

Imaging the Musculoskeletal System (Part One)

AHMAD AMER AI-BOUKAI

Clinical Associate Professor & Senior Consultant Radiologist Radiology & Medical Imaging Department King Saud University Medical city

OBJECTIVE

The main focus and objective of this lecture is to help student to be competent in looking at MSK images and interpreting findings, by learning:

- Normal radiological anatomic landmarks
 - System of analyzing findings

"Where to look & What to look for"

Recognize features of certain disease entity

IMPORTANT SITES

BONE DENSITY & TEXTURE BONE MARROW ARTICULAR CORTICES SOFT TISSUE

OUTLINES

Introduce the different imaging modalities utilized in imaging MSK system

- Define Imaging anatomical landmarks seen in each modality
- Introduce simplified approach to the interpretation of image findings
- Identify Imaging findings, importance and correlation in different pathology, trauma
- Identify Imaging findings, importance and correlation in different pathology, arthritis
- Identify Imaging findings, importance and correlation in different pathology, metabolic
- Identify Imaging findings, importance and correlation in different pathology, neoplastic

IMAGING OF MUSCULOSKELETAL SYSTEM

CONVENTIONAL RADIOGRAPHY

Corner Stone

COMPUTED TOMOGRAPHY

MAGNATIC RESONANCE IMAGING Useful in evaluating bone texture

ULTRASOUND

Useful in bone marrow and soft tissue

- Tendons/ligaments/muscles.
- Detect fluid collections around joints or within muscles.
- Soft tissue masses and cysts.

bone scan is very sensitive but is relatively non-specific

COMPUTED TOMOGRAPHY

MAGNATIC RESONANCE IMAGING

MAGNATIC RESONANCE IMAGING

SAGITTAL PLANE

MAGNATIC RESONANCE IMAGING

- 1- Ulna
- 2- Radius
- 3- Scaphoid
- 4- Lunate
- 5- Triquetrum
- 6- Pisiform
- 7- Trapezium
- 8- Trapezoid
- 9- Capitate
- 10- Hamate

Three carpal arcs should be traced:

- along the proximal row of carpal bones; proximal aspect.
- along the proximal row of carpal bones; distal aspect.
- along the capitate and hamate proximally.

These three lines should remain unbroken

ADULT CHILD Diaphysis Diaphysis Metaphysis Metaphysis **Growth Plate** Epiphysis Epiphysis

CORONAL PLANE

- 1- Lateral condyle
- 2- Medial condyle
- 3- Lateral tibial plateau
- 4- Medial tibial plateau

- 5- Tibial eminence
- 6- Fibula
- 7- Femur
- 8- Tibia

SAGITTAL PLANE

NORMAL LATERAL MENISCUS

IMPORTANT SITES

"Where to look & What to look for"

BONE DENSITY

•

Rickets

- BONE TEXTURE
- DISTORTION / DISPLACEMENT OF NORMAL STRUCTURES

Normal

"Where to look & What to look for"

Η y Ρ E R Ρ A R A Т Η У R O I D I S M

Normal

Fracture Humerus

Heterogeneous texture with old humeral fracture

Computed Tomography Axial cut

Computed Tomography Coronal Reformat

THANKS