# Clinical Data

Amr Jamal, MD, SBFM, ABFM, MRCGP, GCMI, MBI
Assistant Professor and Consultant
Family Physician and Clinical Informatician
Head of Medical Informatics & e-Learning Unit (MIELU)
King Saud University, College of Medicine

#### Nasriah Zakaria

Assistant Professor Medical Informatics & e-Learning Unit (MIELU) King Saud University, College of Medicine



## What are clinical data? [1]

- A datum is a single observation of a patient
- Clinical data are a collection of observations about a patient
- Each datum has five elements:
  - the patient (Amr Jamal)
  - the attribute (heart rate)
  - the value of the attribute (52 beats per minute)
  - the time of the observation (1:00 pm on 1/1/2015)
  - the method by which the attribute was obtained (heart monitor)



## Types of clinical data [1]

- \* Narrative: recording by clinician- maternity history
- \* Numerical measurements: blood pressure, temperature
- Coded data: selection from a controlled terminology system example being the term MI that may mean myocardial infarction or mitral insufficiency
- \* Textual data: other results reported as text
- \* Recorded signals: EKG, EEG
- Pictures: radiographs, photographs, and other images



## Use of clinical data [1]

- Form basis of historical record
- Support communication among providers
- Anticipate future health problems
- Record standard preventive measures
- Identify deviations from expected trends example being a growth chart
- Coding and billing
- Provide a legal record
- Support clinical research



### Types of clinical data documents [1]

- History and physical examination:
  - by a clinician
- Progress notes
  - update of progress by primary, consulting, and ancillary providers
- Reports
  - by specialists, ancillary providers
- Typical paper chart maintains all patient notes in chronological order, sometimes separated into different components



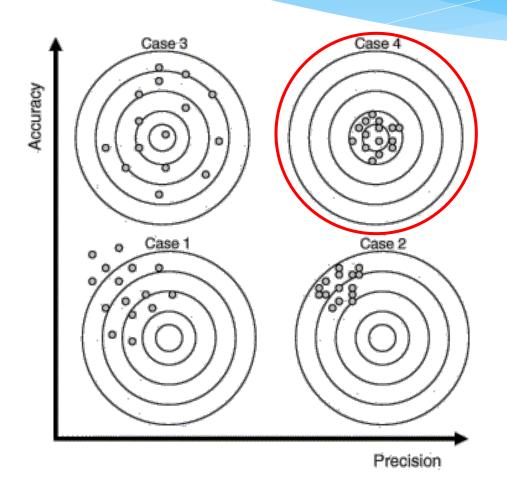
### Assessment of a stable patient [1]

- Chief complaint
- History of the present illness
- Past medical history
- Social history
- Family history
- Review of systems
- Physical examination
- Investigations –lab, x-ray, other
- Assessment plan



## Some complications of data [1]

- Circumstances of observation
  - e.g., how was heart rate taken? pulse? EKG?
- Uncertainty
  - how accurate is patient reporting, measurement, device?
- **Time** 
  - what level of specificity do we need?




## Some complications of data[2]

- Duplication
  - e.g., multiple records in different departments
- Outdated
  e.g. missing values
- Incorrectly formatted does not follow standards



# Imprecision vs. Inaccuracy [5]





## Structure of clinical data [1]

- Medicine lacks uniform structured vocabulary and nomenclature as does Physics and Chemistry
- Standardization and computerization of data is benefited by standard representations (Cimino, 2007)
- Counter-arguments are "freedom of expression" and "art of medicine"
- Narrative information when expressed in many ways can be ambiguous



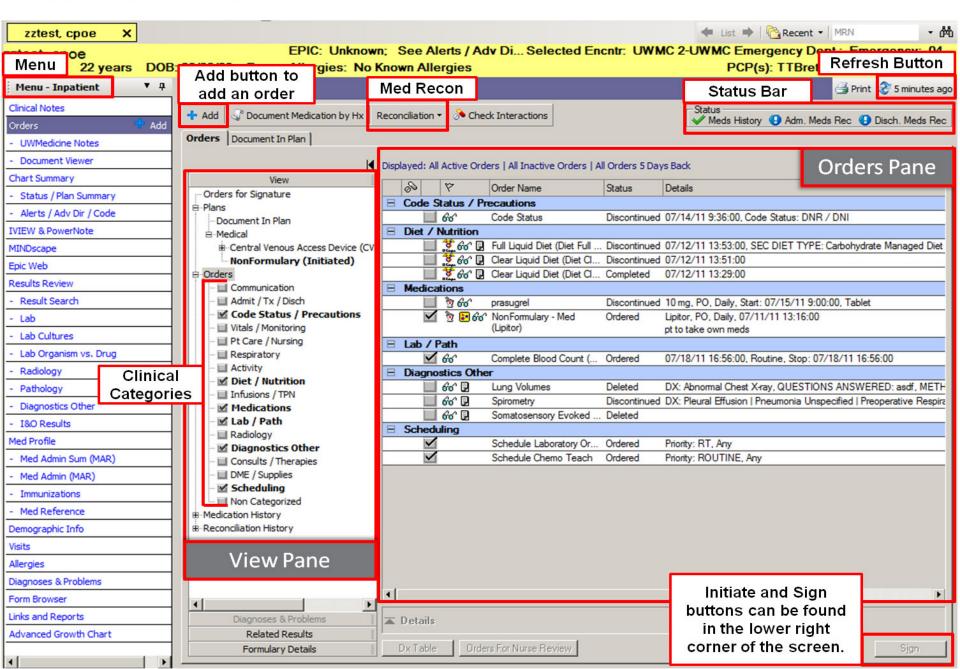
Date:

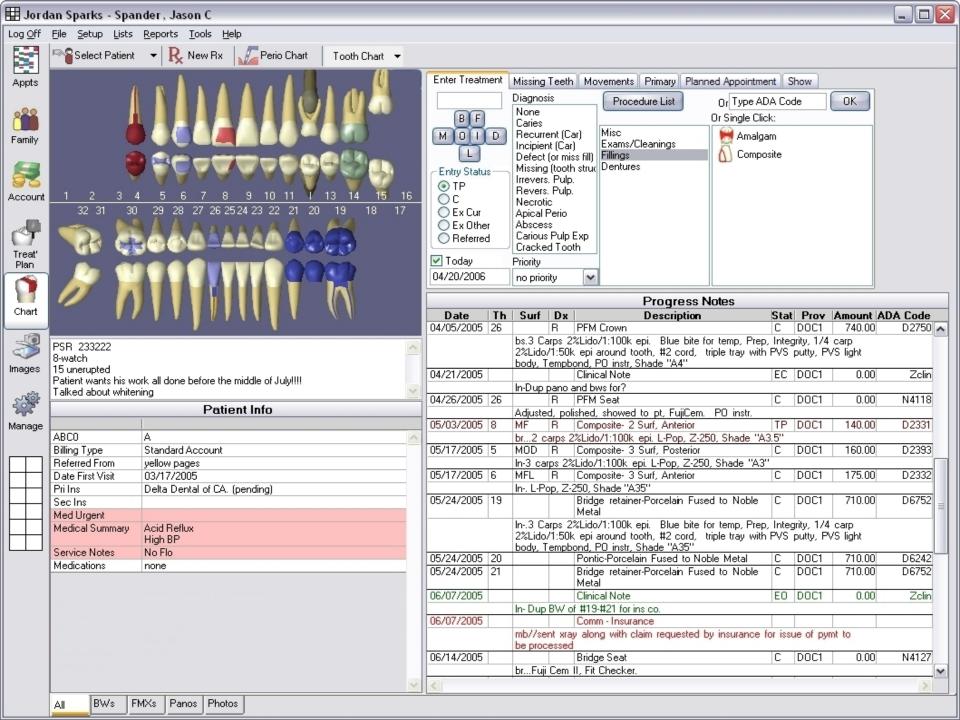
| Person          | nal History:        |             |        |    |  |
|-----------------|---------------------|-------------|--------|----|--|
| Name:           |                     |             |        |    |  |
| Age:<br>Nationa | lity: 🗆 Saudi       | ☐ Other:    |        |    |  |
|                 | male 🗖 female       | - omen      |        |    |  |
| Оссира          |                     |             |        |    |  |
|                 | Status: 🖵 Single    | → married   | Other: |    |  |
| Residen         | ce:                 |             |        |    |  |
| Admissi         | on Date:            |             |        |    |  |
|                 | on type: 🖵 Emergend | y 🔲 Electiv | ve     |    |  |
| Ward /          | Bed:                |             |        |    |  |
| The C           | omplaint:           |             |        |    |  |
| 1110 0          | omprariie.          |             |        |    |  |
| laint(s)        | 1.                  | 2.          |        | 3. |  |
|                 |                     |             |        |    |  |
| _               |                     |             |        |    |  |
| on              |                     |             |        |    |  |
|                 |                     |             |        |    |  |
| TT 1 - 1 - 1    | of Duccoup          | ine T11     |        |    |  |
| HISTO.          | ry of Present       | ing liines  | 8S:    |    |  |
|                 |                     |             |        |    |  |
|                 |                     |             |        |    |  |
| tion            |                     |             |        |    |  |
|                 |                     |             |        |    |  |
|                 |                     |             |        |    |  |
|                 |                     |             |        |    |  |
|                 |                     |             |        |    |  |
|                 |                     |             |        |    |  |
| ę               |                     |             |        |    |  |
| e               |                     |             |        |    |  |
| e<br>ency       |                     |             |        |    |  |
|                 |                     |             |        |    |  |
|                 |                     |             |        |    |  |
| ency            |                     |             |        |    |  |

## We need better access to clinical data [1]

- Missing clinical information during primary care visits (Smith, 2005)
  - Information reported missing in 13.6% of clinical visits
    - \*Available but outside system in 52% of instances
    - \* Estimated to adversely effect patients 44% of time
    - Unsuccessful searching for it took >5 minutes 35% of time
- Physicians have two unmet information needs for every three patients (Gorman, 1995; Ely, 1999)
- Secondary use of clinical data (Safran, 2007)




## Data entry [1]


- General categories of data entry:
  - Free-form entry by historical methods:
    - writing
    - dictation
    - typing
  - Structured (menu-driven) data entry by mouse or pen
  - Speech recognition for either of above





### **ORCA CPOE** order screen





## Structured or menu-driven data entry

- Many attempts from old (Greenes, 1970; Cimino, 1987; Bell, 1994) to new (Oceania; OpenSDE – Los, 2005)
- Can be done via mouse or pen, with typing
- Benefits
  - Data codified for easier retrieval and analysis
  - \* Reduces ambiguity if language used consistently
- Drawbacks
  - In general, more time-consuming
  - Requires exhaustive vocabulary
  - \* Requires dedication to use by clinicians



## Speech recognition for data entry [1]

- Most common use is for narration
  - e.g., computer dictation of clinical notes
- An advantage is instant availability of dictated content
- Continuous speech recognition now is commercial reality
  - Speaker-dependent systems require user training
  - Speaker-independent are systems less accurate
- Many established systems on the market that operate on:
  - front-end (used by clinician) or
  - back-end (process dictations) (Brown, 2008)



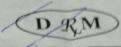






## Coded vs. free-text data [1]

#### \* Coded data:


Documentation of discrete data from controlled vocabulary

#### \* Free text:

\* Alphanumeric data that are unstructured, typically in narrative form



DE RMA CLINICS
DERMATOLOGY - PLASTIC SURGERY
HAIR TRANSPLANT - LASER CENTER



مراش جلدية جراحة تهميل وراش جلدية جراحة تهميل وراعة شعر مركز العلاج بالليزو

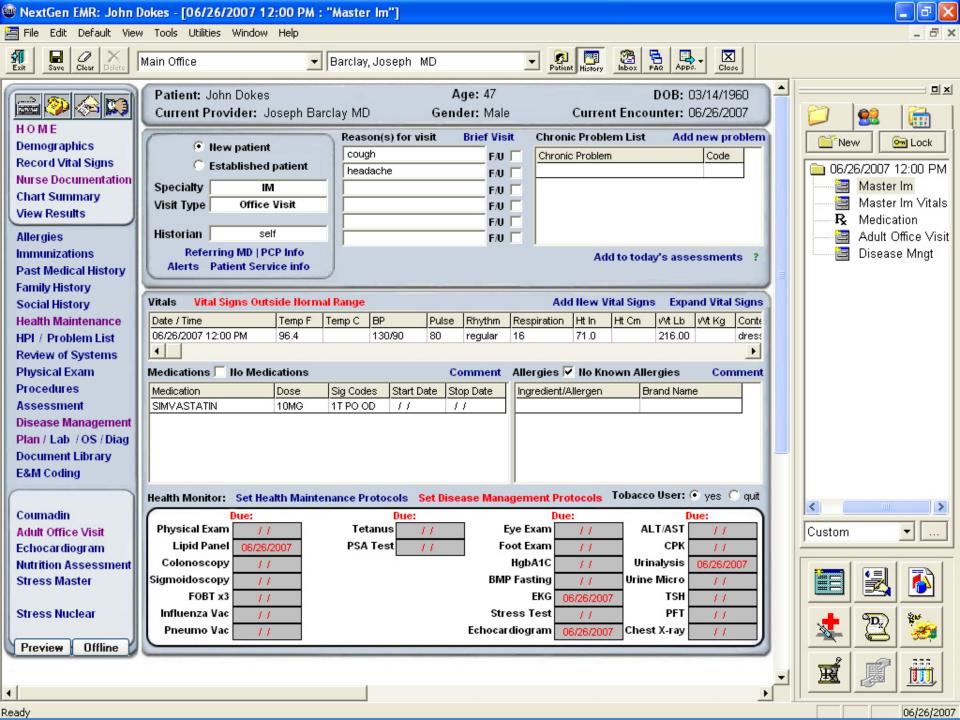
وصفةطبية

**QB** APR 2013

Prescription

| Rx |    |     | 1    |
|----|----|-----|------|
| 6  | no | c   | in   |
|    |    |     |      |
|    |    | e , | 1001 |
| A  |    |     |      |

## Narratives tell a story.


## A narrative tells a story

- See the patient through a description
- Complicated events are easier to describe in text

## Undifferentiated problems

- Interpretation.
  - "only a human can prioritize and determine what the chief complaint really is"





Liverpool Hospital Neonatal Database - Clinical Data Entry Ian TEST DOB 28/2/2008 GA 26+2 BW 1070 Liverpool 2170 MRN 123432 Day 33 - Corrected GA 31+0 1250g on 01/04 Files (0) Calculator Log Images (2) ATTENTION: Brain scan overdue: Admissions Respiratory Nutrition Other Treatments Test Results Current Status Respiratory Support Admission Planning Discharge CPAP /5 , FiO2 29 Admitted: 28/02/08 at 4 hours Liverpool Hospital 76% HC 25.5 71% Length 35 Weight 1070 Admission Corr.GA 26 Age 0 Fluids / Feeds MRN 123432 Date & Time 28/02/2008 16:30 | Hospital Liverpool Hospital 160 ml/kg/day TPN 10% Fat 3q NICU Prematurity Bed Reason(s) for 14x2 EBM 24cal (134) Admission Consultant Ian Callander Insurance Hospital Respiratory Distress Jaundice 09/03 SBr 135 Biliblanket MATERNAL HISTORY ceased 08/03 Ann is a 28 year old G2 P1 (now) woman whose blood group is O positive. She was booked to deliver at Campbelltown Hospital Other under the care of Kaisher however delivered at Liverpool Hospital under the care of Dr Peter Hammill. She had a history of essential 01/03 Mod PDA hypertension. This pregnancy was complicated by hypertension of pregnancy, fetal growth restriction, Bilateral Renal Pelvis dilatation POSSIBLE NEC 5 - 10mm, GBS +ve swab, fever, abnormal Dopplers, prolonged rupture of membranes for 2 days, clinically suspected chorioamnionitis. Ann was treated with antenatal steroids, tocolytics, and antihypertensive drugs. Following the spontaneous onset of labour, she proceeded to a vaginal delivery. Antibiotics were given before delivery. Treatments PERINATAL HISTORY Pentavite, Folic Acid Ian was born at 13:00 hours with a birth weight of 1070 grams (76th centile). Appars were 3 at 1 minute and 7 at 5 minutes Longline, respectively treated with intubation and ventilation. The arterial cord pH was 7.24 and the base excess -6, Ian was then retrieved to Added to Worksheet 01/03 Orders on Worksheet 01/03 This is freetext Freetext orders (double click on Test Results text to delete) 09/03 Na 136 09/03 Hb 135 09/03 Plat 265 Hospital Episodes MRN Admitted Discharged Add Another Admission 02/03 HUS IVH II Liverpool Hospital 123432 28 Feb 2008 16:30 01/04 Eyes ROP I PD12345 | 28 Feb 2008 15:00 | 28 Feb 2008 16:30 **NETS** Opened 01 Apr 12:27 Delete MRN .. then click again to Campbelltown Hospital 28 Feb 2008 13:00 | 28 Feb 2008 15:00 222222 Delete Episode Add Twin 1 local form

## Issues with coded data

- "pick from a list" allows wrong selection
- compliance concerns
- over documentation for care
- cloning



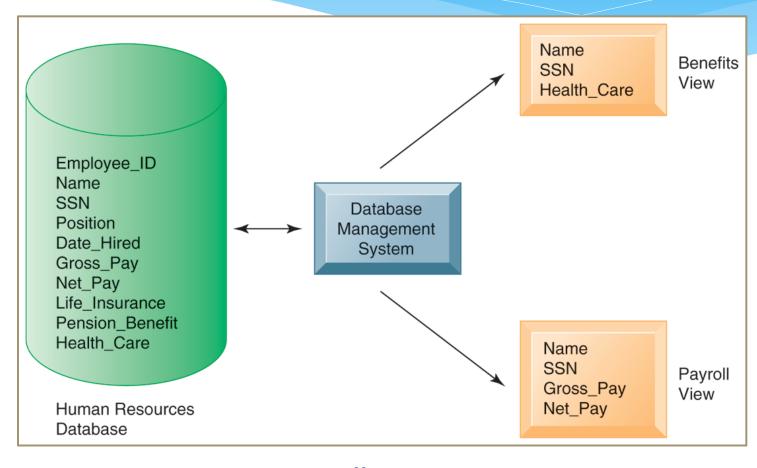
## Data Management [2]

## File Organization concepts

- Database: A set of related files
- File: Collection of records of same type
- Record: A set of related field
- Field: Words and numbers



Registration Radiology Database Financial Name **Medical Summary** Age File Abdullah AlSaif BP 21 34 Acid Reflux Khalid AlQahtani Maryam Badr 42 Pneumonia 32 Reem Alowais Allergies Record Name **Medical Summary** Age Abdullah AlSaif BP 21 Field BP (Medical summary field)




## Relational DBMS [1]

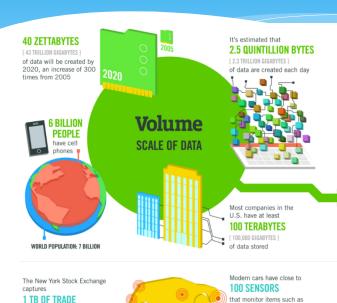
- Relational model links records to tables
- Allows efficiencies
- One-time information (e.g., demographics) stored only once
- Complex queries easier to construct and carry out
- ❖ Most query capabilities are based on **Structured Query Language (SQL)**-special language in relational database



## Relational DBMS [2]








## Big Data [3]

- Science of Data Management & analysis
- \* "to convert Vast information and knowledge in organisation to achieve their objectives" (Murdoch et al, 2013\*)
- What is BIG/VAST? Zettabytes (10^21 gigabytes) to Yottabytes (10^24 gigabytes)
- Used in Astronomy, Search Engines, Financial, Politics and now in Biomedicine
- Example of Big Data is Bioinformatics (genome, proteomic)



# The FOUR V's of Big Data [3]



**Velocity** 

**ANALYSIS OF** 

STREAMING DATA

uel level and tire pressure

The FOUR V's of Big Data

break big data into four dimensions: Volume, **Velocity, Variety and Veracity** 

#### 4.4 MILLION IT JOBS



As of 2011, the global size of data in healthcare was estimated to be



**Variety** DIFFERENT

FORMS OF DATA

30 BILLION PIECES OF CONTENT

are shared on Facebook every month





By 2014, it's anticipated there will be 420 MILLION

WEARABLE, WIRELESS **HEALTH MONITORS** 

#### 4 BILLION+

are watched on YouTube each month





are sent per day by about 200 million monthly active users

#### 1 IN 3 BUSINESS

don't trust the information they use to make decisions



in one survey were unsure of how much of their data was



Poor data quality costs the US economy around

\$3.1 TRILLION A YEAR









Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, IRM, MEPTEC, DAS

during each trading session

By 2016, it is projected

there will be 18.9 BILLION **NETWORK** CONNECTIONS - almost 2.5 connections per person on earth

## Big Data in healthcare [3]

- \* "80% of medical data is unstructured and is clinically relevant.
- The data reside in multiple places like individual EMRs, lab and imaging systems, physician notes, medical correspondence, claims, customer relations management systems and finance."



## Sources of BIG DATA [4]

- Clinical Data from CPOE
- Clinical decision support systems (Written notes & prescriptions)
- Imaging systems: PACS, Radiology Information systems
- Sensor data (monitoring vital signs)
- Social media data- Tweets from Twitter, wall and status updates on Facebook
- Emergency care data
- Literature from medical journal



# Healthcare BIG data problems to be solved [4]

- \* Patient profiles and the health outcomes- identify the effective treatments
- \* For public health- identify individuals who would get preventive care or lifestyle changes
- \* Analysing literature on medical procedure to determining which care protocols work best
- \* Creating mobile apps to manage diabetes. Via Data analytics, we are able to monitor the healthcare outcomes improvements
- \* Analysing social network communication among support group members- to understand how non-profit organization can interact and provide help



## In summary,

- Types of clinical data
- Types of clinical data documents
- Use of clinical data
- Access to clinical data
- Data entry
- Coded vs. free-form data
- Speech recognition
- Big Data
- Database Management



# Acknowledgement



\* Notes are <u>adapted with permission</u> from Professor Hersh, Oregon Health and Science University (OHSU), Oregon, USA



## References



- [1] Hersh, W. (2014). Notes from 10x10 Medical Informatics certificate, Oregon Health & Science University
- [2] Laudon & Laudon (2011), Management Information Systems, Prentice Hall
- [3] IBM website:http://www-o1.ibm.com/software/data/bigdata/what-is-bigdata.html
- [4] Ragupathi W. & Ragupathi V. (2014). Big Data Analytics in Healthcare: Promise and Potential. Health Information Science and Systems

http://www.hissjournal.com/content/2/1/3

[5] http://www.sophia.org/tutorials/accuracy-and-precision--3

