

Outbreak Investigation

Objectives:

- Understand what constitutes to an outbreak
- To differentiate between endemic and epidemic
- Learn the importance of investigating an outbreak
- Be familiar with the steps for an outbreak investigation
- list types of studies used to investigate an outbreak
- Read an epidemic curve and use it in estimating the incubation period
- To calculate the attack rate from outbreak investigation data

Reference:

Doctors slides & notes

Done by : Team leaders : Mohammed Ghnadour & Ghadah Almuhana

Team members: Mohammed Alyousef & Shahd Alsowaidan

Revised by : Basel almeflh

Important | Extra | Notes

Feedback | Editing File

Endemic, Epidemic, Pandemic, Outbreak

• Endemic: (normal frequency of a disease in a specific area Ex: malaria is Endemic in some places (south) but not endemic in Riyadh) The constant presence of usual prevalence of a disease in a given geographic area

• Epidemic:

The sudden increase in the number of cases for a certain disease above what is normally expected in that population

• Pandemic:

When an epidemic spread over several countries usually affecting a large number of people

• Outbreak:

It is an epidemic that occurs in a limited geographic area (e.g. an institution, a home facility, a neighbourhood, a village...)

What is a cluster? (number of cases investigated or diagnosed or treated ..etc in the same place)

A cluster is the aggregation of cases in a given area over a period without regard to whether the number of cases is more than expected

Why is this important?

Because detecting unusual clusters of disease can hint to the occurrence of an outbreak in that population

How are Outbreaks Detected?

- Analyzing surveillance data: reviewing exposure information from reports of infectious diseases cases sent by laboratories and healthcare providers
- Health Ministry conducts periodical routine surveillance for infectious disease cases in the community, and

detect an unusual increase in the number of reported cases

• Infection and control at the hospital review microbiological isolates of organisms from patients and wards to detect any unusual increase in number of infections

• Vigilant physician

notices an unusual cluster of patients with the same symptoms and reports to health authorities

Factors that may affect the decision to investigate an outbreak

- Number and pattern of people involved (cluster of cases)
- Type of disease (ease of transmission; type of causative agent)
- Severity of disease; unusual presentation
- Availability of effective control measures
- If the disease needs prompt control measures to prevent fast spread to others (or is it already over?) (such as highly infectious diseases like measles)
- Availability of staff and resources to conduct investigation

Reasons for conducting an outbreak investigation

- Control and prevention
- Research opportunity
- Learning and training "an experiment of nature waiting to be analyzed"
- Public or legal concerns

Steps for conducting an outbreak investigation

Table 6.2 Epidemiologic Steps of an Outbreak Investigation

- 1. Prepare for field work
- 2. Establish the existence of an outbreak
- 3. Verify the diagnosis
- 4. Construct a working case definition
- 5. Find cases systematically and record information
- 6. Perform descriptive epidemiology
- 7. Develop hypotheses
- 8. Evaluate hypotheses epidemiologically
- 9. As necessary, reconsider, refine, and re-evaluate hypotheses
- 10. Compare and reconcile with laboratory and/or environmental studies
- 11. Implement control and prevention measures
- 12. Initiate or maintain surveillance
- 13. Communicate findings

Example: Botulism in Argentina

- On January 13, 1998, an infectious diseases physician at a Buenos Aires hospital telephoned the Directorate of Epidemiology of the Argentine Ministry of Health (MOH) to report two possible cases of botulism.
- The patients, both men, presented with drooping eyelids, double vision, difficulty swallowing, and respiratory problems.
- One patient had onset of symptoms on January 5 and the other on January 6.
- The physician had drawn sera and collected stool specimens from the men to test for botulinum toxin, but no results were available.

1-Prepare for field work

- Do you have the knowledge, resources and staff for the field?
- Will you need any laboratory tools?
- Do I need equipment to protect myself?
- Do I have an action plan?
- Identify team members (who will do what?)
- Is it a zoonotic disease? (will I need a veterinarian?)

Botulism in Argentina: is it worth investigating?

- Could this possibly be an outbreak? is it worth investigation?
- Seriousness of the disease?
- Food-borne from a possible manufacturer (contaminated products) could spread to many people

2-Establish the existence of an outbreak

- Is the number of cases higher than the usual?
 - Compare the current situation with the expected number from past weeks or months; hospital data; neighboring cities; background of disease in community
- Is there a cluster of cases with the same complaints?
- Is the increase in reporting due to actual increase in number of cases or due to improvement of diagnosis and surveillance methods?

• Severity of the disease? availability of control measure? does this need prompt response?

Back to the Botulism example...

- The epidemiologists established that this is a public health emergency because people may contract the disease from the same source and the complications of the disease is severe.
- However, the results from the lab were still not available, but they still must verify the diagnosis before continuing.

3- Verify the diagnosis

- This is required to:
- 1. To ensure that the disease has been properly diagnosed
- 2. To rule out that increase in disease diagnosis was due to laboratory error
- Review clinical findings (are they consistent with the disease?)
- Laboratory methods used
- Frequency tables for clinical findings (are they all presenting with same symptoms?)

Back to the Botulism example...

- The clinical syndrome of botulism is dominated by neurologic signs and symptoms.
- If respiratory muscles are involved, ventilatory failure and death may result unless supportive care is provided.
- The average incubation period for botulism is 18-36 hours, but symptoms can occur as early as six hours or as late as 10 days after exposure.

(incubation period is so important for diagnosis; what did they do? when did they do it? for example if they all ate food and the symptoms appeared within the incubation period then it's most likely = case)

4-Construct a working case definition

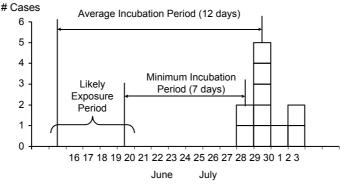
- **Case definition:** This is a set of criteria needed to classify an individual as having the disease or not
- Identify and count cases
- criteria should be objective measures
- DO NOT include the risk factor of interest in your case definition: e.g. if symptoms started after eating in restaurant A, do not make your case definition exclusively for people who ate at rest A
- Instead, define cases within a certain time
 - who had symptoms from month X to month Y
- Different categories: confirmed, probable, possible, suspect
- Start loose and then tighten your definition later

(confirmed: ate, symptoms, lab. probable: ate, symptoms no lab, possible: symptoms but not sure if they ate. suspect ate but no symptoms yet) **5-Find cases systematically and record information**

- Ask local health facilities if they have patients with similar history and symptoms
- Ask the patients if other members they know have the same symptoms
- Review ER admission log
- Contact laboratory and ask to inform you about any orders for testing for the disease in question (if anyone have done a test positive for the investigated organism)
- Contact media to ask community to be vigilant for the symptoms and contact health facility if they experience them

A-Information we should know from each case:

- Name
- Demographic data (Address is very important to know whether they were in contact with the same exposure or another exposure Ex: an outbreak in riyadh but a case was found in jeddah i would know if he they were in riyadh then traveled or the same outbreak is happening in jeddah)
- Risk factors; exposures. If food borne ask about meal history in the past few days depending on incubation period of the disease
- Symptoms and signs
- Who reported the information
- Confirmed or pending lab results

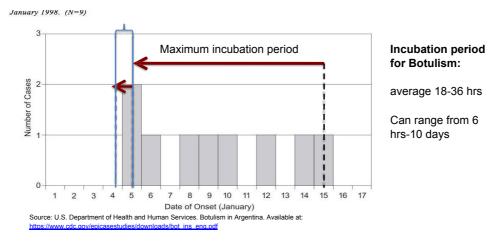

B-Perform a Line List a table where every row represent a case and every column represent data collected from the case, its purpose is to find a common risk factor

- A line list is a document that contains key information about each case
- Each row in the line list represents the information about one case
- You include: ID info, demographic info, symptoms, date of onset, PE, any lab results
- There are templates available for line lists on the CDC, but they should be modified to fit the disease outbreak

6-Perform descriptive epidemiology

- Important to observe time trends (epidemic curve), distribution by geographic area and other demographics
- Try to infer the risk of the disease
- Provides clues about the possible etiology and risk factors to generate hypotheses
- Shows where and among who the disease is to begin intervention
- Helps identify the likely period of exposure (from epidemic curve)

Example of an epidemic curve

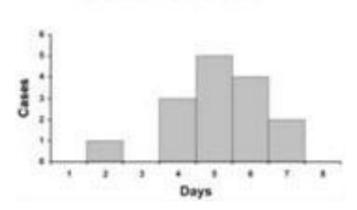


How to identify exposure period from epidemic curve? If patients cluster at a certain point:

- •Identify the peak of the outbreak or the median case
- •<u>From that point</u>, count back on the x-axis one average incubation period => note this date
- •Start <u>from the earliest case</u> and count back one <u>minimum incubation period</u> => note this date as well

If no cluster of cases (continuous common source):

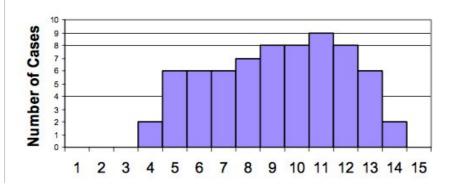
- •Earliest case count backwards a minimum incubation period
- •Last case count backwards one maximum incubation period



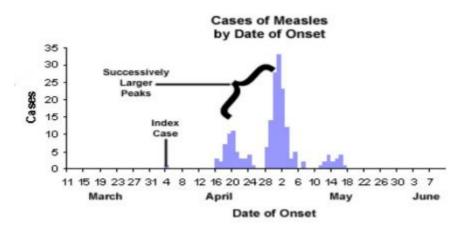
Can you estimate the possible period of exposure? (point source)

Types of epidemics from epidemic curve

1. Common Point Source


- People are usually exposed to the same risk factor over a limited and defined period (usually one incubation period)
- Shape: rapid rise, with a sharp peak, then gradual decline

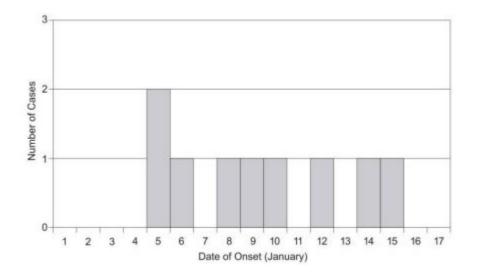
Common Point Source


2. Continuous Common Source (intermittent source)

- Exposure occurs over prolonged period (>one incubation period) Example: contaminated water, people who live in that area are exposed for prolonged time and not only one event (no peak on the curve)
- People are exposed continuously or intermittently to a common source
- Shape: has several peaks without a clear incubation period

3. Propagated Source (progressive source)

Here cases serve as sources for subsequent cases, and subsequent cases serve as source for later cases. Reflects a disease transmitted from person to person.



Questions we ask ourselves after looking at the epidemic curve

- Is the outbreak from a single source? or multiple sources?
- Is it spread from person to person?
- Is the exposure continuing or did it just occur at one event?
- Is there a vector involved?
- Is it chemically transmitted or airborne?
- Is the source of infection unapparent?

Back to the Botulism Example

• What epidemic curve is this?

• After some investigation, the epidemiologists found that the cases were all bus drivers who worked at the morning shift, and ate at the same restaurant in the morning.

• Investigators hypothesized that: - Exposure was at the restaurant - During the morning shift - Intermittent exposure to the same source (based on epidemic curve)

7-Develop a hypothesis

The hypotheses may address:

- Source of the agent => What is the reservoir?
- Mode of transmission => vehicles? vectors?
- Exposure and risk factors =>
 - Ask cases about what they think could be possible exposure?
 - Epidemic curve may trigger the question: What common exposure happened during the possible period of exposure?
 - What special CCCs do the cases have? (age, sex, risk factors)
 - Why do people in a specific area have the highest attack rate?

8-Evaluate the hypothesis We evaluate our hypotheses:

- 1. Compare with established facts=>
 - laboratory testing
 - Environmental assessment
 - Epidemiologic evidence

If findings are not straightforward......

- 2. Analytical epidemiological study =>
 - Compare two groups to look for association between the disease and exposure to the hypothesized source

Analytical Epidemiology in Outbreak Investigations

Retrospective Cohort Study

- Suitable when the number of cases is small in a well- defined population
- We divide the whole people in that defined population into people exposed vs. people not exposed to the source -> and assess their disease status
- We then estimate the Attack Rate (Risk) , and then the Risk Ratio (relative risk)

Case-control Study

- Suitable when the number of cases is larger
- We divide the people to cases and controls, then assess their exposure status
- We then estimate the odds ratio

9-Reconsider, refine and re-evaluate your hypothesis

- Sometimes epidemiological analyses do not answer the questions of the investigator
- The investigator may need to conduct further studies, study a different exposure, or refine the population being studied to reach answers
- The investigator refines the hypothesis based on the results of epidemiologic analysis and if they were not confirmed by laboratory testing, and conduct further studies

10-Compare with laboratory and environmental studies

- Coordinate results from epidemiological analyses with evidence from <u>laboratory testing</u> and/or <u>assessing the environment</u>
- For example, when a foodborne outbreak is suspected, and epidemiologic analyses pointed to a certain food product, the investigator would test that food product and culture it for the infectious agent in question
- If a water-borne outbreak is suspected from epidemiologic study, the investigator would examine the water source for reasons of contamination

11-Implement prevention and control measures

- Prevention and control measures are usually taken from the beginning of the outbreak (prompt treatment of cases; remove the source when identified; isolate cases if needed; prevent spread to susceptible individuals...etc)
- Control measures are implemented in a way that interrupts one or more of the elements in the "chain of infection"

12-initiate or maintain surveillance

- Surveillance should be ongoing from the beginning of the investigation
- If not started yet, now is the time for active surveillance and continuing it until we are sure the outbreak has stopped

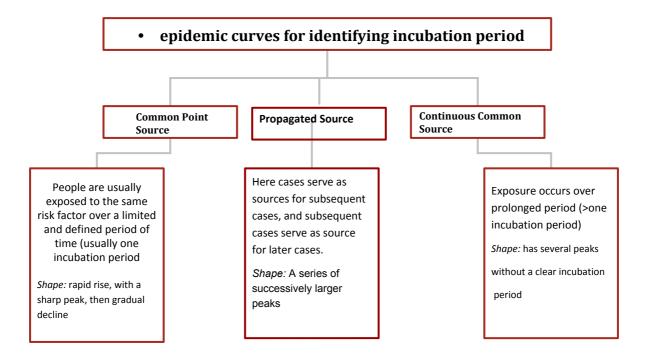
Reasons for surveillance:

- 1. To determine that prevention and control measures are working
- 2. Assured the outbreak did not spread outside the area targeted by the intervention

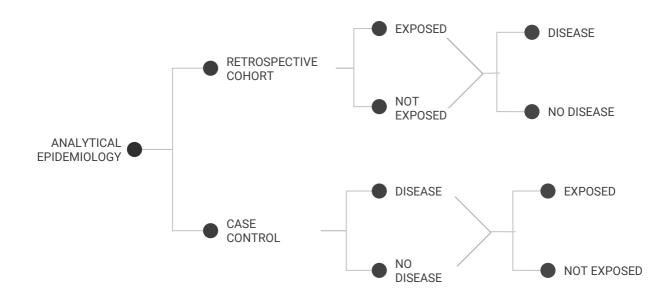
13-Communicate findings

Summarize everything that happened and what has been done:

- The outbreak (onset, cases involved, symptoms, duration, complications)
- laboratory investigations
- sources detected
- type of epidemiologic study conducted and results of analyses
- coordination of results with evidence (lab and environment)
- prevention and control measures implemented and containment of outbreak


We communicate this summary:

- To local health authority
- written report (scientific format) that is later added to the literature


SUMMARY:

Steps for conducting an outbreak investigation:

- 1) Prepare for field work
- 2) Establish the existence of an outbreak
- 3) Verify the diagnosis
- 4) Construct a working case definition
- 5) Find cases systematically and record information
- 6) Perform descriptive epidemiology
- 7) Develop a hypothesis
- 8) Evaluate the hypothesis
- 9) Reconsider, refine and re-evaluate your hypothesis
- 10) Compare with laboratory and environmental studies
- 11) Implement prevention and control measures
- 12) initiate or maintain surveillance
- 13) Communicate findings

• Analytical Epidemiology in Outbreak Investigations

THE END

