

Team Leaders

Khalid Aleedan 🖧 Aseel Badukhon

Done by

Laila Mathkour Abdullah Abuamara Mohammed Alyousef Jawaher Abanumy Nasser Abudujain Ghaida Alsaeed

Revised by: Yara & Basel

CHEMICAL & RADIATION EXPOSURE

Not given (Yup, it is the norm!)

NOTES EXTRA BOOK IMPORTANT GOLDEN NOTES

Chemical Exposure

.

Two mechanistically distinct groups of xenobiotics are capable of interfering with gas exchange:

Simple Aspł	nyxiants	Chem	ical Asphyxiants	
-Carbon dioxide		-Carbon monoxide -Hydrogen Cyanide -Hydrogen Sulfide -Oxides of nitrogen (Methemoglobinemia)		
Irritants				
High water solubility (Upper airway injury)	-Acrolein -Sulfur dioxide		-Ammonia -Hydrogen chloride	
Intermediate water solubility (Upper & Lower airway injury)	-Chlorine		-Isocyanates	
Low water solubility (Pulmonary parenchymal Injury)	-Oxides of nitrogen		-Phosgene	

Simple Asphyxiants

Generally speaking, have No pharmacological activity. Displace oxygen from ambient air.

Fio₂ < 21%. (Fio₂ = Fraction of inspired Oxygen)(Simple Asphyxiants lower it)

- Decrease partial pressure of O_2 .
- Asphyxiation requires high concentration in a closed space.

Clinical Features:

verview:

Mainly symptoms of hypoxia. (Variation of symptoms correlate with the changes of Fio,)

FiO2	Signs/Symptoms
21	None
16 - 12	Tachypnea, hyperpnea, (resultant hypocapnia), tachycardia, reduced attention and alertness, euphoria, headache, mild incoordination The patient will be tachypneic and tachycardic because the body is trying to transport the oxygen to the tissues.
14 - 10	Altered judgment, incoordination, muscular fatigue, cyanosis
10 - 6	Nausea , vomiting, lethargy, air hunger, severe incoordination, coma
< 6	Gasping respiration, seizure, coma, death

Types of Simple Asphyxiants:			
	Helium	SA	
	Neon	SA	
	Argon	SA	
	Xenon	SA, Anesthetic properties	
Short	Methane (CH4)	SA, Natural gas (fuel)	
chain aliphatic	Ethane (C2H6)	SA, Natural gas (fuel), refrigerant	
hydrocar	Propane (C3H8)	SA, Fuel, Solvent	
Gases	Butane (C4H10)	SA, Fuel, Solvent	
Nitrogen	SA, Nitrogen narcosis (Similar to anesthetic gases)		
Carbon dioxide	SA, but also causes systemic toxicity		

Treatment:

Immediate removal from **exposure**. The first thing you need to do is remove the patient from the place before you resuscitate him. Ventilator assistance Supplemental oxygen Supportive care as needed

SA=Simple Asphyxiant

Pulmonary Irritants

The irritant gases are a heterogeneous group of chemicals that produce toxic effects via a final common pathway: the destruction of the integrity of the mucosal barrier of the respiratory tract

Damage of Pneumocytes

Inflammatory reaction

sequence of pathophysiology in irritants! Q

Follow the arrows to reveal the

Acute lung injury (ALI) [cellular debris and plasma exudate in the alveolar sacs]

Types of Pulmonary Irritants:

High water solubility	Intermed <mark>iate water</mark> solubility	Poor water solubility
Ammon <mark>ia, hydroge</mark> n florise, <mark>sulfur dioxid</mark> e.	Chlorine, hy <mark>drogen sulf</mark> ide (rotten <mark>eggs smell).</mark>	Phosgene (<mark>used in WW</mark> I), oxides of n <mark>itrogen, ozo</mark> ne.
-Affect upper A/W "airway" (oral, nasal, pharyngeal, conjunctival mucosa) -Irritation within seconds.	-Upper and lower respiratory symptoms -Symptoms develop after several hours -H2S inhibits mitochondrial	-Affect lower A/W "airway" more (although in large concentrations they produce significant upper A/W (airway) symptoms) -Delayed on <mark>set of symp</mark> toms.

Management:

	For Acute lung	injury (ALI):	Neutralization Therapy: nebulized 2% sodium	
 A,B,C,D Protect the A/W 	PEEP		bicarbonate may be beneficial in patients poisoned by acid-forming irritant gases	
 Limit secretions Oxygen supplementation, 	(Positive End-Expiratory Pressure)	Prone ventilation	Antioxidants: Ascorbic acid, NAC <u>"N-acetylcysteine"</u> (negligible benefit)	
 Pronchodilators ?Corticosteroids: may improve oxygenation, no specific benefit 	, Inverse ratio ventilation	Low tidal volume	Perfluorocarbon Partial Liquid Ventilation: improve oxygenation and may have anti-inflammatory effect	
small risk of harm. If all the previous steps didn't work then we give them steroids			Exogenous Surfactant: no benefit in RCTs "Randomized Controlled Trials"	

Neurologic exam and mini mental state exam

CT as needed We do a CT if there is CNS manifestati because CO can cause ischemia

(CT image)

) Hyperbaric Oxygen (HBO)

-Syncope (Loss of consciousness) -Coma -Seizure -Altered mental status (GCS <15) or confusion -Carboxyhemoglobin >25% -Abnormal Cerebellar function -Age >= 36 years -Prolonged Co exposure (>=24 hr) -Fetal distress in pregnancy

this, CN and CO are twins and no one can separate them! Any patient with history of smoke exposure, must be checked for these two agents)
 -Doctor explained this illustration but said it is for your information but focus on the two red boxes (: <u>CLICK</u>
 -In cellular respiration there is many enzymes that

superoxide dismutase, carbonic

anhydrase, and cytochrome

oxidase (Yuupp, same as CO! Just remember

are essential for generating energy, some of the toxins act on these enzyme to disturb this process therefore we will not be able to either get the ATP so switch to anaerobic pathway (lactic acid; acidosis) or won't be able to use Oxygen (hypoxia) -Fire in a closed space (Plastic burr -Chemistry labs -Plants (Cassava, apricot seeds) -Iatrogenic (Nitroprusside) -Photographic industries -Jewelry manufacturing

Degninet

-CVS:

-Respiratory: SOB, Tachypnea. (Later hypoventilation and pulmonary edema)

Hypotension, Tachycardia, Arrhythmias. (May have

transient hypertension and tachycardia)

-Metabolic:

Lactic acidosis (classically, lactate more than 10). (Needs VBG with Carboxyhemoglobin)

-Most characteristic to CN toxicity: (always look for them in mcg!) Unconscious, hypotensive, and high lactate

Supportive

care

ABCDE

reatment:

CN toxicity causes bitter almond odor Antidote (almost always empirical)

-Hydroxocobalamin (5 g IV during 15 minutes for adults and 70 mg/kg IV for children, up to an adult dose) -Cyanide + hydroxocobalamin = Cyanocobalamin

Cyanide antidote kit <u>see here</u>: -Amyl nitrite

- -Sodium nitrite
- -Sodium thiosulfate

Others

For all the chemicals instead of metals the treatment is water, water water!

l I

. .

.

Chemical	Clinical Manifestations	Treatment
Hydrofluoric Acid (Etching glass, removing rust, and cleaning cement and bricks)	Severe painful burn, decrease Ca, Mg, arrhythmias <u>(image for symptoms)</u>	Irrigation with water at 15-30 min, remove blis Calcium gluconate (2.5% SC Ca, IV /IA Ca, regi anesthesia
Formic acid (used in industry and agriculture)	coagulative necrosis,acidosis,hemolysis and hemoglobinuria.	Copious wound lavage, so bicarbonate for PH<7, exchange transfusio HD(hemodialysis)
Anhydrous ammonia (Fertilizers, manufacture of explosives, petroleum, plastics, and synthetic fibers), Meth dry cook	Can freeze any tissue, chemical burns by liquefaction necrosis	Prompt irrigation of the and skin with water a management of inhala injury
Cement	Three types of cement burns; The most common is a chemically abrasive form, heat-related or blast burns can occur	Copious irrigation afte clothes have been rema Early excision and graf are often necessary
Phenol and derivatives (widely used in the agricultural, cosmetic, and medical fields)	Coagulative necrosis,stimulation, lethargy, seizures, or coma. Tachycardia/bradycardia	Irrigated with large vol of water delivered unde pressure. ACLS (advanced ca support) PRN (as needed)
White Phosphorus (munitions manufacturing, in fireworks, methamphetamine production, fertilizers, rodenticide)	profound thermal injury, hypocalcemia and hyperphosphatemia, ECG changes -Three stages: GI, latent, multi-organ failure	Copious water irrigati decontamination, treat of electrolyte disturba management of the s burns is as with any ot burn wound
Hydrocarbons (fuels, solvents, paints, paint and spot removers, dry cleaning solutions, lamp oil, rubber cement, lubricants)	Aspiration (e.g., coughing,gagging, vomiting, wheezing, tachypnea, or hypoxia). Inhalation (headache, dizziness, nausea, or wheezing). Cardiac sensitization	Removal from expos site. Supportive care Bagonists)

Others

For all the chemicals instead of metals the treatment is water, water water!

.

	Chemical	Clinical Manifestations		Treatment	
N	itrate and Nitrites	Symptoms depend on methemoglobin conc: -20%: headache, anxiety, dyspnea, and tachycardia -40-50%:Confusion, lethargy, and acidosis. -70%: SZ, hypotension, dysrhythmias and death	Sup	oportive care, <mark>Met</mark> blue	hylene
	Tar	Burn	Imm wate using co	nediate cooling with r then removal in t g Solvents. Sunflow an be used. Antibic pintment if in corn	h cold the ED wer oil otic ea
Eler	nental metals (lithium, odium, and potassium)	harmless unless they come in contact with water when violent exothermic reaction occurs	Use befo use l	e mineral oil if avai re water. If using arge amount to lim reaction	ilable water nit the

Chemical Warfare Agents (CWAs) <u>(image)</u>

CWA type	Chemical Agents	Method of exposure	Clinical symptoms	Treatme
Nerve Agents	-G agents (Sarin, cyclosarin, tabun, soman) -V agents (VE, VG, VM, VR, VX) *VX is the most lethal agent	Inhalation	SLUDGE: miotic pupils,bradycardia,bronchospasm,bron chorrhea,muscle spasm/fasciculations,weakness,flaccid paralysis,tachycardia,Seizures, respiratory failure	-Atropine -Pralidoxim
Blistering Agents	Nitrogen mustard and sulfur mustard (mustard gas)	Inhalation	-Acute: Skin,eye and lung damage (pulmonary edema and hemorrhage),erythematous rash, skin blistering -Chronic: Lung damage(COPD,asthma,bronchiolitis obliterans),neutropenia,pancytopenia	-Hydrother y -Moist dressing on blisters -Supportive care
Asphyxiants	Carbon monoxide, chlorine,phosgen e,Hydrogen sulfide gases	Inhalation	Upper airway distress,skin and eye irritation,fatal pulmonary edema and acute respiratory distress syndrome	Supportive care

Others

Chemical Warfare Agents (CWAs) (image)

 - - - - - -	CWA type	Chemical Agents	Method of exposure	Clinical symptoms	Treatment
	Blood Agents	Cyanide	Skin absorption, inhalation and ingestion	Severe distress, tachycardia, cyanosis, hypotension, severe metabolic acidosis, Seizures, cardiac arrest	Cyanide kit: -Amyl nitrite -Sodium nitrite -Sodium thiosulfate Hydroxocobal amin
	Hydrofluoric acid	-	Skin absorption, inhalation and ingestion	Severe pain in exposed area, GI distress, vomiting, cardiac arrhythmias , hypocalcemia, hyperkalemia	Irrigation with water, Ca, regional anesthesia and removing blisters

- For chemical injury, the degree of skin destruction is determined mainly by the properties of the toxic agent, its concentration, and the duration of contact.
- Chemical injuries are commonly encountered after exposure to acids and alkalis.
- Hazmats are substances that can cause physical injury and can damage the environment if improperly handled.
- In dealing with hazmat incidents, two distinct goals must be achieved: (1) The hazmat must be contained, fire and explosions should eventually be extinguished, and the site must eventually be cleaned, and (2) people exposed to the hazmat must be treated.
- Alkali burns tend to penetrate deeper than acidic burns; as a result, alkali burns tend to be associated with greater morbidity.
- HF burns can be associated with significant hypocalcemia.
- Exposure to various toxic gases can occur from routine industrial settings, and knowledge of these agents is necessary for proper treatment by the emergency physician.
- Unconventional chemical weapons may be categorized into four major classifications; nerve agents, vesicants, choking agents, and cyanide agents.

{ Dr. Tawfiq Notes }

General Talk	 Example of cutaneous toxin: organophosphate Example of ingested toxins (can be liquid or solid): drug of abuse, منظفات البيت زي الكلوركس والصابون و abuse, instance goes to the lung and injures the lung with different mechanisms they're the worst, difficult to manage, fatal. The respiratory tract is divided to upper and lower which start from the nasopharynx going down to trachea (oropharynx, vocal cords), then divides into right and left, and then bronchioles, then alveoli. Toxins cause injury to every mechanism, e.g. when ciliar mechanism that wash gets injured it shut down. Mucus mechanism which get secreted by goblet cells (I'll ask you about the basic pathophysiology) (picture):a lot of inflammation edema, mucus production, very bad bronchitis and alveolitis the symptoms he's going to have are severe dyspnea, cough ect X-ray: Fire victim, typical (ARDS) adult respiratory distress syndrome What's the difference between smoke and smog? Smoke is a product of combustion? (البخراق) while smog is associated with vapor (البخار) The smaller the particle (of toxins) the deeper it'll go until it reaches the alveoli
Simple Asphyxiants	 When a gas replaces the oxygen, either by 1. Liquified gas 2. An Apparatus like divers 3. Working in confined place. the oxygen percentage in the room now is 21% if it drops down we'll have symptoms. (MCQs) At 15% > cardiac, autonomic, cerebral hypoxia (manifest by confusion, dizziness, incoordination, and seizure sometimes) Patient die from hypoxia not hypercarbia It's really important to understand that hypoxemia is the main principle of causing mortality If O2 sat falls below 10% patient will have cerebral edema (MCQs) If O2 sat falls below 6% patient will have immediate cardiac arrest The identification of the gas is not important because the treatment is supportive High risk patients (elderly, seizure, cardiac) are kept for observation (MCQs)
Pulmonary Irritants	 You inhale them, they go to the lung, react and form new compounds e.g. 1.chlorine: (used in swimming pools) if aspired in large amounts, it forms hydrochloric acid in lungs, which is very corrosive to the respiratory tract. 2. ammonia: it forms ammonium hydroxide (base) 3. sulfur dioxide: forms sulfurous acid which reacts and form acid or alkaline which are very irritating and cause a lot of damage 4. Phosgene: a gas used in chemical wars, very very injurious You don't have to go in details just example and mechanism of injury Pulmonary irritants mechanism: 1. Dissolve in the mucus of bronchial tree 2. Induce very intense inflammation 3. Form new acid or alkaline 4. Form new oxygen radicals. All these mechanisms cause severe bronchospasm and bronchial inflammation
Weapons of War (Poison Gas)	 Management: Removal from the scene Supportive treatment (oxygenation) Observation Until you reach the hospital Signs of respiratory distress: Cyanosis 2. <u>Tachypnea</u> 3. <u>Tachycardia</u> 4. Pulsus paradoxus 5. Using accessory muscles 6. <u>CNS manifestations</u> 7.Coma
Smoke Inhalation	 How does it kill victims? 1. thermal 2. Particulate in the soot (very high temperature, 4000 higher than air temperature) 3. Trauma 4. Chemical compounds association e.g. cyanide A picture of a patient with stridor (patient dies in half an hour): 1. black carbonaceous material around the vocal cords 2. Laryngeal edema 3. oropharyngeal edema Very difficult patients, mortality is high, usually the only vein preserved for cannulation is axillary vein. Management: 1. Removal from exposure 2. Supportive (ventilation, bronchodilators) 3. Sodium bicarbonate (MCQs) you have to suspect cyanide poisoning in every patient with metabolic acidosis, the most important signs are stridor, hoarseness, respiratory distress

Radiation

Unstable nuclei decay or transform into more stable nuclei (daughters) via the emission of various particles or energy.

In nutshell; there is some SUPER active substances in our world and because they are too generous, they will lose some of their energy into the surrounding as RADIATION (Yes, you who thought physics and chemistry classes are not important since you are going for medicine >___()

Penetration abilities of different types of radiation: (image) (image)

Alpha particles: Stopped by a sheet of paper least tissue penetrating ability

Beta particles Stopped by a layer of clothing or less than an inch of a substance (e.g. plastic)

Gamma rays Stopped by inches to feet of concrete or less than an inch of lead

Neutrons Stopped by a few feet of concrete

a-particles	β-particles	Photons	y and X-rays
-Radioactive decay of an atom nucleus giving off 2 protons and 2 neutrons -Travel only few centimeters in air. -Unable to penetrate the outer layer of dead skin -Causes serious damage when ingested (incorporated) E.g. Polonium-210 <u>video</u>	-Radioactive decay of an atom nucleus giving off an electron or a positron (positively charged electron) -Able to travel a few meters in air due to small size -Can be stopped by a piece of plastic or a stack of papers -Can penetrate the skin a few centimeters -Causes serious damage when ingested (incorporated)	-Massless particles that travel at the speed of light and mediate electromagnetic radiation. -Depending on the energy of the particles, and, therefore, their wavelength -The radiation has different names: •Radio waves: have the lowest energy and the longest wavelength •Microwaves: higher energy and shorter wavelength	-γ Rays and x-rays are the same and are only distinguishable by their source -Emission of high-energy wave (photon of energy being emitted) Not a particle -Since it has no mass or charge, it can travel much farther than a or β particles -Can be stopped by thick material (lead is the most effective shield) -An x-ray machine generates x rays by accelerating electrons through a large voltage and colliding them into a heavy metal target

These particles form ionizing radiation

I want you to get the concept only!

Half-life (t1/2): the period of time it takes for a radioisotope to lose half of its radioactivity

Emission of y rays

Emission of a particles

Emission of β particles

Emission of positrons

Capture of an electron

mechanisms of radioactive decay

Radiation

Know general idea about it and get the concept; focus on red (;

Amount of radioactivity (Ci/Bq)

The amount of radioactivity in a radionuclide can be described either by the number of disintegrations per second (the becquerel "Bq"), or by comparing the number of disintegration to that of radium (The curie "Ci").

Amount of radiation emitted (Roentgens)

Particles released during radioactive decay travel in all directions. When Gamma or X-rays ionize the air surrounding a source, an electrostatic charge is produced. This ionization is quantified by the roentgen "R", which is an indirect measure of the amount of radiation.

Most of these particles pass through tissue without being absorbed. Only the fraction of particles that contacts and is absorbed by tissue can cause cellular damage. This fraction is measured in rads or gray (Gy)

Degree of damage (Rem/Sv)

For a given energy, larger particles cause more damage when absorbed by tissue than smaller particles. To predict the degree of damage that a given particle will cause, the dose in Gy or Rad is multiplied by the particle-specific biological effectiveness coefficient (Q) to calculate rem or Sv.

Decontamination:

-Remove all clothing

-Wash thoroughly with soap and water remove up to 95% of radioactive material

-Carefully scrub open wounds; to minimize the risk of internal contamination

-Use a portable dosimeter

-Collect all clothing and liquid used for decontamination and mark as RADIOACTIVE WASTE

ABCDE

Treat nausea and vomiting Treat pain (APAP, or opioid)

Serial CBC (biodosimetry) Electrolytes, Renal and hepatic function

Specific therapy:

-Colony- stimulating factor (3 Gy or greater, 2 Gy if <12 or > 60. -Probiotics -Ca-DTPA and Zn-DTPA (decontamination of plutonium, americium, curium, and soluble uranium salts) -Prussian blue (thallium) -KI (131I)

Radiation

Prognosis According to Lymphocyte Count within 48 hrs After Acute Exposure to Penetrating Whole-Body Radiation <u>(image)</u>

Minimal Lymphocyte Count (per mm²)	Approximate Absorbed Dose (Gy)	Extent Of Injury	Prognosis
1400-3000 (Normal range)	0-0.4	No clinically significant injury	Excellent
1000-1499	0.5-1.9	Clinically significant but probably non lethal	Good
500-999	2-3.9	Severe	Fair
100-499	4-7.9	Very severe	Poor
100	8	More Severe	High incidence of death even with hematopoietic stimulation

Acute Radiation Syndrome

	Dose (Gy)	Symptoms and Consequences	Medical Management
Nausea, Vomiting, Diarrhea (NVD) Syndrome	1-2	Nausea, vomiting, diarrhea, anorexia, gidiness, and loss of appetite.	Symptomatic treatment, antacid, sucralfate, antiemetics
Hematopoietic Syndrome	2-6	Loss of cellularity in bone marrow, spleen, and thymus. The individual may die between 10 - 30 days without medical intervention.	Antibiotics, cytokines, bone marrow transplant, stem cell therapy.
Gastrointestinal (GI) Syndrome	8-15	Damage to intestinal crypt cells, loss of absorption of nutrients, dehydration, loss of weight, severe electrolyte imbalance, and low blood pressure. Death occurs usually within 3 - 5 days without medical intervention.	Antibiotics, antiemetics, replacement of fluids and electrolytes, stem cell therapy, bone marrow transplant.
Central Nervous System (CNS) Syndrome	>25	Irritability, hyper excitability response, epileptic type fits and coma. Symptoms are irreversible. Death usually occurs within 48 hours.	No treatment available.

- Externally Contaminated patients are "radioactive"; irradiated patients are not.
- No danger to medical personnel from contaminated patients exists with proper precautions and decontamination procedures.
- Decontamination should not delay or impede the stabilization of the patient in radiation emergencies.
- Careful evaluation of initial symptoms and signs is the most reliable indicator of radiation dose received and patient's **prognosis**.
- Most therapy is supportive and symptomatic except for exposures involving the ingestion or inhalation of radioactive material, when specific therapy with blocking or chelating agents may be indicated.
- Detonation of a "dirty bomb" would cause psychological terror and little or no radiation injuries.
- Formal consultation is available 24 hours a day and should be obtained when any patient with radiation injuries is evaluated.

{ Summary }

Simple Asphyxiants	Pulmonary Irritants	
 Generally speaking, have No pharmacological activity. Displace oxygen from ambient air. Fio₂ < 21%. (Fio₂ = Fraction of inspired Oxygen)(Simple Asphyxiants lower it) Decrease partial pressure of O₂. Asphyxiation requires high concentration in a closed space. 	Causes destruction of the integrity of the mucosal barrier of the respiratory tract Damage of Pneumocytes Inflammatory reaction Acute lung injury (ALI) [cellular debris and plasma exudate in the alveolar sacs]	
Sign and symptoms Varies according to the levels of Fio2	Signs and symptoms vary according to water solubility	
 Immediate removal from exposure. The first thing you need to do is remove the patient from the place before you resuscitate him. Ventilator assistance Supplemental oxygen Supportive care as needed 	 A,B,C,D Protect the A/W (airway) Limit secretions Oxygen supplementation, bronchodilators ?Corticosteroids: may improve oxygenation, no specific benefit, small risk of harm. If all the previous steps didn't work then we give them steroids 	
Carbon Monoxide (CO)	Cyanide (CN)	
-CVS symptoms: Cardiac dysrhythmias, Chest pain, Myocardial ischemia -Respiratory Symptoms: Dyspnea, Tachypnea -CNS symptoms: Ataxia, confusion, dizziness, headache, syncope -Others: Nausea, Visual blurring, vomiting, weakness	-Unconscious -hypotensive -high lactate	
 Removal from site of exposure, then: ABCD O2 (100% ASAP) Mainstay of treatment (antidote) Supportive care (IV fluid for hypotension, standard ACLS PRN) Hyperbaric Oxygen (HBO) 	 ABCDE Antidote (almost always empirical) -Hydroxocobalamin (5 g IV during 15 minutes for adults and 70 mg/kg IV for children, up to an adult dose) -Cyanide + hydroxocobalamin = Cyanocobalamin Supportive care 	
	 Three principal nicks to a fatus following radiation 	

How Toxic is Your Knowledge!

1-After radiation exposure injury, which of the following is likely to happen?

- A.Pancytopenia B.Thrombocytosis
- C.Hypertension
- D.Hypothermia

2-After radiation exposure, in "survival impossible group" of patients, which of the following is likely to happen?

A.No symptoms and signs B.Severe diarrhea and vomiting C.Most of them survive the illness D.50% of patients survive the illness

3-Which of the following is the underlying mechanism of tissue injury after radiation exposure?

- A.Deposition of energy in the tissues B.Loss of heat from the tissues C.Malfunction of cytochrome P450
- D.Excess retention of salt and water in the tissues

4-Which one of the following is the treatment of acute radiation syndrome?

A.Monitor neutrophils count B.Give growth factors to stimulate bone marrow C.Calcium chloride D.Isolate in a negative room pressure

5- Carbon Monoxide gas is considered to be what type of chemical agent

A.Vesicant agent B.Systemic asphyxiant C.Biological agent D.Nerve gas

6-X- Ray is under which one of the following rays ?

- A.Alpha particles
- **B.Beta** particles
- C.Gamma ray
- **D**.Neutron

Cases from Doctor's slides:

<u>Case 1:</u>

- 25 year-old healthy male. Presented to the ED with history of syncope, H/A, SOB, cough and dizziness.
- 2 of his brothers have similar symptoms
- VS: HR=110 beat/min, RR=20, O2 sat= 100% in RA, temp= 37.0
- ECG: sinus tachycardia, Glucose= normal

This case is not clear and the symptoms can mimic a lot of differential diagnosis, but there is two hints can guide you to CO intoxication which is syncope and 2 of his brothers have the similar symptoms.

<u>Case 2:</u>

- 30-year-old male. Brought to the ED by EMS following a fire incident at a plastic factory. The patient is unresponsive. His BP= 80/40, HR= 130, RR= 30, O2 Sat is 90% on non-rebreather mask.
- He was intubated on arrival to the ED. Vital signs are unchanged.
- No obvious skin burn, Chest: few scattered wheezes CVS: S1+S2+ no added sounds. Abdomen: normal
- Investigations: VBG: PH= 7.01, PCO2= 30, PO2=60, HCO3- = 5, lactate = 15, CO= 10%

There is hypotension, sever lactate acidosis and the patient is unconscious these three guide you to cyanide intoxication.

Click here!

• THEME WAS DESIGNED BY: ASEEL BADUKHON

LOGO WAS DESIGNED BY: NORAH ALHOGAIL