

Statistical tests to observe the statistical significance of qualitative variables

(Z-test, Chi-square, Fisher's exact & Mac Nemar's Chi-square)

Objectives:

- Able to understand the factors to apply for the choice of statistical tests in analyzing the data .
- Able to apply appropriately Z-test, Chi-square test, Fisher's exact test & Macnemar's Chi-square test.
- Able to interpret the findings of the analysis using these four tests.

<u>Team Members:</u> Ebtisam Almutairi - Monera AlAyuni <u>Team Leaders</u>: Mohammed ALYousef & Rawan Alwadee <u>Revised By:</u> Basel almeflh <u>Dr. shaffi ahmed</u>

في الاختبار يجيك سيناريو ويبغى منك تحدد اي نوع اختبار تستخدم اهم شيء تعرفون كل اختبار ومتى نستخدمه واذا فيه مميزات مثلا كم لازم تكون العينة،في الاختبار مافيه مسائل حسابية

Resources: • 436 Lecture Slides + Notes <u>436researchteam@gmail.com</u>
 <u>Editingfile</u>
 <u>Feecbacklink</u>

Important - Notes

الحمد لله الذي بنعمته تتم الصالحات تم الانتهاء من آخر محاضرة لمادة البحث ،من لا يشكر الناس لا يشكر الله نخص بالشكر الجزيل:

القادة الأكاديميين : باسل المفلح ،مها الغامدي ، عبدالعزيز العنقري

وللأعضاء الذين هم أساس هذا العمل:

- ابتسام المطيري
- بدريه الصباغ
 جواهر ابانمي
 - دعاء وليد
 - ذكريات عمر
 - عبداء السعبد
 - لمى الفوزان

- لیلی مذکور
- منيرة العيوني
 منيرة الضفيان
- نجود العنزي
 - وئام بابعير
- وجدان الزيد

- حاتم النداح
- خالد الحسينان
 خالد العيدان
- حمد العايد
- محمد غندور
- مزيد العتيبي
- عبد المحسن الغنام

فإن أصبنا فمن الله، وإن أخطأنا فمن أنفسنا والشيطان

لا تنسونا من خالص دعواتكم

مع تمنياتنا لكم بالتوفيق ، قادة الفريق : محمد اليوسف ، روان الوادعي

Types of Qualitative/ Categorical Data

•Nominal Category •Ordinal Categories

Types of Analysis for Categorical Data

•Descriptive (frequencies, percentages, Rate and Ratio) •Analytical Test of Significance (p-value) and Cl.

Choosing the appropriate Statistical test. Very important

- Based on the three aspects of the data
 - Types of variables
 - Number of groups being compared
 - Sample size

Everytime you are asked about the appropriate test ask these questions type of the variables Quantitative vs qualitative (Categorical)? Number of groups? sample size more than or less than 30?

Statistical Tests:

♦ <u>Z-test:</u>

Study variable:	Qualitative (Categorical)	whenever you have the quantitative data you are calculating
Outcome variable:	Qualitative(Categorical)	mean values. whenever you have
Comparison:	 i. sample proportion with population proportion; ii. two sample proportions 	qualitative data you are calculating proportions. this is a clue to understand the scenarios.
Sample size:	larger in each group(>30)	

Test for sample proportion with population proportion. In the exam you will be given scenario exactly like this :,)

Problem In an otological examination of school children, out of 146 children examined 21 were found to have some type of otological abnormalities. Does it confirm with the statement that 20% of the school children have otological abnormalities? 20% came from another study, the aim is to a. Question to be answered: test it. The 20% of 146 is 14.4.... It's not Is the sample taken from a population of children with 20% otological abnormality? equal to 21 mentioned above. So test the difference, is it due to by chance? or this school has less prevalence of abnormality. The result of z score test is 1.69, the next b. Null hypothesis : step is to look in z table and find the no, in The sample has come from a population with 20% otological abnormal children raw=1.6 & column=0.09, the number is 0.05. 0.05 means 0.96 above 1(the average), so 1 **c. Test statistics** $z = \frac{|p-p|}{r} = \frac{|14.4-20|}{r} = 1.69$ P – Population Prop. & 0.96=1.96. $\frac{\overline{\rho q}}{\overline{\rho q}} = \frac{14.4 * 85.6}{14.4 * 85.6}$ So u look at the test statistic number, if it's p- sample prop. n 146 less than 1.96 then accept the null 21/146=0.143*100=14.4 n- number of samples hypothesis. If it's above then reject the null 100-14.4=85.6 d. Comparison with theoretical value hypothesis. Z ~ N (0,1); z_{0.05}= 1.96 The prob. of observing a value equal to or greater than 1.69 by chance is more than 5%. We therefore do not reject the Null Hypothesis e. Inference There is a evidence to show that the sample is taken from a population of children with 20% abnormalities

Comparison of two sample proportions

Problem

In a community survey, among 246 town school children, 36 were found with conductive hearing loss and among 349 village school children 61 were found with conductive hearing loss. Does this data, present any evidence that conductive hearing loss is as common among town children as among village children?

a. Question to be answered:

Is there any difference in the proportion of hearing loss between children living in town and village?

Given data	sample 1	samp	ble 2
size	246	342	
hearing loss	36	61	
% hearing loss	14.6 %	17.5%	36/246=0.146*100=14.6%

b. Null Hypothesis

There is no difference between the proportions of conductive hearing loss cases among the town children and among the village children

c. Test statistics

p1, p2 are sample proportions, n1,n2 are subjects in sample 1 & 2

d. Comparison with theoretical value

Z ~ N (0,1); z_{0.05} = 1.96

The prob. of observing a value equal to or greater than 1.81 by chance is more than 5%. We therefore do not reject the Null Hypothesis

e. Inference

There is no evidence to show that the two sample proportions are statistically significantly different. That is, there is no statistically significant difference in the proportion of hearing loss between village and town, school children.

Chi-square test:

study variable:	(Qualitative (Categorical	if you use th
Outcome variable:	(Qualitative(Categorical	than 2
Comparison:	two or more proportions	
Sample size:	X>30	The d
Expected frequency:	X> 5	two).

if you have 2 proportion you can use this test or z test but more than 2 proportion you use this

The data must satisfy these two conditions. (The last two).

Purpose

To find out whether the association between two categorical variables are statistically significant

Null Hypothesis

There is no association between two variables

$$x^{2} = \sum \left[\frac{(o - e)^{2}}{e} \right]$$
Figure for Each Cell

- 1. The summation is over all cells of the contingency table consisting of r rows and c columns
- 2. O is the observed frequency
- *3.* \hat{E} is the expected frequency

$$\widehat{E} = \frac{(\text{total of row in which the cell lies})}{(\text{total of column in which the cell lies})}$$

$$reject H_{o} \text{ if } \chi^{2} > \chi^{2}_{.\alpha,df} \qquad \chi^{2} = \sum (O - E)^{2}$$

Ε

where
$$df = (r-1)(c-1)$$

4. The degrees of freedom are df = (r-1)(c-1)

Requirements

- Prior to using the chi square test, there are certain requirements that must be met.
 - The data must be in the form of frequencies counted in each of a set of categories. Percentages cannot be used.
 - The total number observed must be exceed 20.
- The expected frequency under the H0 hypothesis in any one fraction must not normally be less than 5.
- All the observations must be independent of each other. In other words, one observation must not have an influence upon another observation.(independent :like smoker, non smoker male female)

Application of chi-square test

- Testing independence (or Association)
- Testing for homogeneity
- Testing of goodness-of-fit

Chi-square test

Objective : Smoking is a risk factor for MI Null Hypothesis: Smoking does not cause MI

	D (MI)	No D(No MI)	Total
Smokers	29	21	50
Non- smokers	16	34	50
Total	45	55	100

Smokers & non smokers & MI & not MI should be seperated in the table.

MI\Smoker = E =
$$\frac{45 \times 50}{100}$$
 = 22.5

MI\Non Smoker = $E = \frac{45 \times 50}{100} = 22.5$

Non MI\Smoker = $E = \frac{55 \times 50}{100} = 27.5$

Non MI \Non Smoker = $E = \frac{55 \times 50}{100} = 27.5$

First, u have the Observed freq schedule, Second, calculate Expected freq.

Fourth, find the degree of freedom.

Last take a look at the table (critical value, just like z-table) so u can

decide if null hypothesis is accepted or rejected

في الاختبار اذا جاء سؤال كم عدد الصفوف والاعمدة في هذا الجدول :table 2*2 ما

Third, Calculate the chi-square. $x^2 = \Sigma (O - E)^2$

نحسب التوتال

Chi-square

Degrees of Freedom

df = (r-1) (c-1) R= rows صفوف = (2-1) (2-1) =1 C=columns اعمدة

- Critical Value (Table A.6) = 3.8
- $x^2 = 6.84$
- Calculated value(6.84) is greater than critical (table) value (3.84) at 0.05 level with 1 d.f.f
- Hence we reject our Ho and conclude that there is highly statistically significant association between smoking and MI.

Association between Diabetes and Heart Disease?

Background:

Contradictory opinions:

1. A diabetic's risk of dying after a first heart attack is the same as that of someone without diabetes. There is no association between diabetes and heart disease.

vs.

2. Diabetes takes a heavy toll on the body and diabetes patients often suffer heart attacks and strokes or die from cardiovascular complications at a much younger age.

- So we use hypothesis test based on the latest data to see what's the right conclusion.
- There are a total of 5167 patients, among which 1131 patients are non-diabetics and 4036 are diabetics. Among the non-diabetic patients, 42% of them had their blood pressure properly controlled (therefore it's 475 of 1131). While among the diabetic patients only 20% of them had the blood pressure controlled (therefore it's 807 of 4036).

٠	Data

	Controlled	Uncontrolled	Total
Non-diabetes	475	656	1131
Diabetes	807	3229	4036
Total	1282	3885	5167

CONT. Association between Diabetes and Heart Disease?

Data:

Diabetes: 1=Not have diabetes, 2=Have Diabetes Control: 1=Controlled, 2=Uncontrolled

DIABETES * CONTROL Crosstabulation

Count		CONTROL		
		1.00	2.00	Total
DIABETES	1.00	475	656	1131
	2.00	807	3229	4036
Total		1282	3885	5167

Q			CONTROL		
5			1.00	2.00	Total
DIABETES	1.00	Count	475	656	1131
		% within DIABETES	42.0%	58.0%	100.0%
		% within CONTROL	37.1%	16.9%	21.9%
		% of Total	9.2%	12.7%	21.9%
2.00	2.00	Count	807	3229	4036
		% within DIABETES	20.0%	80.0%	100.0%
		% within CONTROL	62.9%	83.1%	78.1%
		% of Total	15.6%	62.5%	78.1%
Total		Count	1282	3885	5167
		% within DIABETES	24.8%	75.2%	100.0%
		% within CONTROL	100.0%	100.0%	100.0%
		% of Total	24.8%	75.2%	100.0%

DIABETES * CONTROL Crosstabulation

Hypothesis test:

 H_0 : There is no association between diabetes and heart disease. (or) Diabetes and heart disease are independent.

 $H_{\rm A}$: There is an association between diabetes and heart disease. (or) Diabetes and heart disease are dependent.

• Assume a significance level of 0.05

SPSS Output

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	229.268 ^b	1	.000		
Continuity Correction	228.091	1	.000		
Likelihood Ratio	212.149	1	.000		
Fisher's Exact Test	800 1800 1909 1999 1999 1999 1999 1999 1		0153642.0	.000	.000
Linear-by-Linear Association	229.224	1	.000		5.301.383*4
N of Valid Cases	5167				

a. Computed only for a 2x2 table

b. 0 cells (.0%) have expected count less than 5. The minimum expected count is 280.62.

- The computer gives us a Chi-Square Statistic of 229.268
- The computer gives us a p-value of .000 (<0.0001).p-value is smaller than alpha 0.05 which means there's significant association.
- Because our p-value is less than alpha, we would reject the null hypothesis.
- There is sufficient evidence to conclude that there is an association between diabetes and heart disease.

TEAMS

Chi- square test

_____ Find out whether the gender is equally distributed among each age group

Age				
Total	45<	30-45	30>	Gender
120	(30) 40	(30) 20	(60) 60	Male
80	(20) 10	(20) 30	(40) 40	Female
200	50	50	100	total

Test for Homogeneity (Similarity)

To test similarity between frequency distribution or group. It is used in assessing the similarity between non-responders and responders in any survey

Age (yrs)	Responders	Non-responders	Total
<20	76 (82)	20 (14)	96
20 – 29	288 (289)	50 (49)	338
30-39	312 (310)	51 (53)	363
40-49	187 (185)	30 (32)	217
>50	77 (73)	9 (13)	86
Total	940	160	1100

Fisher's exact test:

Study variable:	(Qualitative (Categorical]
Outcome variable:	(Qualitative(Categorical	
Comparison:	two proportions	t
Sample size:	X< 30	l l S

he difference ere is the ample size is small

Example

The following data relate to suicidal feelings in samples of psychotic and neurotic patients:

	Psychotics	Neurotics	Total
Suicidal feelings	2	6	8
No suicidal feelings	18	14	32
Total	20	20	40

Example

The following data compare malocclusion of teeth with method of feeding infants.

	Normal teeth	Malocclusion
Breast fed	4	16
Bottle fed	1	21

Fisher's Exact Test:

The method of Yates's correction was useful when manual calculations were done. Now different types of statistical packages are available. Therefore, it is better to use Fisher's exact test rather than Yates's correction as it gives exact result.

Fisher's Exact Test = $\frac{R_1!R_2!C_1!C_2!}{n!a!b!c!d!}$ no need to know it, however interpretations

is the same

What to do when we have a paired samples and both the exposure and outcome variables are qualitative variables (Binary).

Macnemar's test: (for paired samples) paired: dependent variables.

Study variable:	(Qualitative (Categorical
Outcome variable:	(Qualitative(Categorical
Comparison:	two proportions
Sample size:	Any

Problem

- A researcher has done a matched case-control study of endometrial cancer (cases) and exposure to conjugated estrogens (exposed).
- In the study cases were individually matched 1:1 to a non-cancer hospital-based control, based on age, race, date of admission, and hospital.

Situation:

- Two paired binary variables that form a particular type of 2 x 2 table
- e.g. matched case-control study or cross-over trial

Data

	controls	Cases	Total
Exposed	19	55	74
Not exposed	164	128	292
Total	183	183	366

- can't use a chi-squared test observations are not independent they're paired.
- we must present the 2 x 2 table differently
- each cell should contain a count of the number of pairs with certain criteria, with the columns and rows respectively referring to each of the subjects in the matched pair
- the information in the standard 2 x 2 table used for unmatched studies is insufficient because it doesn't say who is in which pair - ignoring the matching

	contro		
cases	Not exposed	Exposed	Total
Exposed	43	12	55
Not exposed	121	7	128
Total	164	19	183

We construct a matched 2 x 2 table:

	contro		
cases	Not exposed	Exposed	Total
Exposed	f	е	e+f
Not exposed	h	g	g+h
Total	f+h	e+g	n

Formula

The odds ratio is: $\ f\!/g$

The test is:
$$\mathbf{X}^2 = rac{(|\mathbf{f} - \mathbf{g}| - 1)^2}{\mathbf{f} + \mathbf{g}}$$

Compare this to the $\chi^2\,$ distribution on 1 df

 $X^{2} = \frac{(|43-7|-1)^{2}}{43+7} = \frac{1225}{50} = 24.5$

P <0.001, Odds Ratio = 43/7 = 6.1 $p_1 - p_2 = (55/183) - (19/183) = 0.197$ (20%) s.e. $(p_1 - p_2) = 0.036$ 95% CI: 0.12 to 0.27 (or 12% to 27%)

- Degrees of Freedom df = (r-1) (c-1) = (2-1) (2-1) =1
- Critical Value (Table A.6) = 3.84
- $x^2 = 25.92$
- Calculated value(25.92) is greater than critical (table) value (3.84) at 0.05 level with 1 d.f.f
- Hence we reject our Ho and conclude that there is highly statistically significant association between Endometrial cancer and Estrogens.

Cont.

Degrees of freedom df	. 10	.05	.02	.01	
1	2.706	3.841	5.412	6.635	
2	4.605	5.991	7.824	9,210	
3	6.251	7.815	9.837	11.341	
4 5	7.779	9.488	11.668	13.277	
5	9.236	11.070	13.388	15,086	
6	10.645	12.592	15.033	16.812	
7	12.017	14.067	16.622	18,475	
8 9	13.362	15.507	18.168	20,090	
9	14.684	16.919	19.679	21.666	
10	15.987	18.307	21.161	23.209	
11	17.275	19.675	22.618	24.725	
12	18.549	21.026	24.054	26.217	
13	19,812	22.362	25.472	27.688	
14	21.064	23.685	26.873	29.141	
1.5	122 207	24 004	29 250	20 570	

Two-tailed critical ratios of χ^2

Stata Output

Cases	Controls Exposed	Unexposed	Total	
Exposed Unexposed	12 7	43 121	55 128	
Total	19	164	183	
McNemar's chi2(1) = 25.92 Prob > chi2 = 0.0000 Exact McNemar significance probability = 0.0000				
Proportion with f				
Cases	.3005464	FA F (C) F		
Controls	.1038251	[95% Cont.	Interval]	
differenco ratio rel. diff	2.894737	.1210924 1.885462 .1448549	.2723502 4.444269 .2941695	
odds rati	6.142857	2.739772	16.18458 (exact)	

In Conclusion,

When both the study variables and outcome variables are categorical (Qualitative): Apply

(i) Z-test (single & two proportions)

- (i) Chi square test (two & more proportions)
- (ii) Fisher's exact test (two proportions--Small samples)
- (iii) Macnemar's test (two proportions of paired samples)

