

NORMAL DISTRIBUTION

KSU COLLEGE OF MEDICINE 2019-2020

ACKNOWLEDGMENTS
DONE BY
AFNAN ALMUSTAFA
ASEEL BADUKHON

TABLE OF CONTENTS

LECTURE OBJECTIVES

By the end of this lecture, I am able to understand:Able to understand the concept of Normal distribution.Able to calculate the z -score for quantitative variable.Able to apply the concept in the interpretation of a clinical data.

OVERVIEW

Introduction

- Problem: Assume that among diabetics the fasting blood level of glucose is approximately normally distributed with a mean of 105 mg per 100 ml and an SD of 9 mg per 100 ml . What proportion of diabetics having fasting blood glucose levels between 90 and 125 mg per 100 ml ?
- The Normal or Gaussian distribution is the most important continuous probability distribution in statistics.
- The term "Gaussian" refers to 'Carl Freidrich Gauss' who develop this distribution.
- The word 'normal' here does not mean 'ordinary' or 'common' nor does it mean 'disease-free'.
- It simply means that the distribution confirms to a certain formula and shape.

Gaussian Distribution

- Many biologic variables follow this pattern:

Hemoglobin, Cholesterol, Serum Electrolytes, Blood pressures, age, weight, height.

- One can use this information to define what is normal and what is extreme.
- In clinical medicine 95% or 2 Standard deviations around the mean is normal.
- Clinically, 5% of "normal" individuals are labeled as extreme/abnormal.
- We just accept this and move on.

Normal Distribution

- Uses
- It's application goes beyond describing distributions.
- It is used by researchers.
- The major use of normal distribution is the role it plays in statistical inference. Most of the statically theory based on this concept
- It helps managers to make decisions.
- What's so Great about the Normal Distribution?
- If you know two things (Mean \& Standard deviation) you know everything about the distribution. You know the probability of any value arising.

EXAMPLE

Standardised Scores

- My diastolic blood pressure is 100 . So what?
- Normal is 90 (for my age and sex). Mine is high, But how much high?
- Express it in standardised score. How many SDs above the mean is that?

This is a standardised score, or z-score
Look z tables (or computer), See how often this high (or higher) score occur.

Measures of Position

- z Score (or standard score)
- The number of standard deviations that a given value x is above or below the mean. meaning that my BP is 100 and the mean is 90 , the SD is 4 , how many SDs do i need to reach my BP from the mean? 10 is the difference, 10 divided by $4=2.5$, so i need 2.5 times $/ /(90+4)=1$ SD., ($90+8$) $=2$ SD., ($(90+10)=2.5$ SD
- The Z score makes it possible, under some circumstances, to compare scores that originally had different units of measurement.
- Suppose you scored a 60 on a numerical test and a 30 on a verbal test. On which test did you perform better?
- First, we need to know how other people did on the same tests.
- Suppose that the mean score on the numerical test was 50 and the mean score on the verbal test was 20.
- You scored 10 points above the mean on each test. Can you conclude that you did equally well on both tests?
- You do not know, because you do not know if 10 points on the numerical test is the same as 10 points on the verbal test.
- Suppose you scored a 60 on a numerical test and a 30 on a verbal test. On which test did you perform better?
- Suppose also that the standard deviation on the numerical test was 15 and the standard deviation on the verbal test was 5 .
- Now can you determine on which test you did better? Verbal is better
because you almost 2 standard deviations

- To find out how many standard deviations away from the mean a particular score is, use the Z formula: important to remember that the standard deviation is the unit of measurement

Sample:

$$
Z=\frac{X-\mu}{\sigma} \quad Z=\frac{X-\bar{X}}{S}
$$

Cont'

Properties of Z-score:

- Allows you to describe a particular score in terms of where it fits into the overall group of scores.
- Whether it is above or below the average and how much it is above or below the average.
- A standard score that states the position of a score in relation to the mean of the distribution, using the standard deviation as the unit of measurement.
- The number of standard deviations a score is above or below a mean.

Interpreting Z Scores

INTERPRETATION

The Standard Normal Table

- Using the standard normal table, you can find the area under the curve that corresponds with certain scores.
- The area under the curve is proportional to the frequency of scores.
- The area under the curve gives the probability of that score occurring.

The Tables:

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	. 50000	. 50399	. 50798	. 51197	. 51595	. 51994	. 52392	. 52790	. 53188	. 53586
0.1	. 53983	. 54380	. 54776	. 55172	. 55567	. 55962	. 56356	. 56749	. 57142	. 57535
0.2	. 57926	. 58317	. 58706	. 59095	. 59483	. 59871	. 60257	. 60642	. 61026	. 61409
0.3	. 61791	. 62172	. 62552	. 62930	. 63307	. 63683	. 64058	. 64431	. 64803	. 65173
0.4	. 65542	. 65910	. 66276	. 66640	. 67003	. 67364	. 67724	. 68082	. 68439	. 68793
0.5	. 69146	. 69497	. 69847	. 70194	. 70540	. 70884	. 71226	. 71566	. 71904	. 72240
0.6	. 72575	. 72907	. 73237	. 73565	. 73891	. 74215	. 74537	. 74857	. 75175	. 75490
0.7	. 75804	. 76115	. 76424	. 76730	. 77035	. 77337	. 77637	. 77935	. 78230	. 78524
0.8	. 78814	. 79103	. 79389	. 79673	. 79955	. 80234	. 80511	. 80785	. 81057	. 81327
0.9	. 81594	. 81859	. 82121	. 82381	. 82639	. 82894	. 83147	. 83398	. 83646	. 83891
1.0	. 84134	. 84375	. 84614	. 84849	. 85083	. 85314	. 85543	. 85769	. 85993	. 86214
1.1	. 86433	. 86650	. 86864	. 87076	. 87286	. 87493	. 87698	. 87900	. 88100	. 88298
1.2	. 88493	. 88686	. 88877	. 89065	. 89251	. 89435	. 89617	. 89796	. 89973	. 90147
1.3	90320	. 90490	90658	. 90824	90988	. 91149	. 91309	91466	. 91621	91774
1.4	. 91924	. 92073	. 92220	. 92364	. 92507	. 92647	. 92785	. 92922	. 93056	. 93189
1.5	. 93319	. 93448	. 93574	. 93699	. 93822	. 93943	. 94062	. 94179	. 94295	. 94408
1.6	. 94520	. 94630	. 94738	. 94845	. 94950	. 95053	. 95154	. 95254	. 95352	. 95449
1.7	. 95543	. 95637	95728	. 95818	. 95907	. 95994	. 96080	. 96164	. 96246	. 96327
1.8	. 96407	. 96485	. 96562	. 96638	. 96712	. 96784	. 96856	. 96926	. 96995	. 97062
1.9	. 97128	. 97193	. 97257	. 97320	. 97381	. 97441	. 97500	. 97558	. 97615	. 97670
2.0	97725	. 97778	. 97831	. 97882	. 97932	. 97982	. 98030	. 98077	. 98124	. 98169
2.1	. 98214	. 98257	. 98300	. 98341	. 98382	. 98422	. 98461	. 98500	. 98537	. 98574
2.2	98610	. 98645	. 98679	. 98713	. 98745	. 98778	. 98809	. 98840	. 98870	. 98899
2.3	. 98928	. 98956	. 98983	. 99010	. 99036	. 99061	. 99086	. 99111	. 99134	. 99158
2.4	. 99180	. 99202	. 99224	. 99245	. 99266	. 99286	. 99305	. 99324	. 99343	. 99361
2.5	. 99379	. 99396	. 99413	. 99430	. 99446	. 99461	. 99477	. 99492	. 99506	. 99520
2.6	. 99534	. 99547	99560	. 99573	99585	99598	. 99609	. 99621	. 99632	. 99643
2.7	. 99653	. 99664	. 99674	. 99683	99693	. 99702	. 99711	. 99720	. 99728	. 99736
2.8	. 99744	. 99752	99760	. 99767	. 99774	. 99781	. 99788	. 99795	. 99801	. 99807
2.9	. 99813	. 99819	. 99825	. 99831	. 99836	. 99841	. 99846	. 99851	. 99856	. 99861
3.0	. 99865	. 99869	. 99874	. 99878	. 99882	. 99886	. 99889	. 99893	. 99896	. 99900
3.1	. 99903	. 99906	. 99910	. 99913	99916	. 99918	. 99921	. 99924	. 99926	. 99929
3.2	. 99931	. 99934	. 99936	. 99938	. 99940	. 99942	. 99944	. 99946	. 99948	. 99950
3.3	. 99952	. 99953	. 99955	. 99957	99958	. 99960	. 99961	. 99962	. 99964	. 99965
3.4	. 99966	. 99968	. 99969	. 99970	. 99971	. 99972	. 99973	. 99974	. 99975	. 99976
3.5	. 99977	. 99978	. 99978	. 99979	. 99980	. 99981	. 99981	. 99982	. 99983	. 99983
3.6	. 99984	. 99985	. 99985	. 99986	. 99986	. 99987	. 99987	. 99988	. 99988	. 99989
3.7	. 99989	. 99990	. 99990	. 99990	.99991	. 99991	. 99992	. 99992	. 99992	. 99992
3.8	. 99993	. 99993	. 99993	. 99994	. 99994	. 99994	. 99994	. 99995	. 99995	. 99995
3.9	99995	. 99995	. 99996	. 99996	. 99996	. 99996	. 99996	. 99996	. 99997	99997

Table A^{a} (Continued) PROPORTIONS OF AREA UNDER STANDARD NORMAL CURVE FOR VALUES OF z								
$\overbrace{\mathrm{Z}}^{\mathrm{A}} \overbrace{}^{\mathrm{B}}$								
-2 A^{\prime}		c^{\prime}						

Reading the Z table: (Pay attention to the color code)

> Finding the proportion of observations between the mean and a score when $\mathrm{Z}=1.80$

Finding the proportion of observations above a score when $\mathrm{Z}=1.80$

Finding the proportion of observations between a score and the mean when $Z=-2.10$

Finding the proportion of observations below a score when $Z=-2.10$

INTERPRETATION

Z scores \& the Normal Distribution

Can answer a wide variety of questions about any normal distribution with a known mean and standard deviation.

Will address how to solve two main types of normal curve problems:

Finding a proportion given a
score.
Finding a score given a proportion.

EXAMPLE

Assuming the normal heart rate (H.R) in normal healthy individuals is normally distributed with:

Mean $=70$ and Standard Deviation $=10$ beats $/ m i n$
Then: (next slide for the graphs and dr's notes)
> 1) What area under the curve is above 80 beats/min?

Ans: 0.16 (16\%)
2) What area of the curve is above 90 beats/min?

Ans: 0.025
(2.5\%)
3) What area of the curve is between 50-90 beats/min?

Ans: 0.95 (95\%)
4) What area of the curve is above 100 beats/min?

Ans: 0.0015 (0.15\%)
5) What area of the curve is below 40 beats per min or above 100 beats per min? Ans: 0.0015 for each tail or 0.3%

EXAMPLE

1-How much percentage of patients are their heart rate is $80 \mathrm{~b} \backslash \mathrm{~m}$ and above? Total are $100 \% . / / 1 \mathrm{standard}$ deviation cover 68\%, half of 68\%(we did this step because the SD covers 10 above and below 70 and in this case we only want above so we take the half) , 34% Subtract from $50=16 \%$ (we did this step because 34% are above the mean (70) with a range of $10(70+10=80)$ but what about those above it?(and our case we only want above 80) we subtract from 50 because this 50% represents those above the mean and 34% are within (70--80) and we want above 80 which leaves us with the other part of the $50 \%(50-34=16 \%)$)..who have a beat above 80 beats/min
2-=2.5\% Because we are asking 2 standard deviations. 2 standard deviations (90) , mean is 70 , Probability .025 or 2.5\%
$3-0.95$ or 95% because of 2SD.
4-0.0015.(3 standard deviations). so small area in the extreme right side.
5-Extreme 3 standard deviations - extreme +3 standard deviations on upper side =because it crosses 3 standard Deviations

[^0]Answers Example 2
Let X be the random variable denoting the fasting blood glucose level. x has a
normal distribution with mean $=105$ and standard deviation $=9$.

we require $P(90 \leq x \leq 125)$.
This can be written as
$P\left[\frac{90-105}{9} \leq \frac{x-105}{9} \leq \frac{125-105}{9}\right]$
($-1.67 \leq z \leq 2.22$)
$\frac{x-105}{9}$
$P(Z \leq 2.22)-F(Z<-1.67)$
$0.9868-0.0475$
0.9393
\qquad
ii)

From the table we know that -1.28 cuts off the lower 10 per cent of the
Standard normal curve. Now we have to find the corresponding X-value.

[^0]: Assume that among diabetics the fasting blood level of glucose is approximately normally distributed with a mean of 105 mg per 100 ml and an SD of 9 mg per 100 ml . What proportion of diabetics having fasting blood glucose levels between 90 and 125 mg per 100 ml ?

 We have to get 2 z score, it is not a whole
 number to apply the rule it is in fraction.
 $90-105 \backslash 9=-1.6$ this is one z score
 $125-105 \backslash 9=2.2$ this is the second z score. then you continue solving as in the picture below.

