

BLEEDING DISORDERS

" MADE EASY"

DR. AHMED M GAMAL

CONSULTANT ADULT HEMATOLOGY & INTERNAL MEDICINE KING KHALID UNIVERSITY HOSPITAL – KING SAUD UNIVERSITY

OUTLINES

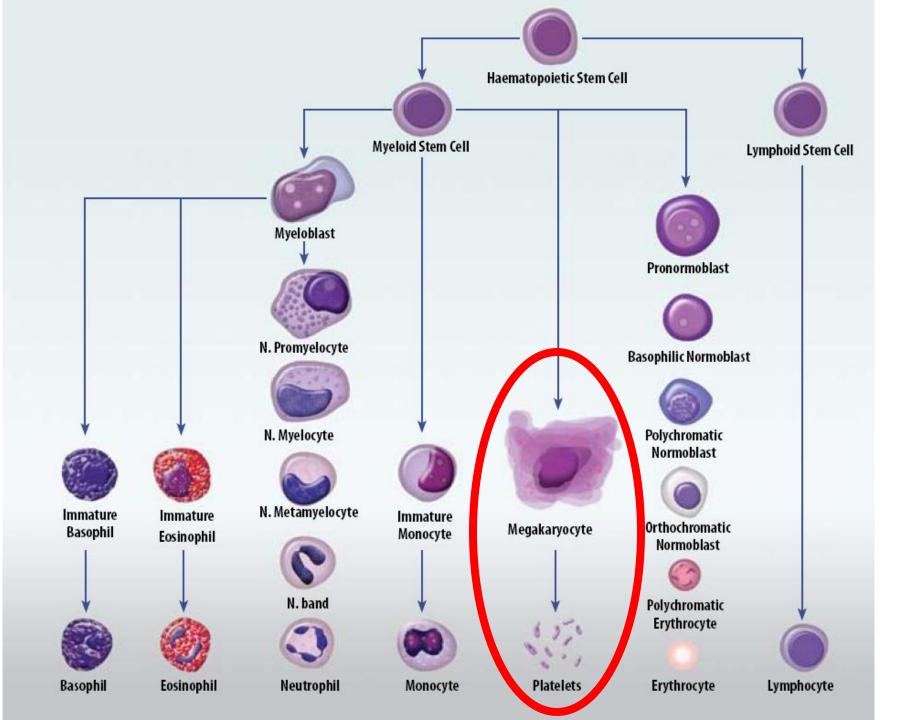
- Overview of Hemostasis.
- Congenital Bleeding Disorders.
- Acquired Bleeding Disorders.
- Platelet Disorders (Number & Function).
- Approach to the bleeding Pt.
- Management of Bleeding Pt.

HEMOSTASIS

The process through which bleeding is controlled at a site of damaged or disrupted endothelium.

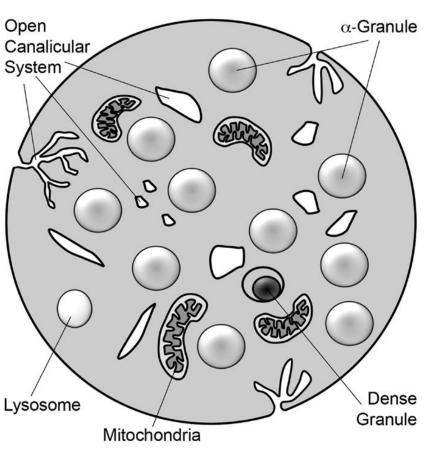
A dynamic interplay between

- Cellular Components: (PLTs & Endothelium)
- Plasma Proteins Components: 3 protein systems
 - 1. Blood Coagulation (Clot Formation)
 - 2. Fibrinolysis (Clot Lysing)
 - 3. Anticoagulant (Regulating)



PLATELETS

- Produced in the Bone Marrow by fragmentation of the cytoplasm of megakaryocytes.
- Each megakaryocytes rise Plt from 1000 to 5000.
- Time interval from differentiation of the human stem cell to the production of Plts (~ 10 days)
- Thrombopoietin >> the major regulator of Plt production via c-MPL receptor (produced by Liver & Kidney)
- Normal PLT counts (150 400 x 10⁹)
- PLT Life Span (7 10 days)



PLTS ULTRASTRUCTURE

Extremely small & discoid (3 x 0.5 µm in diameter)

3 types of storage granules

- α Granules
 - Clotting Factors
 - o VWF
 - o PDGF
 - o ILGF1
- Dense Granules (δ Granules)
 - o ADP & ATP
 - Serotonin
 - Histamine
 - Ionized Ca
- Lysosomes
 - Hydrolytic enzymes

PLTS FUNCTIONS

- I. Adhesion (PLT Vessel Wall) → VWF through GP Ib/IX/V (synthesized in endothelial cells & megakaryocytes / stored in storage granules of endothelial cells & α granules of Plt / Rise with stress, exercise, adrenaline, infusion of DDAVP)
- II. Aggregation (cross linking of PLT PLT) → VWF & Fibrinogen through GP IIb/IIIa receptors
- III. Release Reaction & Amplification (aggregation formation & stabilization) →
 - release of α granules contents, & ADP from dense granules
 - formation of Thromboxane A2 by various agonists induces intracellular signaling.

PLTS INHIBITORS

PLT Function Inhibitors

Prostacyclin (PGI₂);

synthesized by vascular endothelial cells

potent inhibitor of PLT aggregation & causes vasodilation by rising cAMP

prevents Plt deposition on normal vascular endothelium

Nitric Oxide (NO);

released from endothelial cells, macrophages, & Plt
inhibit Plt activation & promotes vasodilatation

CLOTTING FACTORS

Clotting Factors in Blood and Their Synonyms

Clotting Factor Synonyms

Fibrinogen Factor I Prothrombin Factor II

Tissue factor Factor III; tissue thromboplastin

Calcium Factor IV

Factor V Proaccelerin; labile factor; Ac-globulin

(Ac-G)

Factor VII Serum prothrombin conversion

accelerator (SPCA); proconvertin;

stable factor

Factor VIII Antihemophilic factor (AHF):

antihemophilic globulin (AHG);

antihemophilic factor A

Factor IX Plasma thromboplastin component

(PTC); Christmas factor; antihemophilic factor B

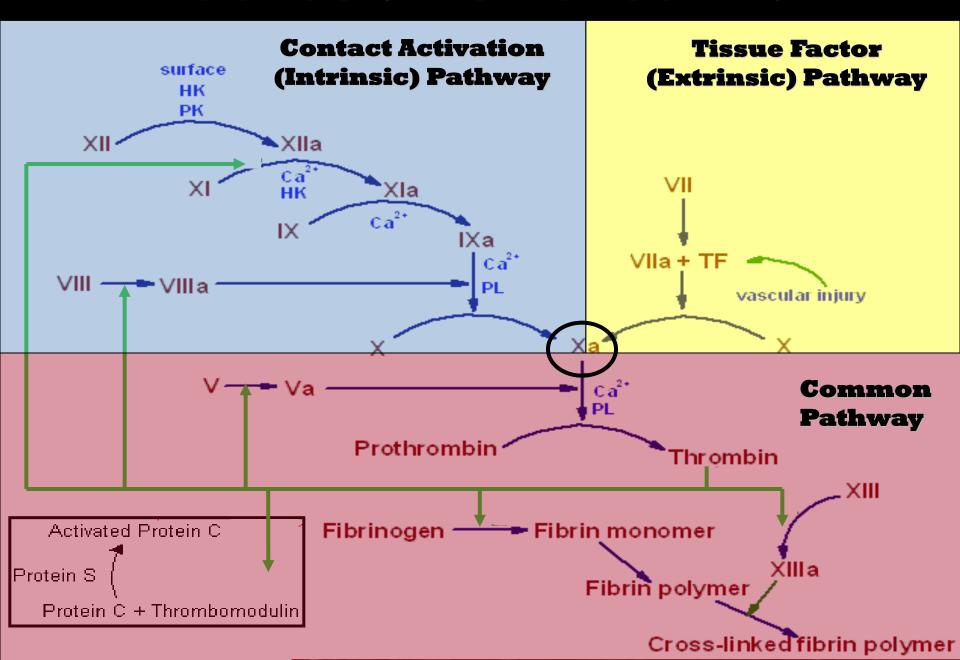
Factor X Stuart factor; Stuart-Prower factor Factor XI Plasma thromboplastin antecedent

(PTA); antihemophilic factor C

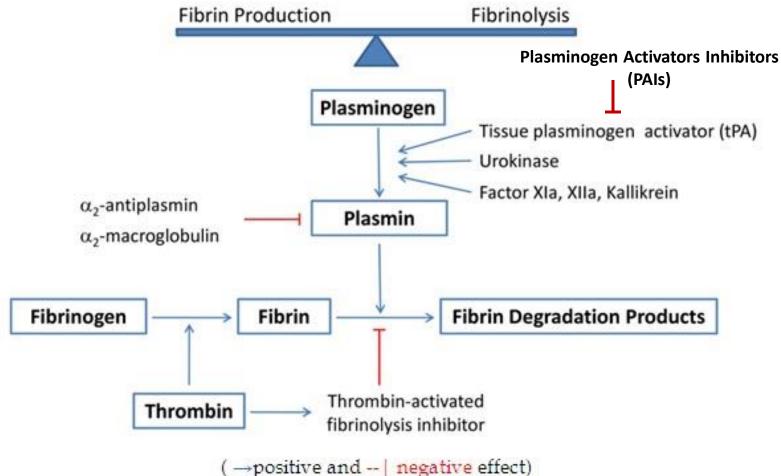
Factor XII Hageman factor

Factor XIII Fibrin-stabilizing factor

Prekallikrein Fletcher factor


High-molecular-weight Fitzgerald factor; HMWK

kininogen (high-molecular-weight) kininogen



COAGULATION CASCADE

FIBRINOLYSIS

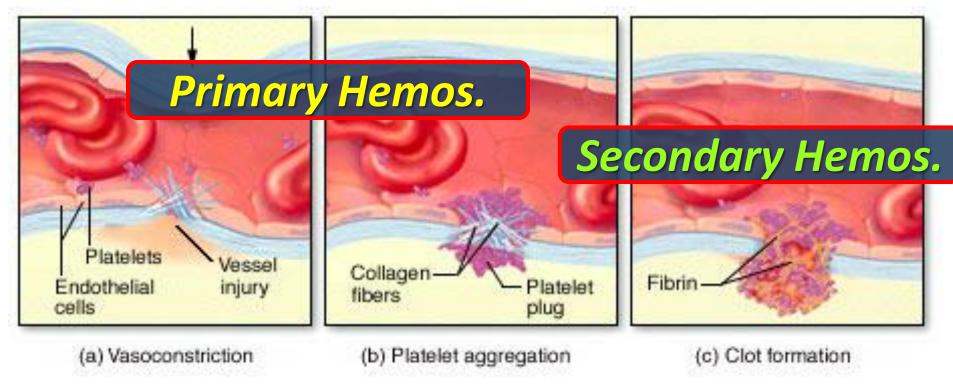
HEMOSTATIC PHASES

Primary Hemostasis: tive agents (Endothelin,

- eptides) Vasoconstriction at the site 1. Endothelium Injury

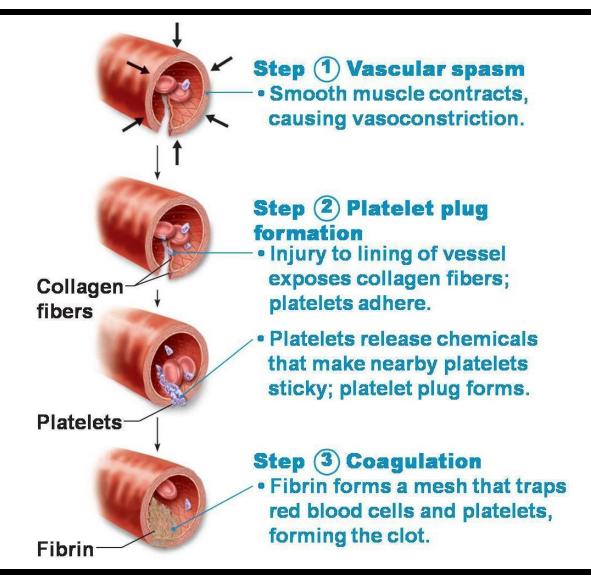
 - 2. Platelet
- 3. Von Willebrand Factorsion & Aggregation (via VWF, ADP.
 - TXA2) formation of *PLT Plug*

Secondary Hemostasis: opagation of the clotting


- 1. Clotting Factors agulation cascade formation of Fibrin Clot
- 2. Soluble Protien Fibrinogen converted to insoluble Fibrin

control mechanisms & removal of the clot

HEMOSTATIC PHASES



https://youtu.be/HFNWGCx_Eu4

HEMOSTATIC PHASES

CONGENITAL BLEEDING DISORDERS

HEMOPHILIA

an inherited bleeding disorder caused by deficiency of coagulation. (the most common inherited bleeding disorders)

- *Hemophilia A* Inherited deficiency of factor VIII (8); an X-linked recessive disorder.
- Hemophilia B Inherited deficiency of factor IX (9); also called Christmas
 Disease; an X-linked recessive disorder.
- ◆ Hemophilia C Inherited deficiency of factor XI (11); also called Rosenthal Syndrome; an autosomal recessive disorder. Rarely, heterozygotes may have bleeding (ie, autosomal dominant transmission, due to heterodimer binding). especially common in Ashkenazi Jews (ie, Jews from Eastern Europe).

HEMOPHILIA

characterized based on the residual or baseline factor activity level (also referred to as "factor level"); expressed as a % of normal or in IU/mL.

Factor levels typically correlate with the degree of bleeding Symptoms.

- Severe Hemophilia defined as <1 % factor activity (<0.01 IU/mL).
- Moderate Hemophilia defined as a factor activity level ≥1 % of normal and <5 % of normal (≥0.01 <0.05 IU/mL).
- Mild Hemophilia defined as a factor activity level ≥5 % of normal and <40
 % of normal (≥0.05 <0.40 IU/mL).

HEMOPHILIA

Congenital >> genetic mutation in F8 & F9 located on the long arm of X chromosome.

- Observed commonly in males due to their hemizygous state
- Rarely in females due to (Heterozygous females as result from nonrandom X chromosome inactivation, skewed Lyonization, or the presence of other genetic abnormalities (Turner Syndrome or X autosomal translocations).

Acquired >> development of autoantibodies most commonly directed against FVIII – ass. with pregnancy, malignancy, advanced age.

VON WILLEBRAND DISEASE

The most common bleeding disorder.

Classification of von Willebrand disease

Туре	Inheritance	VWF activity	RIPA	Multimer pattern
Type 1 (partial quantitative deficiency)	Autosomal dominant	Decreased	Decreased	Uniform decrease; all multimers present
Type 2 (qualitative variant)				
Type 2A	Autosomal dominant or recessive	Decreased	Decreased	Decreased large multimers
Type 2B	Autosomal dominant	Decreased	Increased	Decreased large multimers
Type 2M	Autosomal dominant or recessive	Decreased	Decreased	Uniform decrease; all multimers present
Type 2N	Autosomal recessive	Normal	Normal	Normal
Type 3 (severe)	Autosomal recessive	Markedly decreased or absent	Markedly decreased or absent	Undetectable; usually cannot visualize

VON WILLEBRAND DISEASE

Congenital >> autosomal dominant (most types), recessive (rarely)

Acquired >> rare, caused by autoantibodies against vWF & immune complex formation, vWF binding to cancer cells, Congenital Heart Disease, Aortic Stenosis, Angiodysplasia. Rx (of the underlying disorder)

Dx >> normal aPTT in (Type 1 & 2), prolonged aPTT in (Type 2N, 2B, & 3), vWF:Ag, vWF:RCo, vWF multimers (to differentiate subtypes), FVIII assay (low in 2N & 3), Plt (low in 2M)

Rx >> Replacement of exogenous vWF concentrate, Desmopressin (DDAVP; intranasal), Antifibrinolytic agents (Tranexamic Acid, Aminocaproic Acid), Conjugated Estrogens & oral contraceptive Agents (for menorrhagia)

PLATELETS DISORDERS

Quinine-containing beverages (tonic water, Schweppes bitter lemon)

PLT DISORDERS (QUANTITATIVE)

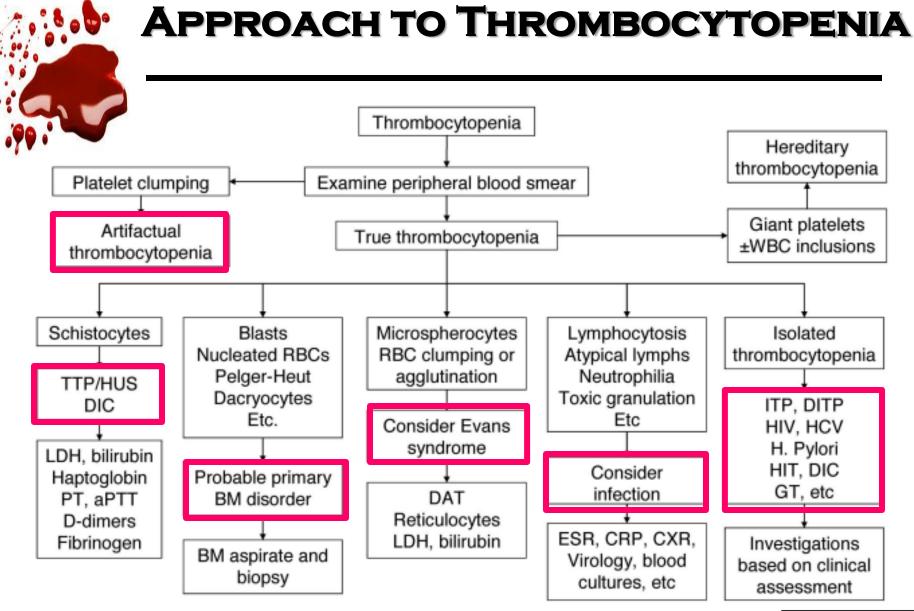
CAUSES OF THROMBOCYTOPENIA

Falsely low platelet counts (ie, pseudothrombocytopenia) In vitro platelet clumping caused by EDTA-dependent agglutinins In vitro platelet clumping caused by an insufficiently anticoagulated specimen In vitro platelet clumptin caused by glycoprotein IIb/IIIa inhbitors (eg, abciximab) (NOTE: these can also cause true thrombocytopenia) Giant platelets counted by automated counter as white blood cells rather than platelets Common causes of thrombocytopenia Drug-induced thrombocytopenia Heparin (NOTE: special case, also can cause thrombosis) Quinine (as in over-the-counter preparations for leg cramps; also in beverages) Sulfonamides (eg, trimethoprim-sulfamethoxazole [Bactrim; Septra]) Acetaminophen (Tylenol, Panadol) Cimetidine (Tagamet) Ibuprofen (Advil, Motrin) Naproxen (Aleve, Midol) Ampicillin (Omnipen, Apo-Ampi) Piperacillin (Pipracil, Zosyn) Vancomycin (Vancocin) Glycoprotein IIb/IIIa inhibitors (abciximab [ReoPro], tirofiban [Aggrastat], eptifibatide [Integrilin]) Food and beverages

PLT DISORDERS (QUANTITATIVE)

CAUSES OF THROMBOCYTOPENIA

Infections
HIV
Hepatitis C
Epstein-Barr virus (EBV; can be associated with infectious mononucleosis)
H. pylori (suspected in patients with symptoms of dyspepsia or peptic ulcer disease)
Sepsis with disseminated intravascular coagulation (DIC)
Intracellular parasites (eg, malaria, babesia)
Hypersplenism due to chronic liver disease
Alcohol
Nutrient deficiencies (eg, vitamin B12, folate, copper)
Rheumatologic/autoimmune disorders (eg, systemic lupus erythematosis, rheumatoid arthritis)
Pregnancy
Gestational thrombocytopenia
Preeclampsia
HELLP syndrome (hemolysis, elevated liver function tests, low platelets)



PLT DISORDERS (QUANTITATIVE)

CAUSES OF THROMBOCYTOPENIA

Other causes of thrombocytopenia Myelodysplasia Suspected in older patients, in whom a bone marrow biopsy may be appropriate Cancer with disseminated intravascular coagulation Cancer with bone marrow infiltration or suppression (eg, lymphoma, leukemia, some solid tumors) Paroxysmal nocturnal hemoglobinuria (PNH) Thrombotic thrombocytopenic purpura (TTP) or hemolytic uremic syndrome (HUS) TTP is a syndrome that can include thrombocytopenia, microangiopathic hemolytic anemia, fever, renal failure, and neurologic symptoms. However, patients with TTP commonly present with thrombocytopenia and anemia alone. HUS is typically a disorder of young children following infection with a Shiga-toxin producing E. coli. Antiphospholipid syndrome (APS) Aplastic anemia Congenital thrombocytopenias An important consideration, especially in young patients who do not respond to treatment. Some specific syndromes are listed. However, many patients appear to have autosomal dominant thrombocytopenia with no other clinical features. Von Willebrand disease type 2B Wiskott-Aldrich syndrome Alport syndrome May-Hegglin anomaly Fanconi syndrome Bernard-Soulier syndrome Thrombocytopenia absent radius syndrome

IMMUNE THROMBOCYTOPENIC PURPURA (ITP)

Primary: isolated thrombocytopenia due to immune Plt destruction & ¶ production (auto AB to megakaryocytes)

Secondary: a/w disease/drug exposure Viral (HIV, HCV, HBV, EBV, CMV, Parvovirus), SLE, APLS, H. Pylori Infection, Chronic Lymphocytic Leukemia (CLL), Hodgkin Lymphoma, AIHA

Dx >> Dx of exclusion, no robust clinical or Lab parameters, Typically CBC (Isolated ¶ PLT < 100.000), 10% have ITP + AIHA (Evans Syndrome), PBS (Large Plts), Anti-Plt AB (not useful)

Clinically >> insidious onset of mucocutaneous bleed, M:F (3:1)

Rx >> rarely indicated if PLT > 50.000 unless bleeding, trauma/surgery, anticoag, comorbidities
Steroids, IVIG, Splenectomy, TPO agonists (Romiplostim, Eltrombopag)

IMMUNE THROMBOCYTOPENIC PURPURA (ITP) TREATMENT

Approach	Treatment	Notes	
First-line	Steroids: prednisone 0.5–2 mg/kg/d PO tapered ~4 wk vs. dexamethasone 40 mg PO × 4 d	↓ Mφ FcR & ↓ anti-plt Ab 70–90% initial response ~20% sustained remission	
	Anti-Rh(D) Ig 75 μg/kg/d IV	For Rh(D) ⊕ Pts w/ spleen Ab-coated RBCs overwhelm M For Rh(D) ⊕ Pts w/ spleen	
	IVIg (1 g/kg/d IV \times 2–3 d) consider if need rapid \uparrow in plt	Blocks Mφ FcR, ↓ anti-plt Ab Up to 80% initial response	
Second-line	Splenectomy (? for ITP >6 mo)	~65% long-term remission	
	Rituximab (anti-CD20) ± dex	anti-B-cell Ab	
	Romiplostim or eltrombopag	TPO-R agonists → ↑ plt prod	
	Azathioprine, cyclophosphamide	Immunosuppressants	
	Danazol, vincristine	↓ plt clearance	
(wofod)	Aminocaproic acid	Inhibits plasmin activation	
Bleeding	Methylprednisolone 1g/d IV × 3 d	See above	
	IVIg	See above	
	Platelet transfusion	Given w/ IVIg or anti-Rh(D)	
Refractory	Romiplostim or eltrombopag	See above	
riciractory	Autologous HSCT	Limited data, investigational	

DISSEMINATED INTRAVASCULAR COAGULATION (DIC)

Etiology: Trauma, shock, infection, malignancy (esp APML), Obstetric complications.

Pathogenesis:

massive activation of coagulation that overwhelms control mechanisms

thrombosis

Acute consumption of coagulation factors & Plts • bleeding

Dx >> ♠ PT, ♠ aPTT, ♠ Fibrinogen (may be N b/c acute phase), +ve D-Dimer/FDP, ♠ PLT, +ve Schistocytes, ♠ LDH, ♠ Haptoglobin

Rx >> treat underlying process, FFP, Cryoprecipitate (Goal Fibrinogen > 100 mg/dL), PLT Tx

PLT DISORDERS (QUALITATIVE)

ACQUIRED PLT FUNCTIONAL DISORDERS

- 1. Liver Disease
- 2. Cardiopulmonary Bypass
- 3. Uremia
- 4. Dysproteinemia (Multiple Myeloma or Waldenstrom Macroglobulinemia)
- 5. Myeloproliferative Disorders (MPDs)
- 6. Diabetes Mellitus
- 7. Acquired Glanzmann Tthrombasthenia

PLT DISORDERS (QUALITATIVE)

INHERITED DISORDERS OF PLT FUNCTION

- 1. Giant platelet disorders includes Plt GP abnormalities (eg, Bernard-Soulier Syndrome, Deficiency of Platelet Alpha granules (eg, Gray Platelet Syndrome), Deficiency May-Hegglin Anomaly (which also involves the presence of abnormal neutrophil inclusions (ie, Döhle-like bodies)), & some kindreds with type 2B vWD (Montreal Plt Syndrome)
- 2. Wiskott-Aldrich syndrome
- Storage Pool Disorders such as Hermansky Pudlak Syndrome (HPS)
 (Deficiency of Dense Granules)
- 4. Glanzmann thrombasthenia
- 5. Platelet release disorders
- 6. Glycoprotein VI defects
- 7. Sticky platelet syndrome
- 8. Congenital Deficiency of the ADP receptor P2Y₁₂
- 9. Scott syndrome

- I. Detailed Pt & Family Medical History (Crucial & Vital regardless of the prior Lab testing)
 - >> establish likelihood of a bleeding disorder
 - >> guide laboratory Testing
 - Early in the newborn period (circumcision)
 - After hemostatic Challenges (delivery, injury, trauma, surgery, invasive dental procedure, menstruation)
 - Frequency & pattern
 - Duration
 - Sx onset (congenital vs. acquired)
 - time required for cessation

- I. Detailed Pt & Family Medical History (Crucial & Vital regardless of the prior Lab testing)
 - Sites of bleeding (specific or multiple)

Primary Hemostasis

• Easy buising
• Epistaxis
• (PLT or yW Factor)
• Wienormagia

Secondary Hemostasis

Deep Tissue Bleeding

Joints Defects

(Clotting Factors

Cer Deficiencies)

Secondary Hemostasis

Joints Defects

- I. Detailed Pt & Family Medical History (Crucial & Vital regardless of the prior Lab testing)
 - Current use of medications or herbal supplements
 - Use of Bleeding Assessment Tools (differentia bleeding phenotypes, require validation by prospective studies)

DRUGS USED FOR CLOTTING DISORDERS

Anticoagulants

Direct Thrombin Inhibitors

Indirect Thrombin Inhibitors

Vitamin K epoxide reductase Inhibitor

Direct Xa Inhibitors

Generic Name	Trade Name	Half Life
Dabigatran	Pradaxa	12 – 28 hr
Argatroban	Acova	39 – 51 min
Lepirudin	Refludan	1.3 hr
Bivalirudin	Angiomax	25 – 57 min

Unfractionated Heparin (UFH)	••••••	
LMWH - Enoxaparin	Clexan	4.5 – 7 hr
LMWH - Tinzaparin	Innohep	3 – 4 hr
LMWH - Deltaparin		
Fondaparinux	Arixtra	17 – 21 hr
Warfarin	Coumadin	7 – 11 hr
Rivaroxaban	Xarelto	5 – 13 hr

Eliquis

Savaysa

5 - 13 hr

10 - 14 hr

Apixaban

Endoxaban

DRUGS USED FOR CLOTTING DISORDERS

Antiplatelets

Prostaglandin/COX Inhibitors

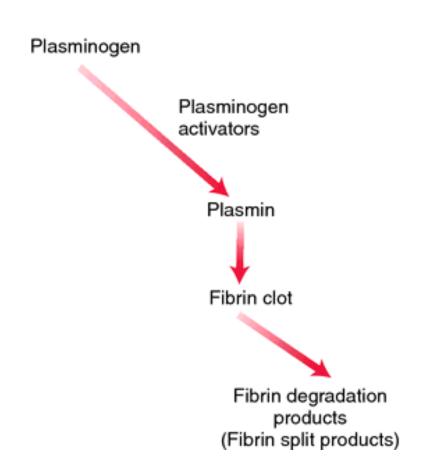
Glycoprotein IIb/IIIa Inhibitors

P2Y₁₂ ADP Inhibitors

Generic Name	Trade Name	Half Life
Aspirin		24 – 72 hr

Abciximab	Reopro	72 hr
Eptifibatide	Integrilin	4 hr
Tirofiban	Aggrastat	4 hr

Clopidogrel	Plavix	6 hr
Cangrelor	Kengreal	3 – 6 min
Prasugrel	Effient	7 – 15 hr
Ticlopidine	Ticlid	13 hr
Ticagrelor	Brilinta	7- 9 hr



DRUGS USED FOR CLOTTING DISORDERS

Thrombolytics

Plasminogen Activators

Tissue Plasminogen Activators	Alteplase	
(t-PA)	Reteplase	
	Teneteplase	
Streptokinase (SK)		
Urikinase (UK)		

SCREENING TESTS

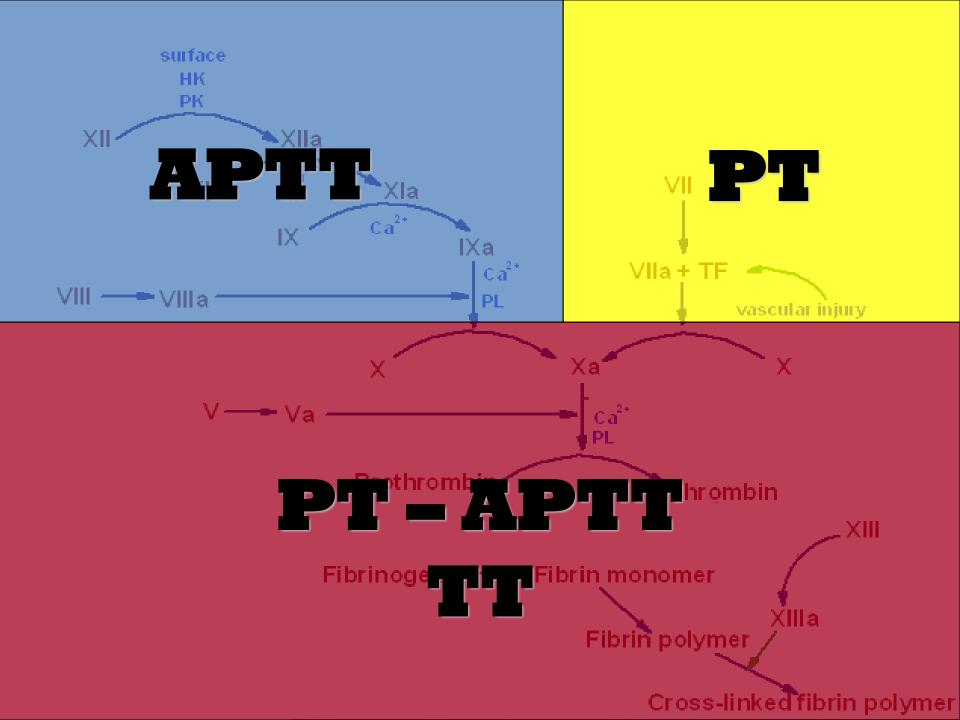
- I. CBC (Platelet count)
- II. Prothrombin Time (PT) >> measures F VII, X, V, II, I - (N Time 10-14 secs)
- III. International Nmalized Ratio (INR) >> the ratio of a pt's PT to a normal (control) sample, raised to the power of the ISI value for the control sample used. $INR = \left(\frac{PT_{test}}{PT_{normal}}\right)^{ISI}$
- IV. Activated Partial Thromboplastin Time (aPTT or PTT) >> measures F XII, XI, IX, VIII, X, V, II, I (N Time 30 40 secs)
- V. Thrombin (Clotting) Time (TT) >> sensitive to deficiency of Fibrinogen or inhibition of thrombin (N Time 14 16 secs)
- VI. Bleeding Time >> (3-8 secs) (not sensitive not specific)
- Screening tests (not sensitive to all abnormalities ass. w a bleeding disorder)

CAUSES OF PROLONGED COAGULATION PROFILE

Test result		Causes of test result pattern		
PT	aPTT	Causes of test result pattern		
Prolonged	Normal	Inherited		
		Factor VII deficiency		
		Acquired		
		Mild vitamin K deficiency		
		Liver disease		
		Warfarin administration		
		Acquired inhibitor of factor VII		
		Lupus anticoagulant (more commonly causes isolated prolonged aPTT; may be associated with thrombosis rather than bleeding)		

CAUSES OF PROLONGED COAGULATION PROFILE

Test result		Causes of test result pattern
PT	aPTT	Causes of test result pattern
Normal	Prolonged	Inherited
		Deficiency of factors VIII, IX, or XI
		Deficiency of factor XII, prekallikrein, or HMW kininogen (not associated with a bleeding diathesis)
		von Willebrand disease (variable)
		Acquired
		Heparin administration
		Direct thrombin inhibitor administration (eg, argatroban, dabigatran)
		Inhibitor of factors VIII, IX, XI, or XII
		Acquired von Willebrand disease
		Lupus anticoagulant (may be associated with thrombosis rather than bleeding)



CAUSES OF PROLONGED COAGULATION PROFILE

Test result		Causes of test result pattern		
PT	aPTT	Causes of test result pattern		
Prolonged	Prolonged	Inherited		
		Deficiency of prothrombin, fibrinogen, or factors V or X		
		Combined factor deficiencies		
		Acquired		
	Liver disease			
		Disseminated intravascular coagulation		
Supratherapeutic doses of anticoagulants		Supratherapeutic doses of anticoagulants		
		Severe vitamin K deficiency		
		Combined heparin and warfarin administration		
		Direct factor Xa inhibitor administration (eg, rivaroxaban, apixaban, edoxaban)		
		Fondaparinux administration (slight prolongation)		
		Inhibitor of prothrombin, fibrinogen, or factors V or X		
		Primary amyloidosis-associated factor X deficiency		
		Anticoagulant rodenticide poisoning		

SPECIALIZED TESTS

Mixing Study (one to one mix of Pt's plasma & known normal standard plasma, only if PT of aPTT prolonged)

- Corrected clotting factor deficiency (risk of bleed)
- ➤ Not corrected inhibitors (directed against specific factor or global inhibitors "Lupus Inhibitor, risk of thrombosis ")

SPECIALIZED TESTS

- I. PLT Function Assay (PFA 100): assess PLT function Specificity 90 % for severe PLT dysfunction of vWD (vWF plasma levels < 25%) Sensitivity 24 − 41 % (low) in mild PLT secretion defect or Storage Pool Disease (not screening tool)
- II. PLT Aggregation Tests: (5 external aggregating factors; ADP, Collagen, Ristocetin, Arachidonic Acid, Adrenaline)
- III. Von Willebrand Factor (Antigen & Activity)
- IV. Factor XIII assay (F XIII Deficiency >> normal PT & PTT)
- V. Human Plasminogen Activator Inhibitor (PAI-1)
- VI. Alpha 2 AntiPlasmin Inhibitor (α 2 AP)

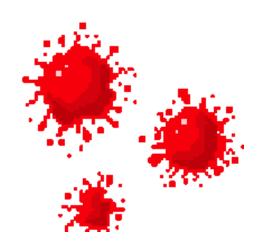
TAKE HOME MESSAGE

Although screening tests are used widely to identify hemostatic abnormalities associated with bleeding, they are NOT perfect

r F

The Clinical suspicion for a bleeding disorder is Critical to determine extent of the laboratory investigations

RECOMMENDED BOOKS


- Essential Hematology (A. V. Hoffbrand, P. A. H. Moss)
- Uptodate
- Oxford Handbook of clinical hematology.

THANK YOU

Dr. Gamal

MANAGEMENT IN THE PERIOPERATIVE STAGE

MANAGEMENT OF BLEEDING PT

- 1. Therapeutic decisions should not be based solely on laboratory testing, since abnormalities in Plt function as measured by the tests mentioned are not necessarily predictive of the presence or absence of clinical bleeding.
- 2. Since medications such as ASA are the most common causes of Plt dysfunction, a careful history of medication use, including use of over-the-counter aspirin-containing preparations, is crucial >> the most prudent decision prior to an operation or other invasive procedure may simply be to withhold any medication in question prior to the procedure.
- 3. If a pt has a Hx of clinically significant bleeding suggestive of Plt dysfunction, whether provoked or spontaneous, **appropriate Plt function tests should be obtained** so that risk for bleeding can be adequately assessed and therapy chosen more rational.

MANAGEMENT OF BLEEDING PT

- **1. Desmopressin (dDAVP)** is commonly used to correct the hemostatic defect in VWD (releases endogenous VWF from the endothelium) effective in preventing bleeding after dental extraction and minor surgery in pts with milder Plt defects, including storage pool disease, acquired platelet dysfunction, cirrhosis or uremia, & cardiopulmonary bypass. significantly reduced mean operative and early postoperative blood loss. Plasma levels of vWF were higher after desmopressin than placebo.
- **2. Platelet transfusion >>** may be required in pts with disordered Plt function indicated in cases of severe, uncontrolled bleeding, when prior treatments (eg, dDAVP, estrogen) have been unsuccessful, and/or in the presence of, or anticipation of, excessive traumatic or surgical bleeding.
- **3. Antifibrinolytic Agents (Tranexamic Acid, epsilon Aminocaproic Acid) >>** may be helpful in reducing bleeding in pts with disordered plt function following dental extraction.

MANAGEMENT OF BLEEDING PT

- **4. Conjugated Estrogens >>** used most commonly for uremic bleeding or in pts with mild to moderate type 1 vWD. Intravenous estrogen 0.6 mg/kg per day for 4-5 days, oral estrogen 50 mg/kg per day, or transdermal estradiol 50 to 100 mcg/24 hours applied as a patch twice weekly have been shown to be effective, particularly for GI bleeding.
- 5. Erythropoietin >> used successfully in uremic pts to both reduce and prevent bleeding
- **6. Recombinant Factor VIIa (rFVIIa) >>** some success for Rx of bleeding in pts with congenital Plt disorders.

Potential mechanisms >> a local procoagulant effect at sites of vascular damage or tissue factor-independent thrombin generation induced by binding of rFVIIa to the surface of activated Plts.

Pts who cannot receive platelet transfusions because of alloimmunization or antibody formation to the absent platelet glycoprotein (eg, Glanzmann Thrombasthenia and Bernard-Soulier Syndrome) may benefit from rFVIIa.

one or more bolus infusions of approximately 90 to 100 mcg/kg.

approved in Europe for use in pts with Glanzmann thrombasthenia refractory to Plt Tx. Benefits of rFVIIa must be balanced against the risk of thrombosis.

PREOPERATIVE MANAGEMENT OF AGENTS AFFECTING HEMOSTASIS

Warfarin >>

- typically discontinue 5 days before elective surgery (ie, last dose of warfarin is given on day minus 6).
- check the PT/INR on the day before surgery & If INR is >1.5 >> ?? administer low dose oral vitamin K (1 2 mg) to hasten normalization of the PT/INR and recheck the following day.
- proceed with surgery when the INR is ≤ 1.4 (An INR in the normal range is especially important in pts undergoing surgery ass with a high bleeding risk (eg, intracranial, spinal, urologic) or if neuraxial anesthesia is to be used).
- Heparin / LMWH Bridging considered >> Pts with very high or high thromboembolic risk.

PREOPERATIVE HEPARIN BRIDGING

generally initiate heparin bridging 3 days before a planned procedure (2 days after stopping warfarin), when the PT/INR has started to drop below therapeutic range.

PRE OP //

• LMWH >> discontinue 24 hours before the planned surgery or procedure, based on a biologic half-life of most subcutaneous LMWH of ~ 3-5 hours.

If a twice-daily LMWH regimen is given >> evening dose the night before surgery omitted. if a once-daily regimen is given (Dalteparin 200 IUs/kg), ½ of the total daily dose is given on the morning of the day before surgery >> ensures that no significant residual anticoagulant will be present at the time of surgery.

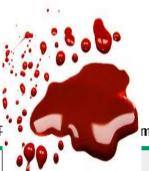
• **UFH** >> Therapeutic dose IV infusion continue until 4-5 hours before the procedure, based on the biologic half-life of IV UFH of ~ 45 minutes.

If SC UFH is used (dose of \sim 250 IUs/kg BID), the last dose can be given the evening before the procedure.

PREOPERATIVE HEPARIN BRIDGING

Post OP

Resumption of UFH & LMWH is similar, based on the onset of anticoagulation at ~ 1 hour after administration for both forms of heparin (peak anticoagulant activity at $\sim 3-5$ hours)


- The resumption of bridging, especially when given as a therapeutic-dose regimen >> should be delayed until there is adequate hemostasis based on a clinical assessment of the wound site, drainage fluid amount, and expected postoperative bleeding; coupled, where appropriate, with hemoglobin levels >> This assessment will vary depending on the surgery type and individual pt considerations, and it may be difficult for surgery where ongoing bleeding is not readily apparent (eg, cardiac, intracranial).
- For Major Surgery or those with a high bleeding risk procedure >> therapeutic-dose UFH or LMWH should be delayed for 48 to 72 hours after hemostasis has been secured.
- For Minor Procedures associated with a low bleeding risk in which bridging is used (eg, laparoscopic hernia repair) >> therapeutic-dose UFH or LMWH can usually be resumed 24 hours after the procedure.

PREOPERATIVE MANAGEMENT OF AGENTS AFFECTING HEMOSTASIS

:lass of drug	Clinical considerations	Recommended strategy for surgery with brief NPO state	Recommended strategy for surgery with prolonged NPO state
Aspirin	Continuation may cause perioperative hemorrhage. Discontinuation may increase the risk of vascular complications. Discussion with cardiologist appropriate for patients with cardiovascular indications.	Discontinue aspirin approximately 7 days prior to noncardiovascular surgery.	Resume with oral intake.
P2Y12 receptor blockers (clopidogrel, prasugrel, ticlopidine, ticagrelor)	When used after cardiac stenting procedure, if discontinued can cause cardiac ischemia perioperatively. If continued can result in bleeding complications. Should discuss management with cardiologist.	Ideally, elective procedures should be delayed until the mandatory period of platelet inhibition with these agents is completed. When used for long-term stroke prophylaxis, should be discontinued 7 to 10 days. If discontinuing, stop clopidogrel and ticagrelor at least 5 days, prasugrel 7 days, and ticlopidine 10 days before surgery. When restarting clopidogrel, consider using a loading dose.	Resume with oral intake.

PERIOPERATIVE MANAGEMENT OF AGENTS AFFECTING HEMOSTASIS

ment of oral direct thrombin inhibitors and factor Xa inhibitors

Anticoagulant	Renal function and dose	Interval between last dose and procedure NOTE: No anticoagulant is administered the day of the procedure		Resumption after procedure	
		High bleeding risk	Low bleeding risk	High bleeding risk	Low bleeding risk
Dabigatran	CrCl >50 mL/minute Dose 150 mg twice daily	Give last dose three days before procedure (ie, skip four doses on the two days before the procedure)	Give last dose two days before procedure (ie, skip two doses on the day before the procedure)		Resume 24 hours after surgery (ie, postoperative day 1)
	CrCl 30 to 50 mL/minute Dose 150 mg twice daily	Give last dose five days before procedure (ie, skip eight doses on the four days before the procedure)	Give last dose three days before procedure (ie, skip four doses on the two days before the procedure)		
Rivaroxaban	CrCl >50 mL/minute Dose 20 mg once daily	Give last dose three days before procedure (ie, skip two doses on the two days before the procedure)	Give last dose two days before procedure (ie, skip one dose on the day before the procedure)	Resume 48 to 72 hours after surgery (ie, postoperative day 2 to 3)	
	CrCl 30 to 50 mL/minute Dose 15 mg once daily				
Apixaban	CrCl >50 mL/minute Dose 5 mg twice daily	Give last dose three days before procedure (ie, skip four doses on the two days before the procedure)	Give last dose two days before procedure (Ie, skip two doses on		
	CrCl 30 to 50 mL/minute Dose 2.5 mg twice daily		the day before the procedure)		
Edoxaban	CrCl 50 to 95 mL/minute Dose 60 mg once daily	Give the last dose three days before the procedure (ie, skip two doses on the two days before the procedure)	Give the last dose two days before the procedure (ie, skip		
	CrCl 15 to 50 mL/min Dose 30 mg once daily		one dose on the day before the procedure)		

COAGULATION FACTOR LEVELS REQUIRED FOR HEMOSTASIS

Factor	Plasma half-life	Hemostatic level*
Fibrinogen	2 to 4 days	50 to 100 mg/dL
Prothrombin (factor II)	3 to 4 days	20 to 30 percent
Factor V	36 hours	15 to 20 percent
Factor VII	4 to 6 hours	15 to 20 percent
Factor X	40 to 60 hours	15 to 20 percent
Factor XI	40 to 70 hours	15 to 20 percent
Factor XIII	11 to 14 days	2 to 5 percent
Factor V + factor VIII combined deficiency	36 hours for factor V and 10 to 14 hours for factor VIII	15 to 20¶ percent
Multiple vitamin K-dependent factor deficiencies (factors II, VII, IX, X)	Refer to individual factor half-lives above	15 to 20 ¶ percent

INHIBITORS

1. Antithrombin

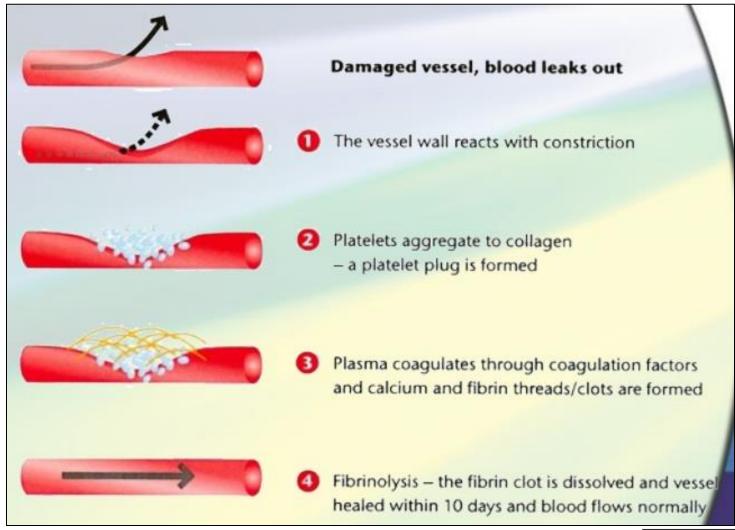
A serin protease inhibitor (serpin) that degrades the serine proteases; (thrombin, IXa, Xa, XIa, XIIa).

Constantly active, but its adhesion to these factors is increased by the administration of heparin.

Quantitative or qualitative deficiency of antithrombin (in born or acquired) leads to Thrombophilia.

2. Protein C & Protein S

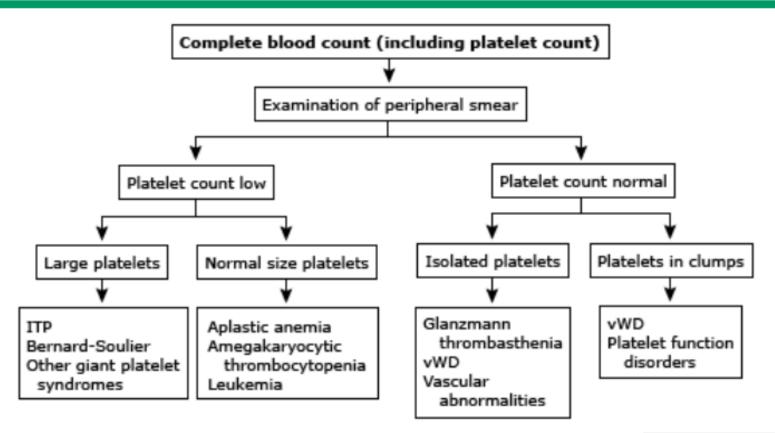
Activated to PCa by thrombin bound to thrombomodulin (protein on the surface of endothelial cells); then degrades (VIIIa & Va), reducing further thrombin generation.


PS acts as cofactor of PC by enhancing binding of PCa to phospholipid surface; both contain gal residues.

3. Tissue Factor Pathway Inhibitor (TFPI)

Inhibits VIIa-related activation of IX & X after its original initiation.

HEMOSTATIC PHASES



DIAGNOSTIC APPROACH TO PLT DISORDERS

Diagnostic approach to a patient with mucocutaneous bleeding (purpuric disorders)

THROMBOTIC THROMBOCYTOPENIC PURPURA / HEMOLYTIC UREMIC SYNDROME (TTP/HUS)

Primary: isolated thrombocytopenia due to immune Plt destruction & ¶ production (auto AB to megakaryocytes)

Secondary: a/w disease/drug exposure Viral (HIV, HCV, HBV, EBV, CMV, Parvovirus), SLE, APLS, H. Pylori Infection, Chronic Lymphocytic Leukemia (CLL), Hodgkin Lymphoma, AIHA

Dx >> Dx of exclusion, no robust clinical or Lab parameters, Typically CBC (Isolated ¶ PLT < 100.000), 10% have ITP + AIHA (Evans Syndrome), PBS (Large Plts), Anti-Plt AB (not useful)

Clinically >> insidious onset of mucocutaneous bleed, M:F (3:1)

Rx >> rarely indicated if PLT > 50.000 unless bleeding, trauma/surgery, anticoag, comorbidities
Steroids, IVIG, Splenectomy, TPO agonists (Romiplostim, Eltrombopag)

