

Tutorial 3: Screening

Was done by:

Color Index

- Doctor notes
- Extra
- Important

Components of Validity

TABLE 3-A

Screening test result by diagnosis

Screening	Diag	. Total	
test results	Diseased	Not diseased	
Positive	a (True-positive)	b (False-positive)	a+b
Negative	c (False-negative)	d (True-negative)	c + d
Total	a + c	b + d	a+b+c+d

Sensitivity

(a) Sensitivity = $a/(a + c) \times 100$

The ability of the test to identify correctly all those who have the disease, that is "true-positive".

90% sensitivity means that 90% of the diseased people screened by the test will give a "**true-positive**" result and the remaining 10% a "false-negative" result.

Specificity

(b) Specificity = $d/(b + d) \times 100$

The ability of a test to identify correctly those who do not have the disease, that is "true-negatives"

90% specificity means 90% of non-diseased persons will give "**true-negative**" result, 10% of non-diseased people screened by the test will be wrongly classified as "diseased" when they are not "false-positive".

Diagnosis of brain tumours by EEG

EEG results	Brain tumour			
	Present	Absent		
Positive	36	54,000		
Negative	4	306,000		
	40	360,000		

Sensitivity = $36/40 \times 100 = 90$ per cent

Specificity = $306,000/360,000 \times 100 = 85$ per cent

Diagnosis of brain tumours by computer assisted axial tomography

CAT results	Brain tumour			
	Present	Absent		
Positive	39	18,000		
Negative	1	342,000		
8300 Tox 1000	40	360,000		

Sensitivity = $39/40 \times 100 = 97.5$ per cent

Specificity = $342,000/360,000 \times 100 = 95$ per cent

Cont'

Predictive accuracy

- Reflects the diagnostic power of a test.
- Depends upon sensitivity, specify and disease prevalence
- The probability that a patient with a positive test result has, in fact, the disease in question.
- The more prevalent is a disease in a given population, the more accurate will be the predictive value of a positive screening test.
 - (c) Predictive value of a positive test = $a/(a + b) \times 100$
- (d) Predictive value of a negative test = $d/(c + d) \times 100$
- (e) Percentage of false-negatives = $c/(a + c) \times 100$
- (f) Percentage of false-positive = $b/(b + d) \times 100$

Predictive value of a positive gram-stained cervical smear test (with constant sensitivity of 50% and specificity of 90%) at three levels of prevalence

	Preva	lence 5%	5		Preva	ence 15%			Preva	alence 25°	%
	C	ulture			С	ulture				Culture	
	+		Total		+	_	Total		+		Total
Smear	+ 25	95	120	Smear	+ 75	85	160	Smear	+ 125	75	200
	- 25	855	880	<u> </u>	- 75	765	840		- 125	675	800
Total	50	950	1000	Total	150	850	1000	Total	250	750	1000
Positive predictive value	25 120	< \frac{100}{1} =	21%	Positive predictivalue	ve $\frac{75}{160}$	$\times \frac{100}{1} = 4$	17%	Positive predict value	ive $\frac{125}{200}$	$\times \frac{100}{1} = 6$	3%

Questions and answers

Exercise 1:

In a survey, 100 persons were positive to the reference test for disease A and 900 were negative. The screening test identified 200 persons to be positive. Of these 80 were positive to the reference test.

		Diagnostic test				
		Disease	Non Disease	Total		
Screening test	+ve	80	120	200		
	-ve	20	780	800		
	Total	100	900	1000		

(a) Sensitivity = $a/(a + c) \times 100$

= 80/100 X 100 = 80%

(b) Specificity = $d/(b + d) \times 100$

=780/900 X 100 = 86.7%

(c) Predictive value of a positive test = a/(a + b) × 100

= $80/200 \times 100 = 40\%$ who tested +ve actually they have the disease

(d) Predictive value of a negative test = $d/(c + d) \times 100$

= $780/800 \times 100 = 97.5\%$ who tested -ve actually don't have the disease

(e) Percentage of false-negatives = $c/(a + c) \times 100$

= 20/100 X 100 = 20%

(f) Percentage of false-positive = $b/(b + d) \times 100$

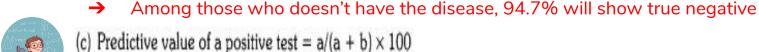
= 120/900 X 100 = 13.3%

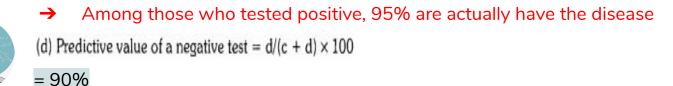
Questions and answers

Exercise 2:

A new non invasive test has been developed to diagnose breast cancer. Of 1000 patients; 50% were diagnosed positive. Of those who tested positive, a Biopsy test yielded 475 with positive results. Of those who tested negative; 50 patients were actually Cancer breast positive when tested against the Biopsy.

		Diagnostic test			
		+ve breast cancer	-ve breast cancer	Total	
Screening test	+ve	475	25	500	
	-ve	50	450	500	
	Total	525	475	1000	


Answers for ex.2:


- (a) Sensitivity = $a/(a + c) \times 100$
 - = 90.5%
 - → Among those who are diseased, 90% will be positive with the new test

- (b) Specificity = $d/(b + d) \times 100$
- = 94.7%

= 95%

- → Among those who tested negative, 90% will not have the disease
- (e) Percentage of false-negatives = c/(a + c) × 100
- = 9.5%

- (f) Percentage of false-positive = $b/(b + d) \times 100$
- = 5.2%

Questions and answers

Exercise 3 (in the slide it was repeated so this is ex4):

Match the following sentences with the appropriate term:

- Ι. The ability of a test to correctly identify those who have a disease (sensitivity)
- II. The proportion of those without the disease correctly identified as negative by screening test (Specificity)
- III. Ability of the test to detect true negative cases (**Specificity**)
- IV. Probability of disease in patients with positive test result (PP+ve)
- V. Probability of not having the disease in a subject with negative test result (**PP-ve**)

Exercise 4:

300 known diabetics (positive on the glucose tolerance test) and 250 normal volunteers (negative on the glucose tolerance test) are given finger prick tests, the results are:

		Glucose tolerance test			
		+	-	Total	
Finger Prick	+	282	20	302	
	-	18	230	248	
	Total	300	250	550	

Sensitivity of the test is:

a) 20%

b) 90%

c) 94% 🥝

d) 98%

Specificity of the test is

a) 90%

b) 92% 🥝

c) 94%

d) 98%

The capacity of a test or procedure to screen as "negative" those NOT having a specific disease is:

- a) sensitivity
- b) specificity
- c) positive predictive value
- d) negative predictive value