

A A AI-BOUKAI-1

BASIC CONCEPTS IN DIAGNOSTIC IMAGING

AHMAD AMER AI-BOUKAI

Associate Professor & Consultant Radiologist Radiology & Medical Imaging Department King Khalid University Hospital

2019

OBJECTIVES & GOALS

Introduce the various Medical Imaging Modalities

Understand the basics of image generation

Relate imaging to gross anatomy

Appreciate constraints and limitations

Develop imaging vocabulary in the interpretation

WHAT IS RADIOLOGY?

Medical specialty that supervises, perform and interprets imaging studies.

Reports findings to referring physicians to help in the patients management.

WHAT ARE THE DIAGNOSTIC MODALITIES UTILIZED IN RADIOLOGY?

PLAIN X-RAY

COMPUTED TOMOGRAPHY (CT)

MAGNETIC RESONANCE IMAGING (MRI)

ULTRASOUND (US)

NUCLEAR MEDICINE (NM)

ANGIOGRAPHY (ANG)

Penetrates Earth's Atmosphere?

- It is a form of electromagnetic energy that travel at the speed of light Discovered and named by Dr. W. C. Röentgen at University
- of Würzburg, 1895
- Electromagnetic energy wave spectrum
- Gamma Rays
- X-rays
- Visible light
- Infrared light

Radio wave

• X-RAY

· v v

VISIBLE LIGHT

• X-RAY

VISIBLE LIGHT

HO

- X-rays are emitted and detected in cassette which generate either a hard copy film or a digital image
- X-ray beam interaction with body tissue can:
 - ♦ Pass all the way through the body \rightarrow render the film dark (black shadow)
 - ♦ Be deflected or scattered
 - ♦ Be absorbed

- \rightarrow render the film light (white shadow)
- Air = low atomic # = x-rays get through = image is dark (black) Metal = high atomic # = x-rays blocked = image is light (white)

PLAIN X-RAY

Pros

- Widely available
 - Inexpensive
 - Doesn't require advanced technologist knowledge
- Can be performed quickly
- Portable

Cons

- lonizing Radiation
- Relatively insensitive
- Requires patient cooperation

FLUOROSCOPY

- Utilizes X-Rays
- Real-time imaging (Dynamic)
- Utilizes image intensifier
 - Involves use of contrast agents

FLUOROSCOPY

A modality utilized in evaluation of Gastrointestinal Tract:

Dynamic Contrast Studies

FLUOROSCOPY Dynamic Contrast Studies

FLUOROSCOPY Main Uses of Fluoroscopy

- Gastrointestinal Imaging Genitourinary Imaging
- Angiography
- Other:
 - Intraoperative
 - Foreign body removal
 - Musculoskeletal

FLUOROSCOPY

Pros

Widely Available

- Inexpensive
- Functional and Anatomic
- No sedation required

Cons

- Requires ingestion/injection of contrast medium
- Patient cooperation
- Time consuming

WHAT IS COMPUTED TOMOGRAPHY?

Cross Sectional imaging modality Mobile X-ray tube that rotates around a patient. Data displayed in multiple window settings (lungs parenchyma, bone, etc.) Density measurements analyze chemical component of tissue "Hounsfield Unit (HU)" :

Image key = shades (Densities)

Fat	= -150	Soft tissue	= 20-80
Air	= -1000	Blood	= 45-75
Water	= 0	Bone/calcium	= >100- >1000

WHAT IS COMPUTED TOMOGRAPHY?

WHAT IS COMPUTED TOMOGRAPHY?

COMPUTED TOMOGRAPHY?

- Relies on x-rays transmitted through the body.
- Differs from conventional radiography in that a more sensitive x-ray detection system is used.
- Images consist of sections (slices) through the body, and the data are manipulated by a computer.
- Has very small differences in x-ray absorption values compared with conventional radiography; the range of densities recorded is increased approximately 10-fold.

A A AI-BOUKAI-19

COMPUTED TOMOGRAPHY?

- So gradations of density within soft tissues can be recognized, e.g. brain substance from cerebrospinal fluid, or tumor from surrounding normal tissues.
- There is major risk behind CT scan, 1 Brain CT scan radiation = 200 x-ray radiation, pelvic CT radiation = 400 x-ray radiation which means don't request a CT scan unless it is needed and we can't use it for a pregnant women unless it is necessary
- Wide window to visualize more structure within certain organ such as bronchi, vessels and alveoli in the lung (Lung window).
- Narrow window to visualize certain structures within certain region such as major vessels and heart in mediastinum (Mediastinal window).

BONE

to visualize cortex, medulla and trabeculae \rightarrow Wide window

COMPUTED TOMOGRAPHY APPLICATIONS

NEURO-IMAGING

-Acute head trauma, acute intracranial hemorrhage

-Low sensitivity for early ischemic stroke, intracranial metastatic disease, white matter degenerative disease

HEAD AND NECK IMAGING

-Soft tissue of neck, paranasal sinuses, temporal bone imaging, orbital wall imaging

COMPUTED TOMOGRAPHY APPLICATIONS

BODY IMAGING

- Chest, Abdomen, Pelvis (with enteric and IV contrast)
- Pulmonary nodules, Renal Calculi (without contrast)
- Acute appendicitis (with enteric and IV contrast)

• SPECIALIZED PROTOCOLS:

-Liver masses, pancreatic tissue, renal masses, adrenal masses

COMPUTED TOMOGRAPHY APPLICATIONS

ACUTE ABDOMEN

-decrease rate of false laparotomy procedures TRAUMA SPINE IMAGING (cervical, thoracic, lumbar) OTHER OSSEOUS STRUCTURES (pelvis, extremities)

• VASCULAR IMAGING

-CT angiography--- i.e. coronary arteries

MAGNATIC RESONANCE IMAGING

A A AI-BOUKAI-23

MAGNATIC RESONANCE IMAGING

- Simply, hydrogen atoms (protons) in water molecules and lipids >> magnetism affects all protons causes them to line up in one direction >> magnets can be switched on and off to change the direction of the magnetic field >> whenever the water molecule spin around they give a light radio wave >> MRI machine can detect it >> show it as images
- So gradations of density within soft tissues can be recognized, e.g. brain substance from cerebrospinal fluid, or tumor from surrounding normal tissues.

Image key = shades (Intensities)

MAGNATIC RESONANCE IMAGING

ADVANTAGES

- ✓ Best for soft tissue imaging
- ✓ No ionization
- ✓ Can be done for pregnant women
- ✓ Images can be obtained in any plane
 - Useful for soft tissue pathology (Tumor, infection)

DISADVANTAGES

- ✓ Expensive
- ✓ Time consuming
- ✓ Phobia (narrow place)
- ✓ No metals allowed
- ✓ Motion

ULTRASOUND

ULTRASOUND

Echogenicity Shadowing Doppler for flow

ADVANTAGES

No radiation Can be portable Relatively inexpensive

Hepatic vein color doppler

A A AI-BOUKAI-26

5IR / Gen TI 0.0 [2D] G50 / 8 FA2 / E [C] G45 / 1 FA2 / F

NUCLEAR MEDICINE

- ✓ Uses gamma rays to produce an image (
- Radioactive nuclide given IV, per os, per
- ✓ Rays emitted from the patient
- Physiologic imaging (Abnormal function, metabolic activity).
- ✓ Poor for anatomical information.
 - Radioactivity stays with the patient until cleared or decayed

CONTRAST MEDIA

Natural contrast in the body

- Air
- Fat
- Bone

Added contrast in the body

- Barium sulfate
- Iodine (Water Soluble)

CONTRAST MEDIA

Barium sulfate

Iodine (Water Soluble)

THANKS