

Objectives

- By the end of this lecture, students should be able to:
- Explain the need to use "indicators" to measure "health" status
- State the characteristics of health indicators
- List the uses of health indicators
- State with examples the types of health indicators

Color Index

- Main text
- Males slides
- Females slides
- Doctor notes
- Important
- Golden notes
- Extra

Health Indicators: Definitions and Uses

What is an indicator

- An indicator is an indication of a given situation and a measurable variable
- Basically it acts like a red flag that draws your attention to something that is going on.

Health Indicators: Definition

- Variables that measure indirectly ${ }^{1}$ a health status which can not be measured directly
- They are an indication of a given situation
- They are used to compare between areas or population groups at a certain time
- They are used to measure changes over a period of time
- Health indicators quantify the health of the population

Health Indicators: Uses

Measure health status in a community
1

Compare health status between countries over time

Assessment of health care needs

Allocation of resources according to needs

Monitoring and evaluation of health services.

Health Indicators: Characteristics and
 Tvnoc

Valid
measures what it is supposed to measure.

Reliable

provides same information under different observations \& Conditions (consistent)

Sensitive

sensitive to changes in the situation

Specific

reflects changes only in that situation

Relevant

relevant to the community needs \& problems.

Feasible

the ability to obtain data when needed

Major types of Health Indicators

Mortality الوفيات

Other

- Disability indicators ((QALYs (Quality-Adjusted Life Year), DALYs (Disability-Adjusted Life Year)).
- Nutritional status indicators (anthropometric measurements,...)
- Health care delivery indicators (doctor-population ratio, population-bed ratio,......)
- Utilization rates (bed turnover ratio, vaccine coverage ratio,...)
- Social and mental health indicators (tobacco use, substance Abuse,....)
- Environmental indicators (Environmental Quality)
- Socioeconomic indicators (rate of population increase, dependency ratio, literacy rate,....)
- Health policy indicators (GNP spent on healthcare,...)
- Indicators of quality of life

1. There is no indicator of choice when choosing between health indicators
2. Measure the burden of disease not the disability
3. Infant mortality rate is very important health indicator for development and the health system performance
4. Usually divided into broad groups (communicable diseases, non-communicable diseases, injuries and others

Health Indicators Concepts: Tools of Measurements

Tools of Measurements

Indicators are measurements of disease magnitude, Which is expressed in terms of: Ratio, Proportion and Rate. Clear understanding of these term is a MUST for interpretation of indicators.

Tool of Measurement	Ratio (simple ratio)	Proportion	Rate 1
Definition	the relationship in size of one measure/variable to another	A specific type of ratio that relates a part to a whole	A special type of proportion that measures the occurrence of an event in a population during a given time.
Use	size of two different variables or quantities	magnitude of the part of a whole	to allow comparisons
	The numerator is NOT a Component of the denominator.	The numerator is ALWAYS a component of element	There must be a time dimension and a multiplier (per 1000, per 100,000)
denominator.			

Ratio

The male to female ratio is $300 / 100$ or 300:100 or 3:1 i.e. there are 3 male deaths for every female death

- We had 400 deaths from Road Traffic Injuries (RTI) in Riyadh in 2010, Out of the 400 death, 300 were males and 100 were female.
- In 2010, the population of Riyadh was 1,000,000.

Proportion

Out of the 400 deaths, 300 were males. i.e the proportion of males who died from RTI is $(300 / 400 \times 100)=$ 75\%.

Rate

The mortality rate from RTI in 2010 is (400/1,000,000 X $100,000)=40$ deaths per 100,000 population in 2010.

Health Indicators Concepts: Numerator and Denominator and Multipliers

Numerator and Denominator

Numerator

- Number of times an event (e.g. death, sickness, births, etc) has occurred in a population during a specified time period.
- it is ALWAYS a included in the denominator of proportions and rates, - Numerators are NOT a component of the denominator in ratios.

Denominator

- Denominators are especially important for RATES.
- It might be related to:
- The population such as mid-year population in a given year
- OR total events where it's more relevant than than total population.
- For example, case fatality rate from car injuries, it's more meaningful to have the denominator of 'number of vehicles'. Why? ${ }^{1}$

Multipliers (10T per 100, 1000, 100,000)

- Majority of formulae include a multiplier of 100 and most often a multiplier of $1000,10,000$ or even 100,000.
- A multiplier is used to:
- Indicate how often something occurred per 1000 population or per 100,000 population
- Decrease the use of minute decimal fractions. e.g a mortality rate of 0.000071
- Increase data comprehension (how well we understand the presented data)
- In certain rates, rather than specifying a multiplier such as 1000 or 100,000 , you can use 10^{n} so the most appropriate multiplier can be selected to facilitate the data interpretation.

Example

- A rate with a numerator of 190,000 and a denominator of $23,000,000$ results in a value of 0.00826 .

Using a multiplier of 1000:

$=1000 \times 0.00826$ = 8.3
So 8.3 per 1000 population

Using a multiplier of 10,000:
$=10,000 \times 0.00826=82.6$
So 82.6 per 10,000 population

Health Indicators: Morbidity Indicators:

1 Incidence

Definition	Number of NEW cases occurring in a DEFINED POPULATION during a SPECIFIED PERIOD OF TIME.
Tool of Measurement	Rate
Numerator	Number of NEW cases of specific disease during a given time period
Denominator	Population at risk during that given time period at the start of the period
10n	per 1000
Time frame	per year (usually a year unless otherwise specified)
Uses	1. Taking action (outbreak) 2. Control disease (outbreak) 3. Research for etiology and pathogenesis 4. Efficacy of therapeutic and preventive measures
Formula	$\text { Incidence }=\frac{\begin{array}{l} \text { Number of new cases of specific } \\ \text { disease during a given time period } \end{array}}{\text { Population at-risk during that period }} \times 1000$

- In 2010, the number of new cases of influenza in Riyadh region was 5000. The midyear population of Riyadh region during the same year was 3 million.

```
Incidence = 0
Incidence=
                            O- O000
Incidence = 1.67 per 1000 per year (or there are 1.67 new cases of influenza for each
1000 of population in Riyadh 2010)
```


Health Indicators: Morbidity Indicators:

Disease Prevalence refers to all cases (NEW \& OLD) existing at a given POINT in time OR over a PERIOD of time in a given POPULATION.

Type	Point-Prevalence	Period-Prevalence (less common)
Definition	Number of all current cases NEW \& OLD occurring in a DEFINED POPULATION at ONE POINT OF TIME (a day, days, or few weeks)	Number of all current cases NEW \& OLD occurring in a DEFINED POPULATION at a DEFINED PERIOD of TIME (over months or annual)
Tool of Measurement	Proportion (BE CAREFUL! It is a proportion even when it is called rate)	
Numerator	Number of all current cases NEW \& OLD at a given POINT of TIME	Number of all current cases NEW \& OLD at a a DEFINED PERIOD of TIME
Denominator	Estimated population at the same given POINT of TIME	Estimated population at the same a DEFINED PERIOD of TIME
10n	per 100 (always expressed as percentage)	
Time frame	Given point of time	
Uses	1) Estimate the magnitude of health, disease and high risk populations, 2) Administrative and planning e.g. hospital beds	Estimate the magnitude of health, disease and high risk populations
Formula	$=\frac{\begin{array}{l} \text { Number of all current cases (old and new) } \\ \text { of a specified disease existing at } \\ \text { a given point in time } \end{array}}{\begin{array}{l} \text { Estimated population at the } \\ \text { same point in time } \end{array}} \times 100$	$=\frac{\begin{array}{l} \text { Number of existting cases (old and new) } \\ \text { of a specified disease during a given } \\ \text { period of time interval } \end{array}}{\text { Estimated mid-interval population at-risk }} \times 100$

In a survey of 1,150 medical students in Riyadh in 2018, a total of 468 reported symptoms of seasonal allergies during the the first week of September. Calculate the prevalence of seasonal allergies in this group.

$$
\begin{aligned}
& \text { Period Prevalence }=0 \frac{\text { Number of existing cases }}{\text { Mid- interval Population }} 0 \times 100 \\
& \text { Period Prevalence }=0<468 \\
& \hline 1150
\end{aligned}
$$

Health Indicators: Epidemiologist Bathtub

The Epidemiologist Bathtub!

Water in the tub represents prevalence of disease

- The more\less water that is in the tub the more \less disease prevalence is there.
- The prevalence represents burden of disease = how many people have the disease

So, how can we decrease this burden?

- So we can get rid of the water (prevalence) from the tub (Community) by draining it so we can lower the prevalence!
- To drain the tub (lower the prevalence) we have to get rid of people who have the disease: by two way, they can be CURED or DIE
- How can we get water (Incidence) in the tub? Obviously through the faucet
- Open the faucet all the way = HIGH INCIDENCE , Almost closed = LOW INCIDENCE

- Incidence: 3, 4, 5, 8
- Point prevalence (Jan 1): Cases : 1, 2,7
- Point prevalence (Dec 31): Cases : $1,3,5,8$
- Period prevalence: $1,2,3,4,5,7,8$

Health Indicators - Mortality: Crude Death Rate

Definition	Number of deaths from ALL CAUSES occurring in ESTIMATED MID-YEAR POPULATION during ONE YEAR in a GIVEN PLACE.
Tool of Measurement	Rate
Numerator	Number of deaths from ALL CAUSES during the YEAR
Denominator	Mid-year population
10n	per 1000
Time frame	One year
Uses	Gives an impression of mortality in a single figure!
Formula	$\frac{\text { Number of deaths during the year }}{\text { Mid-year population }} \times 1000$

- A Major Disadvantage of CDR is Lack of comparability ${ }^{1}$ for communities with populations that differ by age, gender, race, etc. HOW?

Here population B appears to be healthier than A			- But when we check the composition by age (age specific mortality rates) - B has higher mortality rates in all age groups. Why? - Because the higher CDR in population A is due to more OLDER population in comparison to B with relatively younger population.							
			Popula		Age-	pecific	eath rat	es per 10	popula	
-tion	${ }_{\text {death }}^{\text {rate }}$			rate	0-1	1-4	5-7	8-44	45-64	$65+$
A	15.2		A	15.2	13.5	0.6	0.4	1.5	10.7	59.7
B	9.9		B	9.9	22.6	1.0	0.5	3.6	-18.8	61.1

Example

- In Saudi Arabia in 2017, a total of 119,157 deaths occurred. The estimated population was 33,099,147. Calculate crude death for Saudi Arabia in 2017

$$
C D R=\frac{\text { Number of deaths during the year }}{\text { Mid-year population }} \times 1000 \bigcirc \frac{119,157}{33,099,147} \bigcirc \times 1000=3.6 \text { per } 1000 \text { people }
$$

1. So it can't be used to compare between two regions, we can use it only as an indicator for mortality status in a single region

Health Indicators - Mortality: Specific Mortality Rates

Specific Mortality Rates (SMR)

Gender-specific

Number of deaths from/in SPECIFIC (CAUSE, GROUP, SOCIAL DETERMINANT) occurring in ESTIMATED MID-YEAR POPULATION during a ONE YEAR in a GIVEN PLACE.

Rate	
Number of deaths from specific (cause, group, social determinant) during the year	
Cause-specific: mid-year population / group, social determinant: mid-year population of specific group, social determinant	
per 1000 or per 100,000	
One year	
1. Identify at risk groups for 2. They allow comparison b	entive action, different causes within the same population
1. Specific death rate due to tuberculosis	$\frac{\text { Number of deaths from tuberculosis during a calendar year }}{\text { Mid-year population }} \times 1,000$
2. Specific death rate for males	$\frac{\text { Number of deaths among males during a calendar year }}{\text { Mid-year population of males }} \times 1,000$
3. Specific death rate in age group $15-20$ years	$\frac{\text { Number of deaths of persons aged } 15-20 \text { during a calendar year }}{\text { Mid-year population of persons aged } 15-20} \times 1,000$

- In 2001, a total of 15,555 deaths from Road Traffic Injuries occurred among males and 4,753

Example

 deaths occurred among females. The estimated 2001 midyear populations for males and females were $139,813,000$ and $144,984,000$, respectively. Calculate Gender-specific mortality rates?

1. Example: when we measure the number of cancer deaths (Cause-specific) in Saudi Arabia the denominator should be the mid year of whole population, while when we measure the number cancer deaths in female (Group-specific) in saudi arabia the denominator should be the mid year of population of female ONLY

Health Indicators - Mortality: Proportionate Mortality

Proportionate Mortality

Definition	Number of deaths due to a particular cause (or in a specific age group) per 100 total deaths
Tool of Measurement	Proportion
Numerator	Number of deaths from SPECIFIC CAUSE OR AGE GROUP during the YEAR
Denominator	TOTAL deaths from ALL CAUSES (not the POPULATION in which the deaths occurred)
10n	per 100 (percentage \%)
Time frame	One year
Uses	1. Used in broad disease groups (e.g. communicable, non-communicable, injuries) 2. Specific diseases of public health importance (e.g Cancer)
Formula	$\begin{aligned} & \begin{array}{l} \text { Number of deaths from the specific disease } \\ \text { in a year } \end{array} \\ & \text { Total deaths from all causes in that year } \end{aligned} 100$

Example

- In 2003, a total of 128,294 deaths occurred among 24-44 years old. 16,283 deaths were due to heart disease and 7,367 were due to cancer. Calculate Proportionate mortality for heart disease and cancer among 25-44 years.

Health Indicators - Mortality: Case Fatality Rate

Case Fatality Rate

Definition	Number of deaths due to a PARTICULAR CAUSE (DISEASE) per 100 TOTAL CASES
Tool of Measurement	Proportion (although it is called rate!, called also: Deaths to Cases Ratio)
Numerator	Number of deaths due to a PARTICULAR CAUSE (DISEASE)
Denominator	TOTAL number of number of CASES (not the POPULATION in which the cases occurred)
10n	per 100 (percentage \%)
Time frame	Not specified
Uses	1. Reflects the killing power of a disease. 2. Used mainly in acute infectious diseases.
Formula	$=\frac{\begin{array}{l} \text { Total number of deaths due } \\ \text { to a particular disease } \end{array}}{\begin{array}{l} \text { Total number of cases due } \\ \text { to the same disease } \end{array}} \times 100$

- In an epidemic of hepatitis A traced to green onions from a restaurant, 555 cases were identified. Three of the cases died as a result of their infections.
- Calculate the case-fatality rate

$$
\begin{array}{lc}
\text { Case Fatality Rate }= & \circ-\frac{\text { Total number of death of Specific disease }}{\text { Total number of Cases of Specific disease }} \bigcirc \times 100 \\
\text { Case Fatality Rate }= & 0-30 \times 100=0.5 \%
\end{array}
$$

Quiz

MCQ

1. In a population of 500,000 people, 18,000 have been diagnosed with diabetes. What is diabetes prevalence rate per 100,000 people?
A. 0.036
B. 0.18
C. 18,000
D. 3,600
2. In a state that did not require varicella vaccination, a boarding school experienced a prolonged outbreak of varicella among its students that began in September and continued through December. To calculate the probability or risk of illness (incidence) among the students, which denominator would you use?
A. Number of susceptible students at the ending of the period (i.e., June)
B. Number of susceptible students at the midpoint of the period (late October/early November)
C. Number of susceptible students at the beginning of the period (i.e., September)
D. Average number of susceptible students during outbreak

Using the following diagram ,Assume that the horizontal lines in the diagram represent duration of illness in 8 different people, out of a community of 700 .
3. What is the prevalence of disease during July?
A. $3 / 700$
B. $4 / 700$
C. $5 / 700$
D. $8 / 700$
4. What is the incidence of disease during July?
A. $3 / 700$
B. $4 / 700$

C. $5 / 700$
D. $8 / 700$
5. In 2020, a total of 10,000 deaths occurred among males from cancer and 7,859 deaths occurred among females. The estimated 2020 midyear populations for males and females were 140,812, and 149,000, respectively. Calculate Cause-specific mortality rates using a multiplier of 1000
A. 61.6 cancer deaths per 1000 population
B. 616.2 cancer deaths per 1000 population
C. Males: 71, Female: 52 (cancer deaths per 1000 population)
D. Males: 710, Female: 520 (cancer deaths per 1000 population)

Q1	Q2	Q3	Q4	Q5
D	C	D	C	A

Thank You and Good Luck

Team Leaders:

Lama AlAssiri | Mohammed AlHuqbani | Ibrahim AIDakhil

Team Members:

- Lama AlZamil
- Leen AlMazroa
- May Babaeer
- Muneera AlKhaorayef
- Norah AlMazrou
- Nouf Alhussaini
- Rema AlMutawa
- Sara AIAbdulkareem
- Sedra Elsirawani
- Wejdan Alnufaie
- Abdulrahman Alhawas
- Meshari Alzeer
(土) Abdulrahman Shadid
- Mohannad Makkawi
- Nayef Alsaber
- Abdullah Shadid
- Alwaleed Alsaleh
- Bader Alshehri
- Bassam Alkhuwaiter
- Faisal Alqifari
- Hameed M. Humaid
- Khalid Alkhani

