Safety in Radiology

Dr. Abdullah Abu Jamea
Assistant Professor and Medical Physics Consultant
Department of Radiology and Medical Imaging

RAD 366

Safety in Radiology

Lecture Objectives:

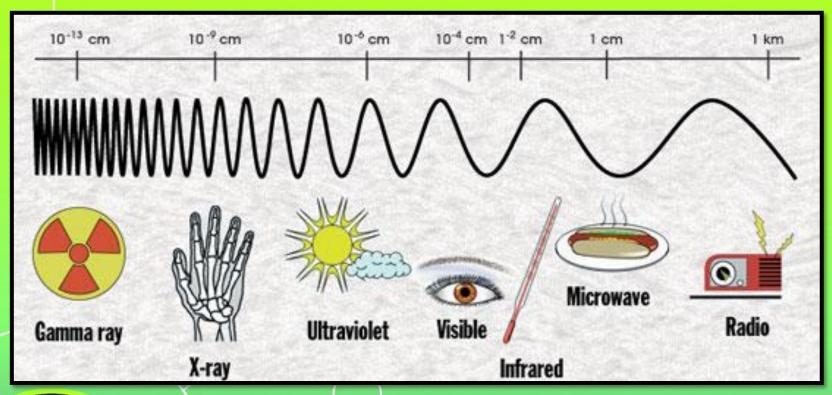
At the end of this lecture you should be able to:

- Recognize, and evaluate essential information on the biologic effects of ionizing radiation and radiation safety to ensure the safe use of x-rays in diagnostic imaging.
- > Know radiation quantities and units, regulatory and advisory limit for human exposure to radiation.
- > Know equipment for radiation protection and measurement.
- > Understand the fundamental principles of MRI safety
- **Know about contrast agents reactions and safety.**
- > Understand how to prepare patients for radiology studies.

Safety in Radiology

Major Sources of Risk in Radiology:

- > Radiation hazard.
- > Radioactive materials hazard.
- > Magnetic field hazard.
- > Contrast agents hazard.

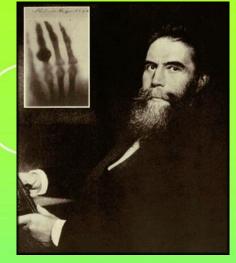

What is Radiation?

Radiation is energy emitted from a substance:

- Non-ionizing: Microwave oven, Television, Radiowaves and Ultrasound.
- **Ionizing:** means alpha particles (α) , beta (β) , gamma (γ) and X-rays (among others) that are capable of producing ions.

Radiation Spectrum

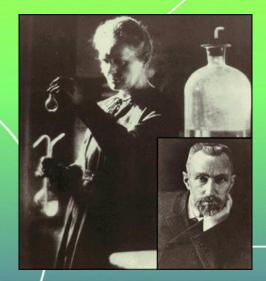




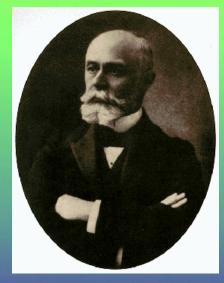
Early Pioneers in Radioactivity

Rutherford:

Discoverer Alpha and Beta rays 1897


Roentgen:

Discoverer of X-rays 1895


Discoverers of Radium and Polonium 1900-1908

Becquerel:

Discoverer of Radioactivity 1896

Science Park HS -- Honors Chemistry

What is an X-ray?

- > X-rays are very short wavelength electromagnetic radiation.
- The shorter the wavelength, the greater the energy and the greater the ability to penetrate matter.
- ➤ Ionizing radiation such x-ray can be carcinogenic and, to the fetus, mutagenic or even lethal. ▶

Goals of Radiation Safety

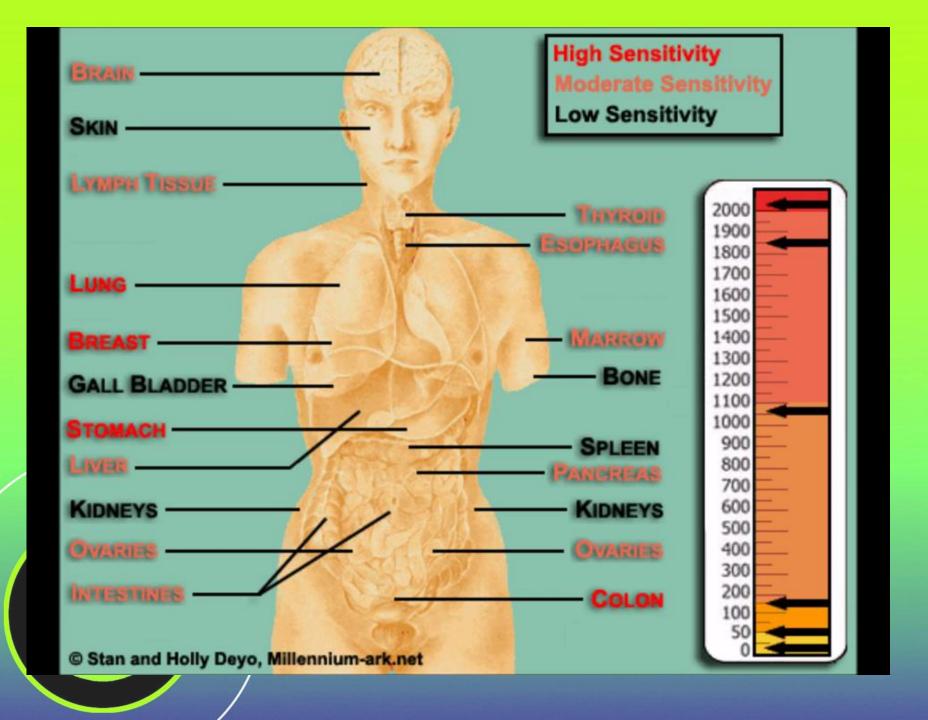
- > Eliminate deterministic (acute) effects.
- > Reduce incidence of stochastic (Chronic) effects.

- > Acute radiation symptoms are caused by high levels of radiation usually over a short period of time.
- > They cannot be predicted with certainty
- > severity of damage increases with increasing dose above that threshold.

Deterministic (acute) Effects

Examples of deterministic effects:

- Cataract formation.
- Skin reddening (erythema).
- lowering of the white blood cell count
- hair loss
- Bone marrow failure.
- Lung Fibrosis.
- Infertility.



Major organs annual dose limits for preventing deterministic effects are as follows:

		Threshold for deterministic effects (Gy)					
		Effects	One single absorption (Gy)	Prolong absorption (Gy-year)			
	testis	permanent infertility	3.5 - 6.0	2			
	ovary	permanent infertility	2.5 - 6.0	> 0.2			
	Lens of eyes	milky of lens cataract	0.5 - 2.0 5.0	> 0.1 > 0.15			
	Bone marrow	Blood forming deficiency	0.5	> 0.4			

- Gray, Rem, rad, Curie, Becquerel and Sievert are units of radiation.
- One chest x-ray 0.15 mGray.
- To reach the hazardous level of 2 Gray you need 10000 chest x ray or 100 CT abdomen or 30 mins to 1 hr fluoroscopy exposure.

Radiation UNITS

- RAD: Radiation Absorbed Dose. Original measuring unit for expressing the absorption of all types of ionizing radiation (alpha, beta, gamma, neutrons, etc) into any medium.
- REM: Roentgen Equivalent Man is a measurement that correlates the dose of any radiation to the biological effect of that radiation. Since not all radiation has the same biological effect, the dosage is multiplied by a "quality factor" (Q). For example, a person receiving a dosage of gamma radiation will suffer much less damage than a person receiving the same dosage from alpha particles, by a factor of three.

Radiation UNITS

QUANTITY	UNIT	SI UNIT	RELATIONSHIP BETWEEN UNITS
Absorbed dose	Rad	Gray (Gy)	1 Gy = 100 rad 100 mGy = 10 rad 10 mGy = 1 rad 1 mGy = 100 mrad
Equivalent dose	Rem	Sievert (Sv)	1 Sv = 100 rem 100 mSv = 10 rem 10 mSv = 1 rem 1 mSv = 100 mrem

The Effects of Nuclear Exposure

PHYSICAL CONDITION	CHANCE OF SURVIVAL
Neurovascular Syndrome onset	Death almost certain
	Multiple organ failure sets in
Á	Death likely Stem cell transplants required to survive
Gastrointestinal Syndrome onset	Death possible - 50 percent of the population will survive for 60 days
8	with supportive medical care
	Death not likely
k	50 percent of the population will survive for 60 days without medical care
A.	without medical care
	Death not happening
Hematopoietic Syndrome onset	Medical treatment not necessary
7	
	Gastrointestinal Syndrome onset

Stochastic (chronic) Effects

- > Also referred to as Probabilistic, probability of occurrence depends on absorbed dose.
- Chronic radiation symptoms are caused by low-level radiation over a long period of time
- The effect may (potentially) occur following any amount of exposure, there is no threshold.
- Even the smallest quantity of Ionizing Radiation exposure can be said to have a finite probability of causing an effect.
- **Severity of the effect is not dose related.**

Stochastic Effects

Examples of stochastic effects:

- Carcinogenic effect.
- Genetic effect.

Radiation Exposure Levels & Effects

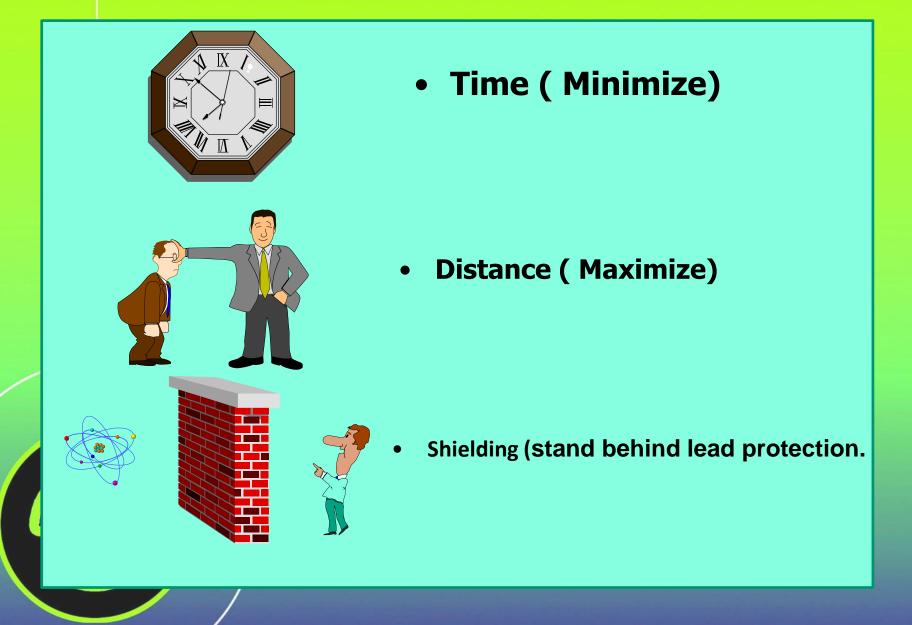
- > 0.62 rem/y average annual radiation exposure.
- > 2 rem/y international radiation exposure limit.
- > 25 rem measureable blood changes.
- > 100 rem onset of radiation sickness.

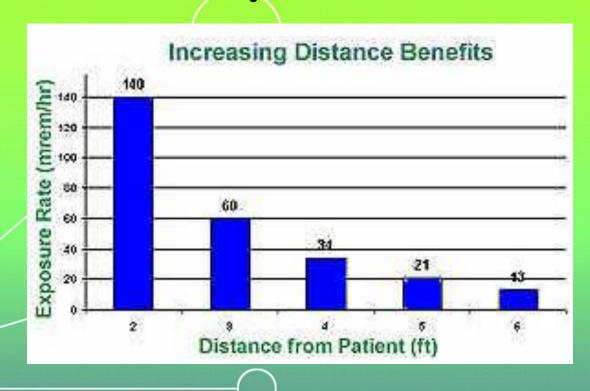
Radiation Exposure Levels & Effects

- > 200 rem radiation sickness with worse symptoms in less time
- > 400 rem approximately the lethal dose for 50% of the population in 30 days
- > 1,000 rem death probable within about 2weeks, effects on the gastrointestinal tract
- > 5,000 rem death probable within 1-2 days, effects on the central nervous system.

Typical Radiation Detectors

- Film packet
- Thermoluminescent Dosimeter (TLD)
- Ionization chamber
- Geiger-Müller (GM) Detector
- Scintillation Detector




- Three basic methods for reducing exposure of workers to X-rays:
 - Minimize exposure time.
 - Maximize distance from the X-ray source.
 - Use shielding.

General Methods of Protection

Exposure varies inversely with the square of the distance from the X-ray tube:

> Shielding:

- Operators view the target through a leaded glass screen.
- Wear lead aprons. Almost any material can act as a shield from gamma or x-rays if used in sufficient amounts.

Shielding:

• Standard 0.5mm lead apron Protect you from 95% from radiation exposure.

ALARA Rule

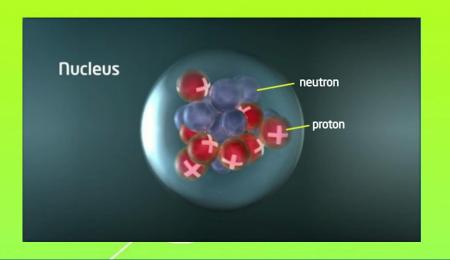
- > As low as reasonably achievable:
 - Reduce number of exams.
 - Reduce time of exams.
 - Radiation Hazard symbol displayed at places where radioactive materials are used and stored.
 - Use alternative (US or MRI).

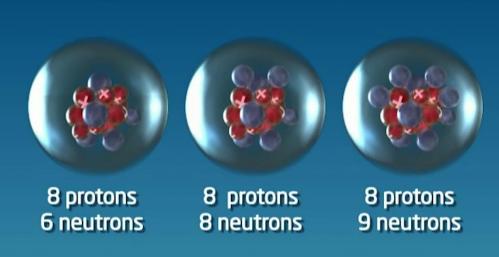
Radioactive Materials Hazard

What do we mean by Radioactivity?

- Radioactive decay is the process in which an unstable atomic nucleus loses energy by emitting radiation in the form of particles or electromagnetic waves.
- > An unstable nucleus releases energy to become more stable.

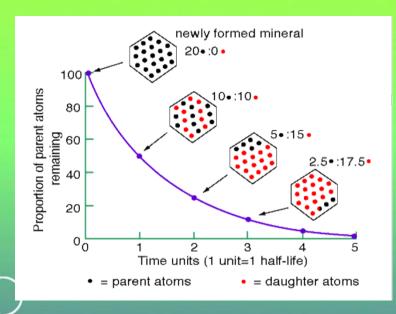
Where are the Sources of Radioactivity?


- > Naturally Occurring Sources:
- Radon from the decay of Uranium and Thorium.
- Potassium -40 found in minerals and in plants.
- Carbon 14 Found in Plants and Animal tissue.
- > Manmade Sources:
- Medical use of Radioactive Isotopes.
- Certain Consumer products –(eg Smoke detectors).
- Fallout from nuclear testing.
- Emissions from Nuclear Power plants.



Radioisotopes.

- > Isotopes of an atom that are radioactive are called radioisotopes.
- These atoms are radioactive because they have too much energy to be stable; they will release energy until they become stable
- > This is called radioactive decay.


RADIOISOTOPES

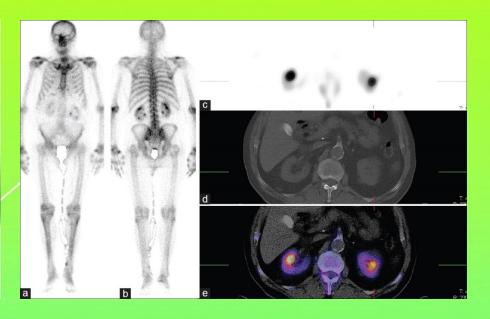
Radioactive Decay.

- In the process of radioactive decay, an atom actually changes from one element to another by changing its number of protons.
- The <u>half-life</u> of a radioactive substance is the amount of time required for it to lose one half of its radioactivity and transform into another element.

Medical use of Radioactive Isotopes.

- ➤ Radioactive isotopes introduced into the body are distinguishable by their radiation from the atoms already present.
- This permits the relatively simple acquisition of information about the dynamics of processes of uptake, incorporation, exchange, secretion, etc.

Radiopharmaceuticals


- The most widely used radioisotope is Technetium (Tc), with a half-life of six hours.
- ➤ activity in the organ can then be studied either as a two dimensional picture or, with a special technique called tomography, as a three dimensional picture (SPECT, PET).

Radiopharmaceuticals

The radiotracer, injected into a vein, emits gamma radiation as it decays. A gamma camera scans the radiation area and creates an image.

Handling Radiopharmaceuticals

- No radioactive substance should be handled with bare hands. Alpha and beta emitters can be handled using thick gloves.
- **Radioactive materials must be stored in thick lead containers.**
- Reactor and laboratories dealing with radioactive materials must be surrounded with thick concrete lined with lead.
- People working with radioactive isotopes must wear protective clothing which is left in the laboratory.
- The workers must be checked regularly with dosimeters, and appropriate measures should be taken in cases of overdose.
- Radioactive waste must be sealed and buried deep in the ground.

Spill Response

- > On Skin flush completely
- > On Clothing remove
- > If Injury administer first aid
- Radioactive Gas Release vacate area, shut off fans, post warning
- Monitor all persons and define the area of contamination.

Magnetic Field Hazard

- MRI is one of the imaging modality that is widely used in radiology.
- There is no dangerous radiation in MRI instead it uses very high magnetic field up to 3Tesla (1 Tesla = 20000 times earth gravity).
- This strong magnetic field produces powerful attractive force and torque which the magnet exerts on ferromagnetic objects, this is called missile effect. *
- The missile effect can pose a significant risk to anyone in the path of the projectile, and cause significant damage to the scanner.
- > The effect is clearly greater for high field systems .

Demonstration of the powerful magnetic field of a clinical 1.5 Tesla MR scanner

Part II - Oxygen bottle

- To guard against accidents from metallic projectiles, the "5 gauss line" should be clearly demarcated and the area with that line kept free of ferromagnetic objects.
- ➤ It is essential that patient with ferromagnetic surgical clips, implants containing ferromagnetic components, and persons who have suffered shrapnel or steel fragment injuries, especially to the eyes, be excluded from the imager.

- A number of general precautions must be taken to ensure the safety of patients and personal working in the imaging suite.
- Access to the imaging area should be limited, and signs should be displayed to warn persons with cardiac pacemaker or neuro-stimulators not to enter the area.
- Credit cards and watches with mechanical parts should be left outside the imaging area to prevent magnetic tape erasure and watch malfunction.

- Some implants are paramagnetic, or even ferromagnetic. These implants tend to move and align with the main magnetic field.
- This results in a force and torque on the implant and the implant may become dislodged, resulting in severe injury to the patient.
- Aneurysm clips are examples of implants that can result in death if displaced.

- Some implants are paramagnetic, or even ferromagnetic. These implants tend to move and align with the main magnetic field.
- This results in a force and torque on the implant and the implant may become dislodged, resulting in severe injury to the patient.
- Aneurysm clips are examples of implants that can result in death if displaced.
- Pacemaker and implanted cardiac defibrillator are typical examples of such devices.

Contrast medium Hazard

Contrast Agents

- Compounds used to improve the visibility of internal body structures in an image.
- Since their introduction in the 1950s, organic radiographic iodinated contrast media (ICM) have been among the most commonly prescribed drugs in the history of modern medicine.
- These contrast agents attenuate x-rays more than body soft tissues due to their high atomic weight.
- Millions of intravascular contrast media examinations are performed each year.

Contrast Agents

- > Iodinated contrast media generally have a good safety record.
- Adverse effects from the intravascular administration of ICM are generally mild and self-limited;
- > Reactions that occur from the extravascular use of ICM are rare.
- Nevertheless, severe or life-threatening reactions can occur with either route of administration.

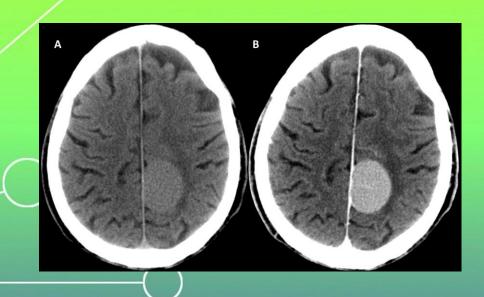
Types of Contrast Agents

Negative contrast

- Organs become more radiolucent.
- X-rays penetrate more easily.
- Low atomic # material
- Black on film
- Example: air,CO2.

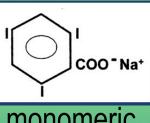
Types of Contrast Agents

Positive contrast

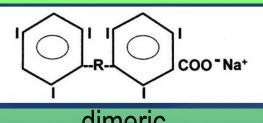

- > Substance absorbs x rays, organ become radiopaque.
- High atomic # material
- > White on film
- > Most common media:
 - Iodinated contrast agent.
 - Barium sulfate.

WHY IODINE?

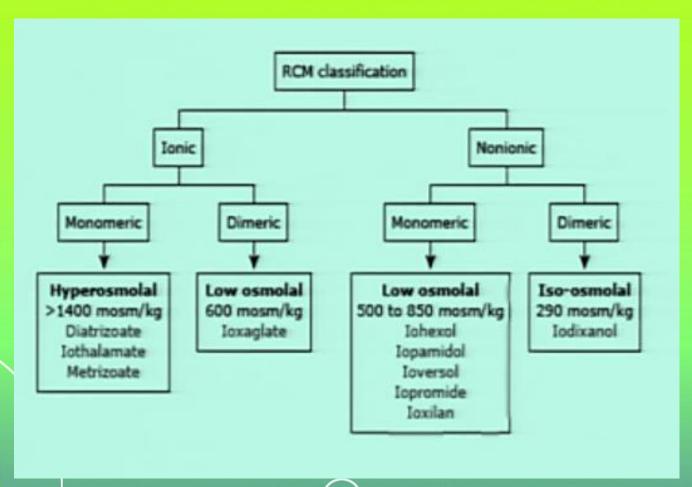
- > IODINE (atomic wt 127) provides excellent radio-opacity.
- ➤ Higher atomic number maximizing the photo-electric effect.



Classification of agents


Contrast agents are classified based on 3 properties:

- The charge of the iodinated molecule (ionic or nonionic)
- The molecular structure (monomeric or dimeric)
- The osmolality of the injected preparation (hyperosmolal, low osmolal, or iso-ismolal relative to normal serum osmolality [275 to 290 mosm/kg])



dimeric

Iodinated Contrast Agents

Iodinated Contrast Agents

- The toxicity of contrast agents decreases as osmolality approaches that of serum.
- This has been accomplished by developing nonionizing compounds and then combining two monomers to form a dimer.

Iodinated Contrast Agents

- Currently used iodinated agents are cleared almost completely by glomerular filtration.
- ➤ Circulatory half life is 1–2 hours, assuming normal renal function.

Effects of Ionic vs. Nonionic Contrast Media

lonic	Nonionic
1. Dissociates into separate ions when injected	Does not dissociate
2. Creates hypertonic condition	Remains near isotonic
3. Increase in blood osmolality	No significant increase in osmolality
4. Less money	More money
5. More reactions	Less reactions

Methods of administration of contrast material

- INGESTED
 - ORAL: Barium sulfate suspension
- RETROGRADE
 - AGAINST NORMAL FLOW: Barium Enema
- INTRATHECAL
 - Spinal canal
- INTRAVENOUS
 - Injecting into bloodstream
 - (anything other than oral)

Reaction classification

- ➤ Immediate reactions: were defined as those occurring within the department (within one hour).
- Delayed: as those occurring between the time the patients left the department and up to seven days later.

Reaction classification

- ➤ The American College of Radiology has divided adverse reactions severity to contrast agents into the following categories:
 - > Mild.
 - > Moderate.
 - > Severe.

Mild Reaction (5%)

- Signs and symptoms appear self-limited without evidence of progression,
- Nausea, vomiting, warmth, headache, dizziness, shaking, altered taste, itching, flushing, chills, sweats, rash, nasal stuffiness, swelling: eyes, face and anxiety.
- Treatment: Observation and reassurance. Usually no intervention or medication is required; however, these reactions may progress into a more severe category.

Moderate Reaction (1%)

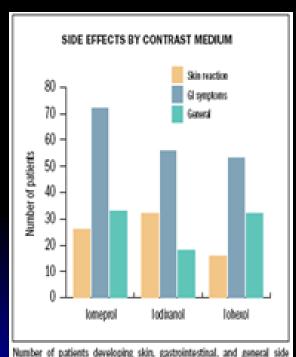
- Reactions which require treatment but are not immediately life-threatening,
- Tachycardia/ bradycardia, hypertension, pronounced cutaneous reaction, hypotension, dyspnea, pulmonary edema, bronchospasm, wheezing and laryngeal edema.
- Treatment: Prompt treatment with close observation.

Severe Reaction (0.05%)

- Life-threatening with more severe signs or symptoms including,
- Laryngeal edema (severe), profound hypotension, convulsion, unresponsiveness and cardiopulmonary arrest.
- Treatment: Immediate treatment, antiemetic drugs. Usually requires hospitalization.

Some Reaction Medications

- > Aggressive fluids.
- > Lasix
- > Dopamine
- > Mannitol



Delayed Contrast Reactions

- Delayed contrast reactions can occur anywhere from 3 hours to 7 days following the administration of contrast.
- ➤ It is important for anyone administering intravenous contrast media to be aware of delayed reactions.
- The more common reactions include a cutaneous exanthema, pruritus without urticaria, nausea, vomiting, drowsiness, and headache.

Delayed Contrast Reactions

Number of patients developing skin, gastrointestinal, and general side effects following administration of different contrast media.

- Skin effects included itching, rash, and hives.
- Nausea, vomiting, and diarrhea were the gastrointestinal side effects
- General side effects included headache, dizziness, and fever.
- Infants and patients older than 60 years are at increased risk of developing a side effect.

Delayed Reactions

- flu like symptoms
- delayed arm pain
- rash/ pruritus
- salivary gland swelling
- Steven Johnson syndrome

Contraindications for Contrast

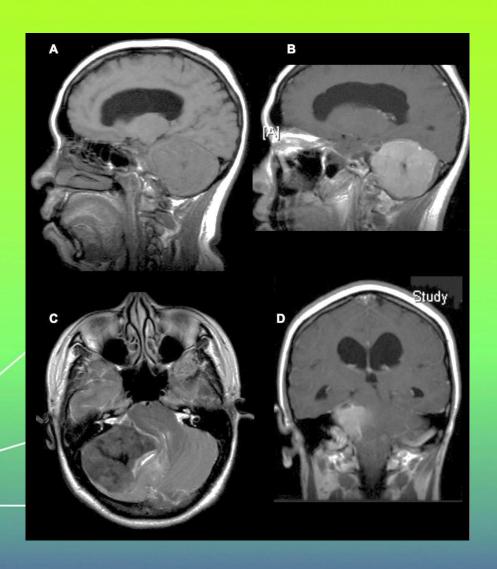
- Renal Failure (Check BUN & Creatinine)
 Elevated levels could cause renal shutdown
- > Anuria (no urine production)
- Asthma (possible allergies)
- Hx of Contrast Allergy / Reactions
- Diabetes get a hx of medications taken
 glucophage must be stopped 48 hrs before contrast injection
- Multiple Myeloma

Contraindications for Contrast

- > Pregnancy (risk of fetal Thyroid toxicity).
- ➤ Allergic Reaction, Pre medication is available.

EXTRAVASATION

- > Contrast material has seeped outside of vessel.
- > Apply WARM Compress 1st 24 hours.
- > Cool compress for swelling.



MRI Contrast Agents

- The Contrast used in MRI is based on paramagnetic ions eg. Gadolinium.
- By themselves these ions are highly toxic so bound up in large molecules eg. DTPA.
- Provides a greater contrast between normal and abnormal tissues.

MRI Contrast

Gadolinium Side Effects

With impaired kidney function, gadolinium could lead to a serious and potentially fatal disorder called Nephorgenic Systemic Fibrosis. (NSF)

