KSU COLLEGE OF MEDICINE 2019 - 2020

ACKNOWLEDGMENTS

TEAM MEMBERS

YAZEED ALKHAYAL SHAHAD ALDUMKH

REVIEWER

ASEEL BADUKHON

Special thanks to SARAH ALENEZY & 436 TEAM

PLAGIARISM

TABLE OF CONTENTS

THIS			LECTURE
	BIOSTA	TISTICS	
IS			
IMPORTANT!!!!			EXTREMELY

LECTURE **OBJECTIVES**

By the end of this lecture, I am able to:

- Definition of statistics and biostatistics
- To understand different Levels of measurements
- To understand different Types of data
- To use these concepts appropriately

Basic concepts & terminology in Biostatistics

Biostatistics

- Biostatistics is the science that helps in managing medical uncertainties and variability of data
- Statistics arising out of biological sciences, particularly from the fields of medicine and public health.
- The methods used in dealing with statistics in the fields of medicine, biology, and public health for planning, conducting, and analyzing data which arise in investigations of these branches.
- Any health related subject where we're using statistics is called biostatistics or medical statistics or clinical statistics.
- In case of complicated surgeries or accident victims, doctors/surgeons can't guarantee if patients are gonna survive this is an example of **medical uncertainties**.

Basic concepts:

Data: Set of values of one or more variables recorded on one or more observational units (singular: Datum)

Sources of data:

- 1. Routinely kept records
- 2. Surveys
- 3. Experiments
- 4. External source

Categories of data:

What is difference between uncertainties and variability of data? Variability: It is a quantitative description of the range or spread of a set of values and can expressed through statistical metrics such as variance, standard deviation. Also variability can't be reduced, but it can be better characterized. Uncertainties: incomplete understanding of the context of the risk assessment decision. It can be qualitative or quantitative. It can be reduced or eliminated with more or better data.

- 1. Primary data: observation, questionnaire, record form, interviews, survey. (you're collecting data by your own)
- 2. Secondary data: census, medical record, registry. (already collected by someone else)

Datasets and Data Tables

- Dataset: Data for a set of variables collection a group of persons
- Data Table: A dataset organized into a table, with one column for each variable and one row for each person.

Typical Data Table:	OBS	AGE	вмі	FFNUM	TEMP (oF)	GENDER	EXERCISE LEVEL	QUESTION
	1	26	23.2	0	61.0	0	1	1
Definitions for variables:	2	30	30.2	9	65.5	1	3	2
Age: Age in years	3	32	28.9	17	59.6	1	3	4
PMI : Pody mass index	4	37	22.4	1	68.4	1	2	3
BMI. DOUY Mass muex	5	33	25.5	7	64.5	0	3	5
(weight/height²) in kg/m²	6	29	22.3	1	70.2	0	2	2
FENLIM: The average number of times	7	32	23.0	0	67.3	0	1	1
Thom. The average number of times	8	33	26.3	1	72.8	0	3	1
eating "fast food" in a week.	9	32	22.2	3	71.5	0	1	4
TEMP: High temperature for the day	10	33	29.1	5	63.2	1	1	4
	11	26	20.8	2	69.1	0	1	3
GENDER: 1-Female 2-Male	12	34	20.9	4	73.6	0	2	3
EXERCISE LEVEL: 1-Low 2-Medium	13	31	36.3	1	66.3	0	2	5
2-High	14	31	36.4	0	66.9	1	1	5
2-1 11911	15	27	28.6	2	70.2	1	2	2
QUESTION: What is your satisfaction	16	36	27.5	2	68.5	1	3	3
rating for this Biostatistics session?	17	35	25.6	143	67.8	1	3	4
1-Very Satisfied	18	31	21.2	11	70.7	1	1	2
2-Somewhat Satisfied	19	36	22.7	8	69.8	0	2	1
3- Neutral	20	33	28.1	3	67.8	0	2	1
4- Somewhat dissatisfied		20		•				
5- Dissatisfied								

Hierarchical Data Order

• These levels of measurement can be placed in a hierarchical order:

Ratio > Interval > Ordinal > Nominal.

- Nominal data is the least complex and give a simple measure of whether objects are the same or different.
- Ordinal data maintains the principles of nominal data but adds a measure of order to what is being observed.
- Interval data builds on ordinal by adding more information on the range between each observation by allowing us to measure the distance between objects.
- Ratio data adds to interval with including an absolute zero.

Categorical Data

(Qualitative data)

- The objects being studied are grouped into categories based on some qualitative trait.
- The resulting data are merely labels or categories.
- Nominal and Ordinal scales will be used for categorical data or qualitative data.

Examples of Nominal Data:

- Type of car:
 - Mercedes, BMW, Lexus, Toyota, etc.
- Ethnicity:
 - White British, Afro-Caribbean, Asian, Arab, Chinese, other,
 - etc.
 - Smoking status:
 - Smoker, non-smoker.

Examples of Ordinal Data:

- Grades in an exam: A+, A, B+, B, C+, C, D+, D, and fail.
- Degree of illness; none, mild, moderate, acute, chronic.
- Opinion of students about stat classes; Very unhappy, unhappy, neutral, happy, ecstatic!

Examples of Binary Data:

A type of categorical data in which there are only *two* categories. (yes or no, A or B and nothing

<u>E.q.</u>

Smoking status; smoker, non-smoker. Attendance; present, absent. Result of exam; pass, fail. Status of student; undergraduate, postgraduate.

Examples of categorical (nominal & ordinal) data:

- □ Somewhat satisfied
- □ Neutral
- \Box Somewhat dissatisfied
- □ Very dissatisfied

Quantitative Data

- The objects being studied are 'measured' based on some quantitative trait.
- The resulting data are a set of numbers.

Interval & Ratio scales will be used to measure quantitative data.

Examples:

Pulse rate	Exam marks		
Height	Time to complete a biostatistics exam		
Age	Number of cigarettes smoked		
difference between Discrete and	Quantitativo Data		

What is difference between Discrete and Continuous Quantitative data? Discrete: can take on only integer (target)	Quan	titative Data	
values (counted data). For example: the			
number of students in a hall (you can't			
have half a student).	Discroto		Continuous
Continuous: can take on any value	Disciele		Jontinuous
(measured data) For example: heights,			
weight etc (you can have half data)			

Discrete Data: (Whole numbers)

Only certain values are possible (there are gaps between the possible values). Implies counting.

Continuous Data: (Decimal points)

Theoretically, with a fine enough measuring device. Implies measuring.

Quar	ntitative Data (cont.)					
	 Discrete data - Gaps between possible values: 					
	Number of children					
	Continuous data - Theoretically, no gaps between possible values					
	• Continuous data - medicticality, no gaps between possible values					
	Hb					
	Examples of Discrete Data:					
	• Number of children in a family					
	 Number of students passing a stats exam 					
	 Number of crimes reported to the police 					
	 Number of bicycles sold in a day 					
	Generally, discrete data are counts. We wouldn't expect to find 2.2 children in a family, or 88.5 students					
	passing an exam, or 127.2 crimes being reported to the police, or half a bicycle sold in a day.					
	• Examples of Continuous Data: (All clinical data examples)					
	• Age (in years)					
	• Height (in cm)					
	 Weight (in kg) 					
	• Sys.BP, Hb, etc.					
	Generally, continuous data comes from measurements.					
	Relationships between variables:					
	Variables					
	Categorical					
	Nominat Ordinat Discrete Continuous					
	Weight (kg): underweight, normal, overweight					

Height (cm): short, medium, tall

hospital length of stay	Number	Percent		
1 – 3 days	5891	43.3		
4 – 7 days	3489	25.6		
2 weeks	2449	18.0		
3 weeks	813	6.0		
1 month	417	3.1		
More than 1 month	545	4.0		
Total	14604	100.0		
Mean = 7.85 SE = 0.10				

Table 1 Distribution of blunt injured patients according to hospital length of stay:

Clinimetrics

Clinimetrics

• A science called clinimetrics in which qualities are converted to meaningful quantities by using the scoring system. e.g Glasgow Coma Scale

Examples:

- 1. Apgar score based on appearance, pulse, grimace, activity, and respiration is used for neonatal prognosis
- 2. Smoking index: no. of cigarettes, duration, filter or not, whether it's a pipe, cigar, etc.
- 3. APACHE (Acute Physiology and Chronic Health Evaluation) score: to quantify the severity of a condition of a patient.

Data types - Important?

Why do we need to know what type of data we are dealing with?

The data type or level of measurement influences the type of statistical analysis techniques that can be used when analysing data.

To conclude

Type of variables in any data set are:

Categorical (qualitative)

Quantitative

Whereas the scales used to measure these two variables are:

Nominal, Ordinal, Interval, and Ratio scales.