MED\|C\|NE
KING SAUD UNIVERSITY

Tabular \& Graphical Presentation of data

Objectives:

- To know how to make frequency distributions and its importance
- To know different terminology in frequency distribution table
- To learn different graphs/diagrams for graphical presentation of data.

Team Members:Thikrayat Omar \& Wejdan Alzaid
Team Leaders: Mohammed ALYousef \& Rawan Alwadee
Revised By: Basel almeflh

Dr. shaffi Ahmed

Resources:

- 436 Lecture Slides + Notes

Frequency Distributions "putting the data in table form"
"A Picture is Worth a Thousand Words"

Frequency Distributions

- Data distribution - pattern of variability.
- The center of a distribution
- The ranges
- The shapes
- Simple frequency distributions
- Grouped frequency distributions

Simple Frequency Distribution

- The number of times that score occurs "there is no class intervals, we are just counting
the number of each class"
- Make a table with highest score at top and decreasing for every possible whole number or from lowest score it doesn't matter but it has to be in order.
- $\quad \mathrm{N}$ (total number of scores) always equals the sum of the frequency
$\Sigma \mathrm{f}=\mathrm{N}$

Categorical or Qualitative Frequency Distributions

What is a categorical frequency distribution?

A categorical frequency distribution represents data that can be placed in specific categories, such as gender, blood group, \& hair color, etc.

Example: The blood types of 25 blood donors are given below. Summarize the data using a frequency distribution.

$A B$	B	A	O	B
O	B	O	A	O
B	O	B	B	B
A	O	$A B$	$A B$	O
A	B	$A B$	O	A

Class (Blood Type)	Frequency, f
A	5
B	8
0	8
AB	4
Total	$n=25$

Note: The classes
for the distribution are the blood types.

Quantitative Frequency Distributions -- Ungrouped

"because the sample size is small we are using ungrouped data"
What is an ungrouped frequency distribution?
An ungrouped frequency distribution simply lists the data values with the corresponding frequency counts with which each value occurs.

Example: The at-rest pulse rate for 16 athletes at a meet were $57,57,56,57,58,56,54,64,53,54,54$, $55,57,55,60$, and 58 . Summarize the information with an ungrouped frequency distribution.

Class (pulse Rate)	Frequency, f
53	1
54	3
55	2
56	2
57	4
58	2
60	1
64	1
Total	$n=16$

Note: The (ungrouped)
classes are the
observed values
themselves.

Example of a simple frequency distribution (ungrouped)

- 5781593422349714568943521 (No. of children in 25 families)
f
- 93
e.g. there are three families that
have nine children.
two families that have eight children
and so on.
- $8 \quad 2$
- 72
- 61
- 54
- 44
- 33
- 23
- 13
$\Sigma f=25$ (No. of families)

Relative Frequency Distribution related to total frequency this is the continuation of the above equation

- Proportion of the total N
- Divide the frequency of each score by N
- Rel. $\mathrm{f}=\mathrm{f} / \mathrm{N}$
- Sum of relative frequencies should equal 1.0 or
= 100% by percentage
- Gives us a frame of reference

Class (pulse Rate)	Frequency, f	Relative Frequency
53	1	0.0625
54	3	0.1875
55	2	0.1250
56	2	0.1250
57	4	0.2500
58	2	0.1250
60	1	0.0625
64	1	0.0625
Total	$\mathbf{n = 1 6}$	1.0000

Note: The relative frequency for a class is obtained by computing f / n.

Cumulative Frequency Distributions

- $\quad c f=$ cumulative frequency: number of scores at or below a particular score
- A score's standing relative to other scores
- Count from lower scores and add the simple frequencies for all scores below that score

Example of a simple frequency distribution

-5781593422349714568943521

	f	relf	cf
$\cdot 9$	3	. 12	3
-8	2	. 08	$5=2+3$
$\cdot 7$	2	. 08	$7=3+2+2$
-6	1	. 04	$8=3+2+2+1$
$\cdot 5$	4	. 16	12
-4	4	. 16	16
$\cdot 3$	3	. 12	19
-2	3	. 12	22
$\cdot 1$	3	. 12	25
	$=25$	$\sum \operatorname{rel} f=1.0$	

how many families have 7 or more children?
from $c f=7$
so we can know any number above or below any data without counting. (the advantage)
if they ask you how many family have 5 and above children? 12
how many family have 4 and above children ?16

Example of a simple frequency distribution (ungrouped) - 5781593422349714568943521				
- 9	3	cf 3	rel $.12$	rel. cf $.12$
- 8	2	5	. 08	. 20
- 7	2	7	. 08	. 28
- 6	1	8	. 04	. 32
- 5	4	12	. 16	. 48
- 4	4	16	. 16	. 64
- 3	3	19	. 12	. 76
- 2	3	22	. 12	. 88

Quantitative Frequency Distributions -- Grouped

$>\quad$ What is a grouped frequency distribution? A grouped frequency distribution is obtained by constructing classes (or intervals) for the data, and then listing the corresponding number of values (frequency counts) in each interval.

Tabulate the hemoglobin values of $\mathbf{3 0}$ adult male patients listed below

Patient No	Hb $(\mathrm{g} / \mathrm{dl})$	Patient No	Hb $(\mathrm{g} / \mathrm{dl})$	Patient No	Hb $(\mathrm{g} / \mathrm{dl})$
1	12.0	11	11.2	21	14.9
2	11.9	12	13.6	22	12.2
3	11.5	13	10.8	23	12.2
4	14.2	14	12.3	24	11.4
5	12.3	15	12.3	25	10.7
6	13.0	16	15.7	26	12.5
7	10.5	17	12.6	27	11.8
8	12.8	18	9.1	28	15.1
9	13.2	19	12.9	29	13.4
10	11.2	20	14.6	30	13.1

Steps for making a table

- Step1 Find Minimum (9.1) \& Maximum (15.7)
- Step 2 Calculate difference $15.7-9.1=6.6$
- Step 3 Decide the number and width of the classes (7 c.l) 9.0-9.9, 10.0-10.9,---
- Step 4 Prepare dummy table - $\mathrm{Hb}(\mathrm{g} / \mathrm{dl})$, Tally mark, No. patients
we have to know the difference in magnitude and the sample size to decide the number and the width of class intervals.
the intervals should not be less than 5 or more than 10.
the intervals should not overlap each other.

TEAMS

Dummy table

$\mathrm{Hb}(\mathrm{g} / \mathrm{dl})$	Tall marks	No. patients
$\mathbf{9 . 0}-\mathbf{9 . 9}$		
$\mathbf{1 0 . 0} \mathbf{- 1 0 . 9}$		
$\mathbf{1 1 . 0} \mathbf{- 1 1 . 9}$		
$\mathbf{1 2 . 0} \mathbf{- 1 2 . 9}$		
$\mathbf{1 3 . 0} \mathbf{- 1 3 . 9}$		
$\mathbf{1 4 . 0} \mathbf{- 1 4 . 9}$		
$\mathbf{1 5 . 0}-\mathbf{1 5 . 9}$		
Total		

Table Frequency distribution of $\mathbf{3 0}$ adult male patients by Hb

$\mathrm{Hb}(\mathrm{g} / \mathrm{dl})$	No. of patients
$\mathbf{9 . 0}-\mathbf{9 . 9}$	$\mathbf{1}$
$\mathbf{1 0 . 0}-\mathbf{1 0 . 9}$	$\mathbf{3}$
$\mathbf{1 1 . 0}-\mathbf{1 1 . 9}$	$\mathbf{6}$
$\mathbf{1 2 . 0}-\mathbf{1 2 . 9}$	$\mathbf{1 0}$
$\mathbf{1 3 . 0}-\mathbf{1 3 . 9}$	$\mathbf{5}$
$\mathbf{1 4 . 0}-\mathbf{1 4 . 9}$	$\mathbf{3}$
$\mathbf{1 5 . 0}-\mathbf{1 5 . 9}$	$\mathbf{2}$
Total	$\mathbf{3 0}$

Tall marks TABLE

$\mathrm{Hb}(\mathrm{g} / \mathrm{dl})$	Tall marks	No. patients
$9.0-9.9$	1	1
10.0-10.9	111	3
11.0-11.9	IIII 1	6
12.0-12.9	141 1 11	10
13.0-13.9	14	5
14.0-14.9	111	3
15.0-15.9	11	2
Total	-	30

Table Frequency distribution of adult patients by Hb and gender (two variable)

we can put age group also (3 ways classification) more than 3 variables would be confusing.

Elements of a Table

- Ideal table should have : Number, Title, Column headings and Foot-notes
- Number : Table number for identification in a report
- Title, place : Describe the body of the table, variables
- Time period: (What, how classified, where and when)
- Column Heading : Variable name, No. , Percentages (\%), etc.,
- Foot-note(s) : to describe some column/row headings, special cells, source, etc.,

Tabular and Graphical Procedures

DIAGRAMS/GRAPHS

Qualitative data (Nominal \& Ordinal)

- Bar charts (one or two groups)
- Pie charts

Quantitative data (discrete \& continuous)

- Histogram
- Frequency polygon (curve)
- Stem-and -leaf plot
- Box-and-whisker plot
- Scatter diagram

Example data

68	63	42	27	30	36	28	32
79	27	22	28	24	25	44	65
43	25	74	51	36	42	28	31
28	25	45	12	57	51	12	32
49	38	42	27	31	50	38	21
16	24	64	47	23	22	43	27
49	28	23	19	11	52	46	31
30	43	49	12				

Histogram

Polygon

Histogram of ages of 60 subjects
the height of the bar is proportional to that class's absolute
frequency (number of individuals in the class)

Stem and leaf plot

Stem-and-leaf of Age $\quad N=60$
Leaf Unit = 1.0
f stem lea
$61122269=11,12$,
1921223344555777788888

11300111226688
1342223334567999
$5 \quad 501127$
463458

2749
in all these graphs we can see the shape of distribution and maximum and minimum scores. in addition of that we can show all the data in stem and leaf plot.

Descriptive statistics report: Boxplot "for very large data"

- minimum score
- maximum score
- lower quartile
- upper quartile
- median
- mean

- The skew of the distribution
positive skew: mean > median \& high-score whisker is longer
negative skew: mean < median \& low-score whisker is longer

Application of a box and Whisker diagram

Pie Chart for categorical data

-Circular diagram - total -100\%
-Divided into segments each representing a category
-Decide adjacent category
-The amount for each category is proportional to slice of the pie

The prevalence of different degree of Hypertension in the population

The distribution of risk factor among cases with Cardiovascular Diseases

- Heights of the bar indicates frequency
- Frequency in the Y axis and categories of variable in the X axis
- The bars should be of equal width and no touching the other bars

HIV cases enrolment in USA by gender
multiple Bar chart

HIV cases Enrollment in USA by gender

each dot represents 2 quantitative variables,
so we use the scattered data when we want to study the relation between 2 quantitative variables

DISPEAYINC CONTINUTOUS DATA

Figare 4,7 Relation berween dose of growth hommome amd ohange in height velocity stameland

General rules for designing graphs

- A graph should have a self-explanatory legend by the title of the table or graph
- A graph should help reader to understand data
- Axis labeled, units of measurement indicated
- Scales important. Start with zero (otherwise // break)
- Avoid graphs with three-dimensional impression, it may be misleading (reader visualize less easily

THE END

