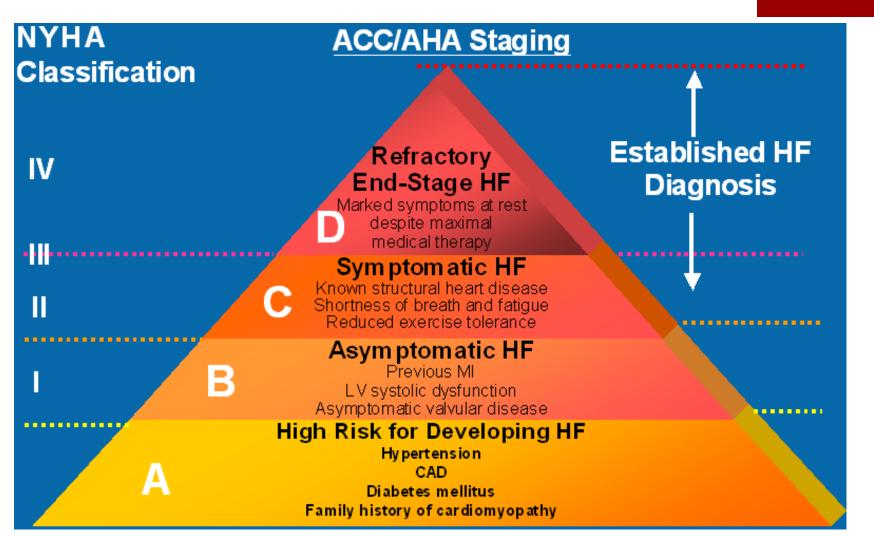

Heart Failure Management and Prognosis

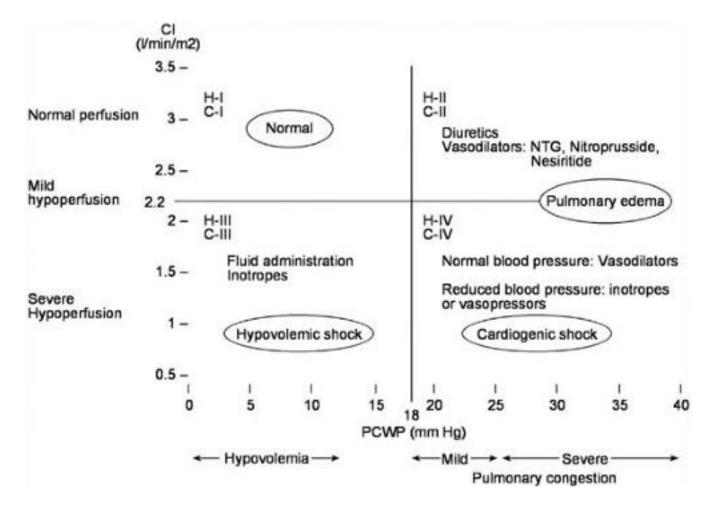
Dr. Rashed Alfagih MBBS MHSc Consultant Cardiologist KFCC

Presentation

■Chronic or Subacute.


Management

- Correction of reversible causes
 - **■**Ischemia
 - Valvular heart disease
 - ■Thyrotoxicosis, anemia and other high output status
 - Shunts
 - Arrhythmia
 - Tachy. Like: A fib, flutter or Brady. Like: CHB.
 - Medications
 - Ca channel blockers, some antiarrhythmics, NSAIDs,


Management tools

- Life style modifications:
 - Diet, Fluid intake, exercise, Smoke cessation, Wt.
- Pharmacological interventions:
 - ■Oral medication.
 - ■Immunization.
- <u>Surgical interventions:</u>
 - ■Device therapy.
 - Assisting devices.
 - ■Transplant.

Stages of Heart Failure

Forrester Classification

		Congestion at Rest		
		No	Yes	
Low Perfusion at rest	No	Warm & Dry	Warm & Wet	
	Yes	Cold & Dry	Cold & Wet	

Diet and Activity

- ■Salt restriction (2g of Na = 5 g NaCL)
- ■Fluid restriction (1.5 to 2 L / day) about 8 cups
- Daily weight (tailor therapy)
- Gradual exertion programs (rehabilitation program)

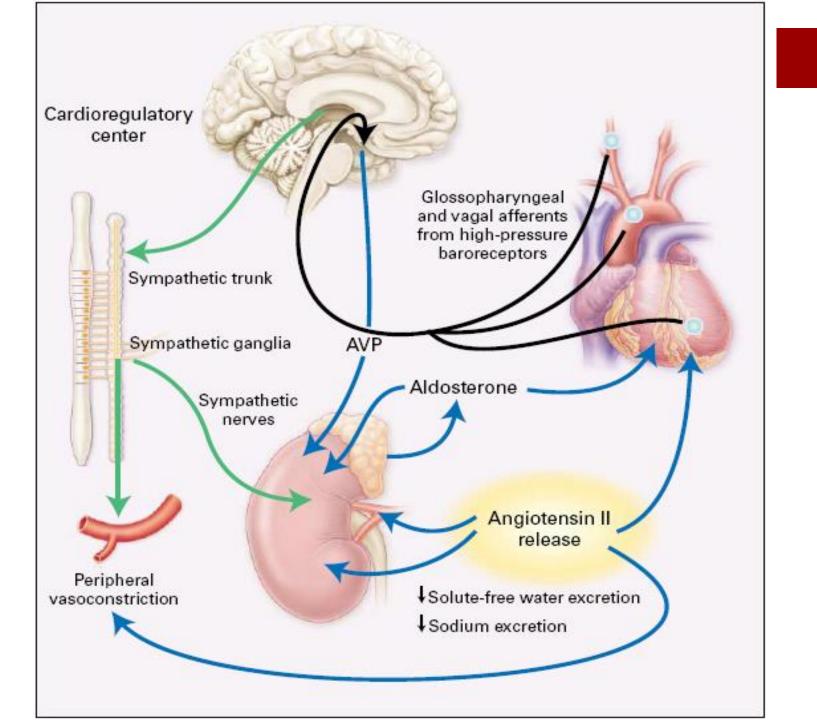


Table 7.2 Evidence-based doses of disease-modifying drugs in key randomized trials in heart failure with reduced ejection fraction (or after myocardial infarction)

	Starting dose (mg)	Target dose (mg)	
ACE-I			
Captopril ^a	6.25 t.i.d.	50 ti.d.	
Enalapril	2.5 b.i.d.	10-20 b.i.d.	
Lisinopril ^b	2.5-5.0 o.d.	20-35 o.d.	
Ramipril	2.5 o.d.	10 o.d.	
Trandolapril ^a	0.5 o.d.	4 o.d.	
Beta-blockers			
Bisoprolol	1.25 o.d.	10 o.d.	
Carvedilol	3.125 b.i.d.	25 b.i.d. ^d	
Metoprolol succinate (CR/XL)	12.5-25 o.d.	200 o.d.	
Nebivolol ^c	1.25 o.d.	10 o.d.	
ARBs			
Candesartan	4-8 o.d.	32 o.d.	
Valsartan	40 b.i.d.	160 b.i.d.	
Losartan ^{b.c}	50 a.d.	150 o.d.	
MRAs			
Eplerenone	25 o.d.	50 o.d.	
Spironolactone	25 o.d.	50 o.d.	
ARNI			
Sacubitril/valsartan	49/51 b.i.d.	97/103 b.i.d.	
lf-channel blocker			
lyabradine	5 b.i.d.	7.5 b.i.d.	

ACE = angiotensin-converting enzyme; ARB = angiotensin receptor blocker; ARNI = angiotensin receptor neprilysin inhibitor; b.i.d. = bis in die (twice daily); MRA = mineralocorticoid receptor antagonist; o.d. = omne in die (once daily); t.i.d. = ter in die (three times a day).

over 85 kg.

Table 7.3 Doses of diuretics commonly used in patients with heart failure

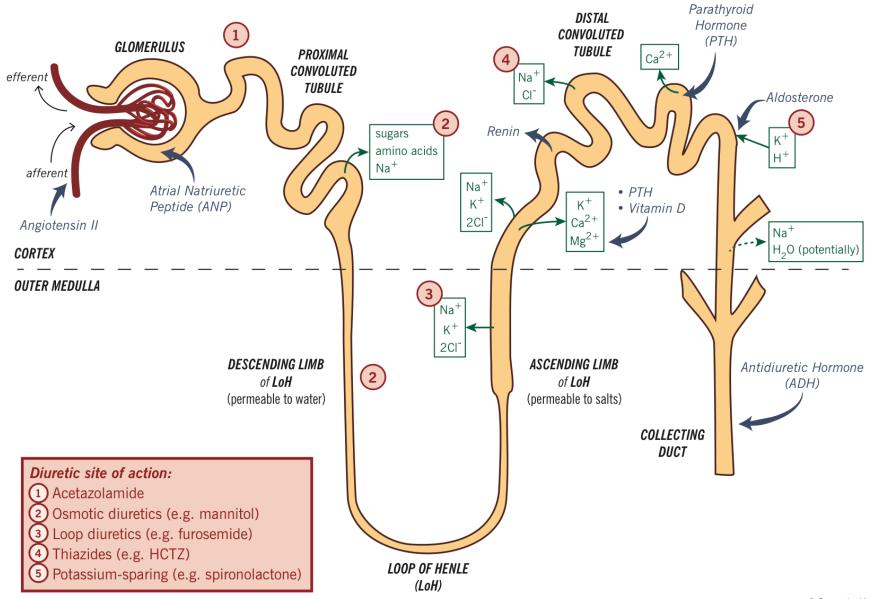
Diuretics	Initial do	se (mg)	Usual dai (mg)	ly dose				
Loop diuretics ^a								
Furosemide	20-40		40-240					
Bumetanide	0.5-1.0		I-5					
Torasemide	5-10		10-20					
Thiazides ^b								
Bendroflumethiazide	2.5		2.5-10					
Hydrochlorothiazide	25		12.5-100					
Metolazone	2.5	2.5		2.5-10				
Indapamide ^c	2.5	2.5		2.5-5				
Potassium-sparing diuretics ^d								
	+ACE-I/ ARB	-ACE-I/ ARB	+ACE-I/ ARB	-ACE-I/ ARB				
Spironolactone/ eplerenone	12.5–25	50	50	100- 200				
Amiloride	2.5	5	5-10	10-20				
Triamterene	25	50	100	200				

ACE-I = angiontensin-converting enzyme inhibitor, ARB = angiotensin receptor blocker.

except when prescribed synergistically with loop diuretics.

^aIndicates an ACE-I where the dosing target is derived from post-myocardial infarction trials.

bIndicates drugs where a higher dose has been shown to reduce morbidity/ mortality compared with a lower dose of the same drug, but there is no substantive randomized, placebo-controlled trial and the optimum dose is uncertain.
Sindicates a treatment not shown to reduce cardiovascular or all-cause mortality in patients with heart failure (or shown to be non-inferior to a treatment that does).
A maximum dose of 50 mg twice daily can be administered to patients weighing.


Oral or intravenous; dose might need to be adjusted according to volume status/ weight; excessive doses may cause renal impairment and ototoxicity.

^bDo not use thiazides if estimated glomerular filtration rate < 30 mL/min/1.73 m²,

^cIndapamide is a non-thiazide sulfonamide.

^dA mineralocorticoid antagonist (MRA) i.e. spironolactone/eplerenone is always preferred. Amiloride and triamterene should not be combined with an MRA.

Hormones Acting on the Nephron / Diuretics and Their Site of Action

Diuretic Therapy

- ■The most effective symptomatic relief
- Mild symptoms
 - HCTZ
 - Chlorthalidone
 - Metolazone
 - ■Block Na reabsorbtion in loop of henle and distal convoluted tubules
 - ■Thiazides are ineffective with GFR < 30 --/min

Diuretics (cont.)

■Side Effects

- ■Pre-renal azotemia
- ■Skin rashes
- Neutropenia
- ■Thrombocytopenia
- Hyperglycemia
- ■↑ Uric Acid
- ■Hepatic dysfunction

Diuretics (cont.)

- ■More severe heart failure → loop diuretics
 - ■Lasix (20 320 mg QD), Furosemide
 - ■Bumex (Bumetanide 1-8mg)
 - **■Torsemide** (20-200mg)
- <u>Mechanism of action</u>: Inhibit chloride reabsortion in ascending limb of loop of Henle results in natriuresis, kaliuresis and metabolic alkalosis

■ Adverse reaction:

- pre-renal azotemia
- Hypokalemia
- Skin rash
- ototoxicity

K⁺ Sparing Agents

- ■Triamterene & amiloride acts on distal tubules to ↓ K secretion
- Spironolactone (Aldosterone inhibitor)

recent evidence suggests that it may improve survival in CHF patients due to the effect on renin-angiotensin-aldosterone system with subsequent effect on myocardial remodeling and fibrosis

Inhibitors of renin-angiotensinaldosterone system

- Renin-angiotensin-aldosterone system activation is early in the course of heart failure and plays an important role in the progression of the syndrome
- Angiotensin converting enzyme inhibitors
- Angiotensin receptors blockers
- Spironolactone

Angiotensin Converting Enzyme Inhibitors

- ■They block the R-A-A system by inhibiting the conversion of angiotensin I to angiotensin II → vasodilation and ↓ Na retention
- Bradykinin degradation ↑ its level → ↑ PG secretion & nitric oxide
- ACE Inhibitors were found to improve survival in CHF patients
 - Delay onset & progression of HF in pts with asymptomatic LV dysfunction
 - ■↓ cardiac remodeling

Side effects of ACE inhibitors

- Angioedema
- Hypotension
- ■Renal insuffiency
- Rash
- Cough

Angiotensin II receptor blockers

- Has comparable effect to ACE I
- Can be used in certain conditions when ACE I are contraindicated (angioneurotic edema, cough)

Angiotensin Receptor-Neprilysin inhibitor (ARNi)

- Recent FDA approval (2015)
- The only product available (valsartan/sacubitril)
- Valsartan = ARB
- Sacubitril = prodrug for sacubitrilat Inhibit neprilysin which breakdown the vasoactive peptides.
- Used if patient LVEF <= 35% and still symptomatic with ACE/ARB
- In this specific group of patients it improves M&M.

If- Channel blocker

- ■Ivabradine; Inhibit the Na inflow during the SA nodel action potential phase 4.
- ■Degrease the heart rate.
- Only use it if HR not controlled by BB and remains > 70 bpm and the patient has sinus rhythm.
- ■In this group if patients it improve M&M.

Digitalis Glycosides (Digoxin, Digitoxin)

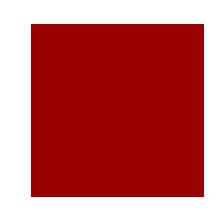
- ■The role of digitalis has declined somewhat because of safety concern
- Studies have shown that digitals does not affect mortality in CHF patients but causes significant:
 - ■Reduction in hospitalization
 - ■Reduction in symptoms of HF

Digitalis (cont.) Mechanism of Action

- +ve inotropic effect by ↑ intracellular Ca & enhancing actin-myosin cross bride formation (binds to the Na-K ATPase → inhibits Na pump → ↑ intracellular Na → ↑ Na-Ca exchange
- Vagotonic effect
- Arrhythmogenic effect

Digitalis Toxicity

- Narrow therapeutic to toxic ratio
- ■Non cardiac manifestations
 - Anorexia,
 - Nausea, vomiting,
 - Headache,
 - Xanthopsia sotoma,
 - Disorientation


Digitalis Toxicity

■ Cardiac manifestations

- ■Sinus bradycardia and arrest
- ■A/V block (usually 2nd degree)
- ■Atrial tachycardia with A/V Block
- Development of junctional rhythm in patients with a fib
- ■PVC's, VT/ V fib (bi-directional VT)

Digitalis Toxicity Treatment

- ■Hold the medications.
- Observation.
- ■In case of A/V block or severe bradycardia → atropine followed by temporary PM if needed.
- ■In life threatening arrhythmia → digoxin-specific fab antibodies.
- ■Lidocaine and phenytoin could be used try to avoid D/C cardioversion in non life threatening arrhythmia.



β Blockers

- Has been traditionally contraindicated in pts with CHF
- Now they are the main stay in treatment on CHF & may be the only medication that shows substantial improvement in LV function
- ■In addition to improved LV function multiple studies show improved survival
- The only contraindication is severe decompensated CHF

Vasodilators

- Reduction of afterload by arteriolar vasodilatation (hydralazin) → reduce LVEDP, O₂ consumption,improve myocardial perfusion, stroke volume and COP
- Reduction of preload By venous dilation (Nitrate) $\rightarrow \downarrow$ the venous return $\rightarrow \downarrow$ the load on both ventricles.
- Usually the maximum benefit is achieved by using agents with both action.

Positive inotropic agents

These are the drugs that improve myocardial contractility (β adrenergic agonists, dopaminergic agents, phosphodiesterase inhibitors),

Dopamine, Dobutamine, Milrinone, Amrinone

- Several studies showed ↑ mortality with oral inotropic agents
- ■So the only use for them now is in acute sittings as cardiogenic shock

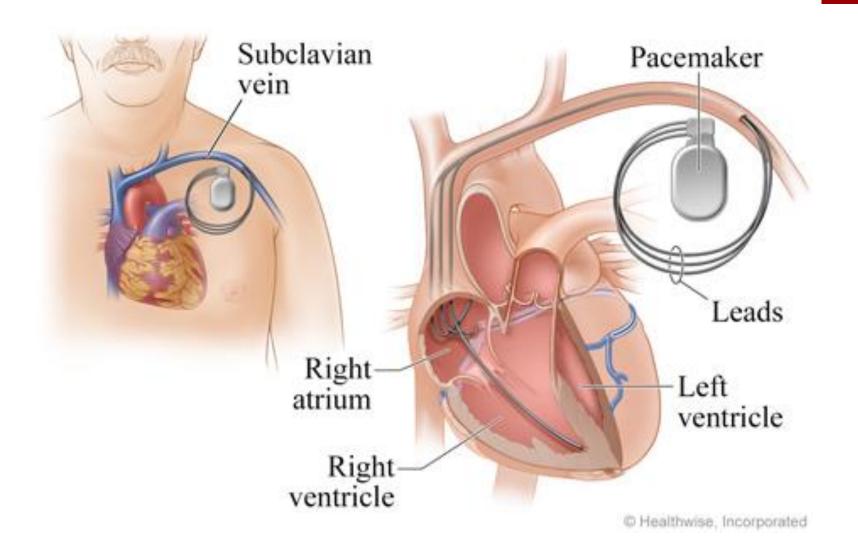
Anticoagulation (Warfarin)/NOAC

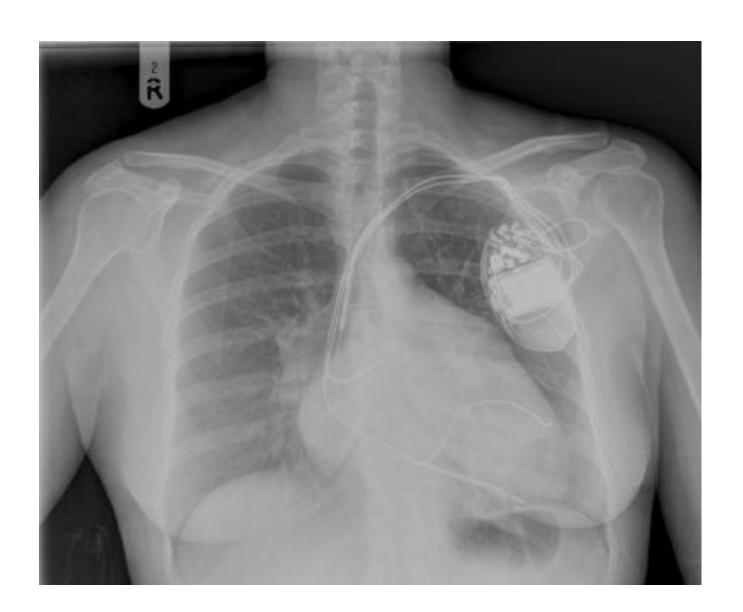
- Atrial fibrillation
- ■H/o embolic episodes
- Left ventricular apical thrombus

Antiarrhythmics

Most common cause of SCD in these patients is ventricular tachyarrhythmia

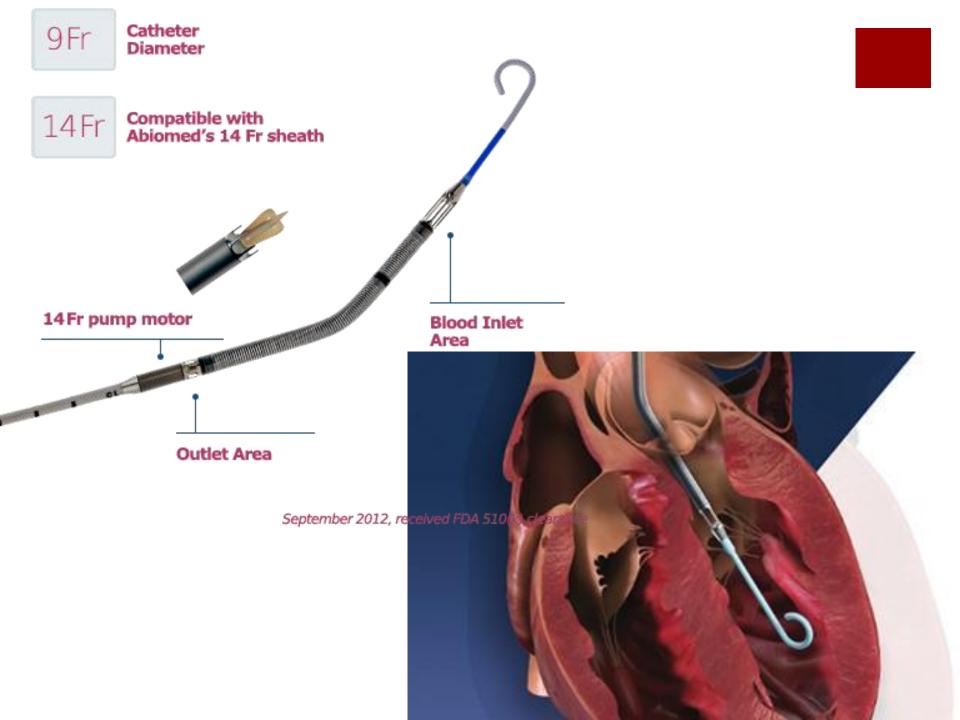
■Patients with h/o sustained VT or SCD → ICD implant

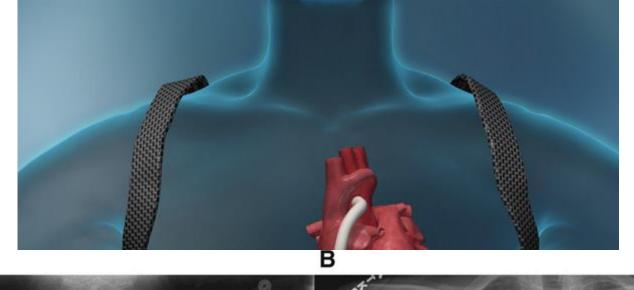

Antiarrhythmics (cont.)

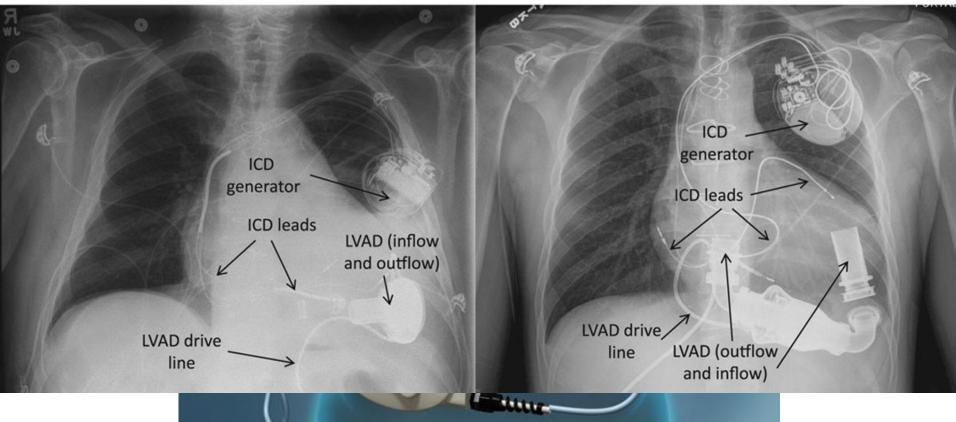

Patients with non sustained ventricular tachycardia

■Correction of electrolytes and acid base imbalance.

Biventricular Pacing


■ **Biventricular pacing** (only in patient with Wide QRS complexes & CHF).





Assisting devices

- ■Temporary ventricular assist devices.
- ■Implantable ventricular assist devices.

Cardiac Transplant

- It has become more widely used since the advances in immunosuppressive treatment.
- ■Survival rate:
 - ■1 year 80% 90%
 - ■5 years 70%

Prognosis

- Annual mortality rate depends on patients symptoms and LV function.
- ■5% in patients with mild symptoms and mild ↓ in LV function.
- ■30% to 50% in patient with advances LV dysfunction and severe symptoms.
- $\blacksquare 40\% 50\%$ of death is due to SCD.