace-maker

If open-heart surgery deairing before unclamping the aorta (air embolization)

Complications of CPB

- 1. systemic inflammatory response due to contact of blood with the foreign surface of CPB circuit resulting in increased capillary permeability, interstitial edema, and subsequent organ dysfunction.
- 2. coagulopathy caused by platelet dysfunction as well as dilution and consumption of coagulation factors.

Complications of CPB

♦ 3. hemolysis.

4. renal and splanchnic hypoperfusion

5. cerebrovascular accident

Surgery for Cardio-thoracic Diseases

Coronary Artery Bypass Surgery

BENEFITS OF OFF PUMP CABG

Reduced incidence of stroke & cognitive problems

Lesser renal dysfunction

Reduced inflammatory response

Lesser coagulopathy & requirement of blood transfusion

Reduced length of time in intensive care & hospital stays

Reduced morbidity & mortality rates
Heart Lung Machine

Pericardial effusion

- Progressive accumulation of fluid inside the pericardial cavity, may compress the cardiac chambers.
- Etiology:
- -Traumatic
- -pericarditis
- -malignancy
- -uremia, post irradiation
- -postoperative.

Pericardial effusion

- Investigations:
- -Plain x-ray chest
- -Echocardiography
- -CT scan
- Management:
- treat the cause
- -Aspiration
- -Pericardiostomy

Congenital Heart Diseases

- 1. Acyanotic:
- Patent ductus arteriosus
- -Coarctation of the aorta
- -Pulmonary stenosis
- Atrial septal defect
- -Ventricular septal defect

Congenital Heart Diseases

2. Cyanotic:

- -Tetralogy of Fallot
- Transposition of the great vessels
- Tricuspid atresia
- Total anomalous venous drainage
- Truncus arteriosus

Pre-Operative Investigations for Cardiac Surgery

Full Blood Count
Blood Biochemistry
ECG
Chest X-ray
Pulmonary Function Tests.
Other test according to systemic review of patient

Echocardiography
Angiography
Carotid Duplex Scan
Peripheral Duplex Scan

Usual Duration of Stay in Hospital

- One day before surgery
- 3-6 hours OR time
- One day in ICU
- ♦ 4-5 Days in Ward
- Total 5-7 days

Cardiac Trauma

Blunt

Penetrating

In blunt cardiac trauma, the major challenge is diagnosis, while in penetrating cardiac trauma, the major challenges are rapid resuscitation followed by emergent definitive surgery

Blunt Cardiac Trauma

- Myocardial contusion
- Pericardial tamponade
- Arrhythmia with cardiac arrest
- Disruption of valves and septum
- Coronary artery injuries
- Cardiac rupture

Blunt Cardiac Trauma

- All patients with blunt chest trauma should undergo physical examination, CXR, ECG, and baseline cardiac enzymes.
- ECHO, C.T. may be needed
- Treatment depends on the nature of the injury.

Penetrating Cardiac Trauma

 All patients with penetrating wounds between the right mid-clavicular and left mid-axillary lines from the epigastrium to the clavicles should be assumed to have injuries involving the heart until proven otherwise.

Penetrating Cardiac Trauma

- The most commonly injured chamber is the right ventricle.
- The typical patient presents with signs of tamponade or hemorrhage.
- Emergent surgical exploration may be needed.

Thank You

