

Was done by:

\author{

* Jehad Alorainy
}

Color Index

- Doctor notes

Editing File

- Important

Exercise 1: For each of the fractions shown below, indicate whether it is a:
A. Ratio
B. Proportion
C. Rate
D. None of the three.
number of women in region A who died from stroke in 2010 number of women in region A who died in 2010 number of women in region A who died from stroke in 2010 estimated number of women living in region A on July 1, 2010
number of women in region A who died from stroke in 2010
number of women in region A who died from cancer in 2010

Exercise 2: Among 13,963,753 males and 14,272,325 females, there were 20,734 cases of prostate cancer and 19,107 cases of female breast cancer. Calculate the incidence rates of prostate cancer and female breast cancer. Express your answers using an appropriate multiplier.

Prostate cancer

incidence rates of prostate cancer $=1.48$ per 1000
Or = 148 per 100000

Female breast cancer

incidence rates of breast cancer $=1.34$ per 1000
Or = 134 per 100000

Exercise 3: In 2015, a total of 15,555 homicide deaths occurred among males and 4,753 homicide deaths occurred among females. The estimated 2001 midyear populations for males and females were $139,813,000$ and $144,984,000$ respectively.
from the information above calculate the following:

1) Homicide related death rates for males \& females

Homicide deaths among Male\Female
Male\Female Mid-year population X 100,000

MALES $=0 \frac{15,555}{139,813,000} \circ \mathrm{X100,000}=11.1$ homicide deaths per 100000 Pop.
Female $=0 \frac{4,753}{144,984,000} 0 \times 100,000=3.3$ homicide death per 100000 Pop.

2
What type(s) of mortality rates did you calculate in Question 1?
Cause \& Gender specific mortality rates

3

$$
\text { Ratio = } \begin{aligned}
\mathbf{4 , 5 5 5} \longrightarrow & =3.3: 1
\end{aligned} \quad \begin{aligned}
& \text { "There are } 3 \text { homicide deaths among males for } \\
& \\
& \\
& \text { every female homicidal death." }
\end{aligned}
$$

4
presenting information to a policymaker

The calculations show that the mortality rates among males is higher than the females, So there should be specific interventions that target males and females differently.

Exercise 4: Using the data in Table 1, calculate the missing proportionate mortalities for persons aged 25-44 years for diseases of the heart and assaults (homicide).

	All ages			Ages 25-44 Years		
	Number	Percentage	Rank	Number	Percentage	Rank
All causes	$2,443,930$	100		128,924	100	
Diseases of heart	684,462	28	1	16,283		3
Malignant neoplasms	554,643	22.7	2	19,041	14.8	2
Cerebrovascular_disease	157,803	6.5	3	3,004	2.3	8
Chronic lower respiratory_diseases	126,128	5.2	4	401	0.3	\star
Accidents (unintentional injuries)	105,695	4.3	5	27,844	21.6	1
Diabetes mellitus	73,965	3	6	2,662	2.1	9
Influenza \& pneumonia	64,847	2.6	7	1,337	1	10
Alzheimer's disease	63,343	2.6	8	0	0	\star
Nephritis, nephrotic syndrome, nephrosis	33,615	1.4	9	305	0.2	\star
Septicemia	34,243	1.4	10	328	0.2	\star
Intentional self-harm (suicide)	30,642	1.3	11	11,251	8.7	4
Chronic liver_disease and cirrhosis	27,201	1.1	12	3,288	2.6	7
Assault (homicide)	17,096	0.7	13	7,367		5
HIV_disease	13,544	0.5	$\stackrel{\star}{4}$	6,879	5.3	6
All_other	456,703	18.7		29,480	22.9	

Proportionate mortality $=\quad 0 \frac{\text { deaths from Specific disease }}{\text { deaths from all causes }} 0 \times 100$

$$
\text { Heart }=0 \frac{16,283}{128,924} \longrightarrow \times 100=12.6 \%
$$

Homicide $=0 \frac{7,367}{128,924} \longrightarrow \times 100=5.71 \%$

Exercise 5: In 2009, 6 of 18 infected patients with H5N1 avian influenza died. What is the case fatality ratio (CFR)? What might cause this CFR to be overestimated?

1) Case fatality ratio (CFR)

Case Fatality Rate $=\quad$| Total number of death of Specific disease |
| :--- |
| Total number of Cases of Specific disease | X 100

> Case Fatality Rate =

Case Fatality Rate $=$
33\%

Case Fatality Ratio=
1:3

2 What might cause this CFR to be overestimated?
Because CFR is calculated from the KNOWN cases who presented to the hospital
There might be A million cases that are asymptomatic! to avoid this we can do mass-screening to find out if there is a milder form of the same disease (as we saw with COVID-19)

Exercise 6: In a study concerned with the possible effects of air pollution on the development of chronic bronchitis, the following data were obtained. A population of 9,000 men aged 45 years was examined in January 2010. Of these, 6,000 lived in areas where they were exposed to air pollution and 3,000 did not. At this examination, 90 cases of chronic bronchitis were discovered, 60 among those exposed to air pollution. All the men initially examined who did not have chronic bronchitis were available for subsequent repeated examinations during the next 5 years. These examinations revealed 268 new cases of chronic bronchitis in the total group, with 30 among those unexposed to air pollution.

So, let's try to make it clear first.

All men = 9000	All cases of chronic bronchitis $=90$	All men without chronic bronchitis after 5 years $=8910$	All cases after 5 years $=268$
At risk (exposed) $=$	Cases among exposed $=60$	Exposed men without chronic bronchitis after 5 years $=5940$	Cases among exposed group after 5 years $=238$
Not at risk (Not exposed) $=3000$	Cases among not exposed $=30$	Unexposed men without chronic bronchitis after 5 years $=2970$	Cases among non-exposed group after 5 years $=30$

A. $0,05 \%$
B. 1%
C. 2%

D. 3\% 9000
A. 39.7
B. $\quad 30.1$
C. $\quad 10.0$
D. $\quad 10.1$
 $X 1000=\sim 40.1 \%(E)$
E. 40.1
A. 39.7
A. $\quad 39.7$
B. $\quad 30.0$
C. $\quad 10.0$
$0 \frac{30}{2970} \mathrm{O} 1000=10.1 \%(D)$
B. $\quad 30.1$
C. $\quad 10.0$
D. $\quad 10.1$

D. $\quad 10.1$
E. 40.1

