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DEFINITIONS AND CONCEPTS

Data, Information and Knowledge 

In chapter 1, data, information and knowledge (see 
Figure 1.1) were defined.4-5 Recall that data are observa-
tions reflecting differences in the world (e.g., “C34.9”). 
Note that “data” is the plural of “datum.” Thus, “data 
are” is grammatically correct; “data is” is not correct. 
Information is meaningful data or facts from which 
conclusions can be drawn (e.g., ICD-10-CM code C34.9 
= “Malignant neoplasm of unspecified part of bronchus 
or lung”). Knowledge is information that is justifiably 
believed to be true (e.g., “Smokers are more likely to 
develop lung cancer compared to non-smokers”). This 
relationship is shown in Figure 2.1 and readers will be 
referred to this diagram later in the chapter.

Data

To understand the relationship between data, informa-
tion and knowledge in health informatics, readers must 
understand the relationship between what happens in a 
computer and the real world. Computers do not represent 
meaning. They input, store, process and output zero 

INTRODUCTION

This chapter, will present a framework for under-
standing informatics. The definitions of data, information, 
and knowledge were presented in chapter 1 and this 
chapter will build upon these definitions to answer funda-
mental questions regarding health informatics. What 
makes informatics different from other computational 
disciplines? Why is informatics difficult? Why do some 
health IT projects fail? 

In chapter 1, the fundamental mismatch between avail-
able technology (i.e., traditional computers, paper forms) 
and problems faced by informaticians was mentioned. In 
this chapter, these ideas are expanded to understand why 
many health IT (HIT) projects fail. To help organizations 
appropriately apply HIT, informaticians must understand 
the limitations of HIT as well as the potential of HIT to 
improve health.

To illustrate several points, this chapter will begin with 
a real-world example of challenges at the information 
level. (See case study on next page.)

LEARNING OBJECTIVES
After reading this chapter the reader should be able to:

• Define Data, Information, and Knowledge
• Describe how vocabularies convert data to information
• Describe methods that convert information to 

knowledge

• Distinguish informatics from other computational 
disciplines, particularly computer science

• Describe the differences between data-centric and 
information-centric technology
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“...current efforts aimed at the nationwide deployment of health care IT will not be sufficient to achieve the vision of 
21st century health care, and may even set back the cause if these efforts continue wholly without change from their 
present course.”1
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Case Study: The Story of E-patient Dave 

In January 2007, Dave deBronkart was diagnosed with a kidney cancer that had spread to both lungs, bone and 
muscles. His prognosis was grim. He was treated at Beth Israel Deaconess Medical Center in Boston with surgery 
and enrolled in a clinical trial of High Dosage Interleukin-2 (HDIL-2) therapy. That combination did the trick and by 
July 2007, it was clear that Dave had beaten the cancer. He is now a blogger and an advocate and activist for patient 
empowerment. 

In March 2009, Dave decided to copy his medical record from the Beth Israel Deaconess EHR to Google Health, a 
personally-controlled health record or PHR. He was motivated by a desire to contribute to a collection of clinical 
data that could be used for research. Beth Israel Deaconess had worked with Google to create an interface (or 
conduit) between their medical record and Google Health. Thus, copying the data was automated. Dave clicked 
all the options to copy his complete record and pushed the big red button. The data !owed smoothly between 
computers and the copy process completed in only few moments.

What happened next vividly illustrated the di"erence between data and information. Multiple urgent warnings 
immediately appeared, including a warning concerning the prescription of one of his medications in the presence 
of low potassium levels (hypokalemia) (Figure 2.2). Dave was taking hydrochlorothiazide, a common blood pressure 
medication, but had not had a low potassium level since he had been hospitalized nearly two years earlier.

Worse, the new record contained a long list of deadly diseases (Figure 2.3). Everything that Dave had ever had was 
transmitted, but with no dates attached. When the dates were attached, they were wrong. Worse, Dave had never 
had some of the conditions listed in the new record. He was understandably distressed to learn that he had an aortic 
aneurysm, a potentially deadly expansion of the aorta, the largest artery in the human body.

Why did this happen? In part, it was because the system transmitted billing codes, rather than doctors’ diagnoses. 
Thus, if a doctor ordered a computed tomography (CT) scan, perhaps to track the size of a tumor, but did not provide 
a reason for the test, a clerk may have added a billing code to ensure proper billing (e.g., rule out aortic aneurysm). 
This billing code became permanently associated with the record. To put it another way, the data were transmitted 
from Beth Israel’s computer system to Google’s computer system quickly and accurately. However, the meaning 
of what was transmitted was mangled. In this case, the context (e.g., aortic aneurysm was a billing concept, not 
a diagnosis) was altered or lost. According to the de#nitions presented in chapter 1 (and reiterated later in this 
chapter), meaning is the de#ning characteristic of information as opposed to data.

After Dave described what happened in his online blog2 (http://epatientdave.com/), the story was picked up by 
a number of newspapers including the front page of the Boston Globe.3 It also brought international attention to 
the problem of preserving the meaning of data. It became very clear that transmitting data from system to system 
is not enough to ensure a usable result. To be useful, systems must not mangle the meaning as they input, store, 
manipulate and transmit information. Unfortunately, as this story illustrates, even when standard codes are stored 
electronically, their meaning may not be clearly represented.

Figure 2.1: Data, information and knowledge
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can be stored in JPG files. Nothing about the file format 
helps us recognize the subject of the photograph.

Informatics vs. Information Technology  
and Computer Science

Data are largely the domain of information technology 
(IT) professionals and computer scientists. As computers 
become increasingly important in biomedicine, biomed-
ical researchers are starting to collaborate with computer 
scientists. IT professionals and computer scientists 
concentrate on technology, including computing systems 
composed of hardware and software as well as the 
algorithms implemented in such systems. For example, 
computer scientists develop algorithms to search or sort 
data more efficiently. Note that what is being sorted or 
searched is largely irrelevant. In other words, the meaning 
of the data is of secondary importance. It does not matter 
whether the strings that are being sorted represent proper 
names, email addresses, weights, names of cars or heights 
of buildings.

Though they may be motivated by specific applications, 
computer scientists typically develop general-purpose 
approaches to classes of problems that involve compu-
tation. For example, a computer scientist may design a 
memory architecture that efficiently stores and retrieves 
large data sets. The computer science contribution is the 

(off) and one (on). Each zero or one is known as a bit. 
A series of eight bits is called a byte. Note that these bits 
and bytes have no intrinsic meaning. They can represent 
anything or nothing at all (e.g., random sequences of 
zeroes and ones).

Bits within computers are aggregated into a variety 
of data types. Some of the most common data types 
are listed below.

• Integers such as 32767, 15 and -20
• Floating point numbers (or floats) such as 3.14159, 

-12.014, and 14.01; the floating point refers to the 
decimal point

• Characters “a,” and “z”
• (Character) Strings such as “hello” or “ball”
Note that these data types do not define meaning. A 

computer does not “know” whether 3.14159 is a random 
number or the ratio of the circumference to the diameter 
of a circle (known as Pi or π).

Data can be aggregated into a variety of file formats. 
These file formats specify the way that data are organized 
within the file. For example, the file header may contain 
the colors used in an image file (known as the palette) 
and the compression method used to minimize storage 
requirements. Common or standardized file formats 
allow sharing of files between computers and between 
applications. For example, as long as your digital camera 
stores photos as JPG files, you can use any program that 
can read JPG files to view your photos.

• Image files such as JPG, GIF and PNG.
• Text files
• Sound files such as WAV and MP3
• Video files such as MPG 
Again, it is important to recognize that neither data 

types nor file formats define the meaning of the data, 
except for the purpose of storing or display on a computer. 
For example, photographs of balloons and microscopes 

Figure 2.2: Urgent warning in e-patient Dave’s record
Figure 2.3: e-patient Dave’s conditions as re!ected in 
the newly-created personal health record (PHR)
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Increasingly, the term “data scientist” is used to refer 
to professionals engaged in the retrospective analysis of 
incidentally collected data (such as the online activity 
of users of a website). With biomedical data, effective 
analysis often requires the attribution of meaning to such 
data. So, we would argue, the biomedical data scientist 
must take both information and raw data into account 
(i.e., engage in informatics and not solely data analysis).

Artificial Intelligence (AI)

AI is generally considered to be a sub-field of computer 
science. This is arguably appropriate (particularly for the 
current crop of AI systems) since the focus is usually on 
the development of generalizable methods through which 
a computer can exhibit behavior that appears intelligent. 
AI is concerned with the development of systems that 
can do something that previously required human intel-
ligence, such as driving a vehicle in city traffic, winning 
a game of chess, or solving a logic puzzle. Originally, 
AI developed in parallel with studies of human expert 
cognition, and a prevailing notion was that the simu-
lation of intelligent behavior required systems based 
on knowledge of how expert humans solve problems 
in a given domain. However, the focus subsequently 
shifted away from the design of systems that use human-
like processes, to the development of systems that can 
attain human-like performance regardless of how this 
performance is obtained (i.e., without simulating human 
cognition or expertise). Recent advances in statistical 
AI or “machine learning” have enabled computers to 
solve problems that have previously resisted automa-
tion. Specifically, “deep learning” refers to the use of 
multi-layer neural networks to learn patterns such as the 
features of objects in an image. A particularly prominent 
success in the biomedical domain has been in the field of 
dermatologic (skin) lesion categorization. Researchers at 
Stanford University were able to use a very large set of 
labelled images (129,450) showing various types of skin 
lesions to train a computer to distinguish specific kinds 
of malignant (cancerous) lesions from similar benign 
(non-cancerous) lesions. Importantly, the system was 
provided only pixel-level data and labels, no attempt was 
made to provide the system with any knowledge about 
how to recognize any dermatologic disease. System 
performance was compared against 21 board-certified 
dermatologists. The system performed comparably to the 
dermatologists.8 This was an impressive and potentially 
clinically-useful application. This project also illustrates 
two limitations of deep learning. First, that it requires 
large sets of labelled data to “train” the system. Second, 
that the system cannot explain “why” it does something 

development of the better memory architecture for large 
data sets; while the memory architecture is not a direct 
improvement of an EHR per se, it is nonetheless critical 
to its advancement.

Information and knowledge, on the other hand, are 
addressed by informatics. To an informatician computers 
are tools for manipulating information. Indeed, there are 
many other useful information tools, such as pens, paper 
and reminder cards. There are significant advantages 
to manipulating digitized data, including the ability to 
display the same data in a variety of ways and to commu-
nicate with remote collaborators. From an informatics 
perspective however, one should choose the optimal tool 
for the information task – often, but not always, the best 
tool for the task is computer-based.4,6

There are areas of overlap between computer science 
and informatics. For example, information retrieval is 
widely viewed as a sub-field of computer science and 
information retrieval researchers often reside in computer 
science departments. However, we would argue that infor-
mation retrieval draws on both disciplines. Information 
retrieval is “finding material (usually documents) of 
an unstructured nature (usually text) that satisfies an 
information need by retrieving documents from large 
collections (usually stored on computers).”7

Note that information retrieval is concerned with 
retrieval of information, not data. For example, finding 
documents that describe the relationship between aspirin 
and heart attack (myocardial infarction) is an example 
of an information retrieval task. The central problem is 
identifying documents that contain certain meaning. In 
contrast, efficient retrieval of documents (or records) that 
contain the string “aspirin” can be posed as a database 
problem (an area of computer science). Importantly, 
informatics and computer science differ in the problems 
that they address (see Figure 2.4). It should not be implied 
that computer science is easier or less intellectually chal-
lenging compared to informatics (or vice versa).

Figure 2.4: Relationship between informatics and 
computer science in area of information retrieval.
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the representing world. In our example, the mapping is 
the correspondence between whole numbers and symbols 
that are used to represent them. Note that the data are, in 
and of themselves, meaningless. 

To do anything useful, one must also have rules 
regarding the mapping (i.e., relationship between the 
symbols and the real world), and what can be done with 
the symbols. In our example, these rules are the rules 
governing the manipulation of whole numbers systems 
(e.g., addition, multiplication, division, etc.). 

The data part of a representational system may also 
be called its “form”, in which case meaning is called 
its’ “content.” The word “form” is significant because of 
its relationship to formal methods, which are methods 
that manipulate data using systematic rules that depend 
only on form, not content (meaning). These formal 
methods, including computer programs, depend only 
on systematic manipulation of data without regard for 
meaning. Thus, only a human can ensure that the input 
and output of a formal method (e.g., computer program) 
correctly capture and preserve meaning. In the skin 
cancer example, deep learning network described above, 
the humans who designed or used the network know that 
the input represents digitized images of skin lesions and 
that the output represents whether the lesion is cancerous 
or not. However, the trained network knows nothing 
about lesions or cancer, it is simply a complex non-linear 
mathematical function mapping input (digitized images) 
to output (cancerous vs. non-cancerous). Recent research 
on deep neural nets has shown that they can be reli-
ably fooled into confidently misclassifying images by 
adding noise that humans cannot perceive. For instance, 
researchers can add noise to an image of a panda to create 
a second image that to humans is indistinguishable from 
the first, but that causes a deep net to confidently classify 
the first image as a panda and the second as a gibbon.10 Of 
course, there’s by now a far larger literature on situations 
in which human diagnosticians reliably make mistakes.11 
That human and machine diagnosticians reach their 
conclusions through different processes suggests that 
they will make different sorts of errors, and that the safest 
system may be one that takes both of their perspectives 
into account. 

In spite of the fact that formal methods manipulate 
only form (or data), not meaning, they can be very useful. 
If the formal method does not violate the rules of the 
physical world, one can apply the method to solve prob-
lems in the real world. For example, a whole number 
representation can be used to determine how many 
8-person boats are needed to transport 256 people across 
the Nile river (i.e., 256 people divided by 8 people/boat 
= 32 boats). 

to a human. Other applications of deep learning that may 
impact biomedicine include natural language processing 
and speech recognition.

CONVERTING DATA TO  
INFORMATION TO KNOWLEDGE

We live in the real world that contains physical objects 
(e.g., aspirin tablet), people (e.g., John Smith), things 
that can be done (e.g., John Smith took an aspirin tablet) 
and other concepts. To do useful computation in this 
context, one must segregate some part of the physical 
world and create a conceptual model. The conceptual 
model contains only the parts of the physical world that 
are relevant to the computation. Importantly, everything 
that is not in the conceptual model is excluded from the 
computation and assumed to be irrelevant. 

The conceptual model is used to design and implement 
a computational model. In Figure 2.5, the real world 
contains a person, John Smith. There are many other 
things in the real world including other people, physical 
objects, etc. There are many things that we can say about 
this person, they have a name, height, weight, parents, 
thoughts, feelings, etc. The conceptual model defines what 
is relevant; everything that is not in the conceptual model 
is therefore assumed to be not relevant. In our example 
(Figure 2.5), name and age are chosen. Thus, the height, 
weight and all other things about John Smith are assumed 
to be irrelevant. For example, given our conceptual and 
computational models, one would not be able to answer 
questions about height. Next a representation must be 
defined. (Figure 2.5). A simple example is that of whole 
numbers. A representation has three components. The 
represented world is the information that one wants 
to represent (e.g., whole numbers: 0, 1, 2, 3, …). The 
representing world contains the data that represent the 
information (e.g., symbols “0”, “1”, “2”, “3”, …). There 
must be a mapping between the represented world and 

Figure 2.5: Computational framework
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However, associating ICD-10-CM C34.9 with a patient 
record labels the patient record (and thus the patient) as 
having “Lung neoplasm, not otherwise specified.” Of 
course, one could design systems that turn data into infor-
mation without using vocabularies. For example, patient 
records could be designed that include a bit for each 
possible diagnosis. Thus, setting the bit corresponding 
to lung cancer to 1 would be semantically equivalent to 
associating ICD-10-CM C34.9 with the patient’s record. 
Semantically equivalent is simply another way of stating 
that the meanings are the same.

Transmission of information between computer 
systems, often referred to as interoperability, requires 
consistency of interpretation in the context of a particular 
task or set of tasks.12 The source system (Beth Israel 
Deaconess EHR for e-patient Dave) and the receiving 
system (Google Health for e-patient Dave) must share 
a common way of transforming data into information. 
However, this is not sufficient. Note that in the case of 
e-patient Dave, both systems used ICD codes. However, 
associated information such as dates and most impor-
tantly the context: billing code vs. actual diagnosis, was 
not shared correctly. 

Information to Knowledge

Multiple methods have been developed to extract 
knowledge from information. Note that it would not 
make sense to directly convert data (which by definition 
are not meaningful) to knowledge (justified, true belief). 
Thus, information is required to produce knowledge. 
Transformation of information (meaningful data) into 
knowledge (justified, true belief) is a core goal of science. 

In the clinical world, most available knowledge is best 
described as justified (i.e., evidence exists that it is true), 
rather than proven fact (i.e., it must be true). This is an 
important distinction from traditional hard sciences such 
as physics or mathematics.

In this chapter, there is a focus on informatics tech-
niques that are designed to convert clinical information 
into knowledge. Thus, clinical data warehouses (CDWs) 
are described that are often the basis for attempts to turn 
clinical information into knowledge, as well as methods 
for transforming information into knowledge.

Clinical research informatics is recognized as a 
distinct sub-field within informatics (see separate chapter 
on e-research for further information). Clinical research 
informaticians leverage informatics to enable and trans-
form clinical research.13-14 By “enable,” what is meant 
is helping researchers accomplish their goals faster 
and cheaper than is possible using existing methods. 
For example, searching electronic clinical data may be 

However, one must be careful because the formal 
method (division) can easily violate the rules of the real 
world. For example, suppose that 250 people are in Cairo 
and six people are in Khartoum (1,000 miles away) and 
they must cross at the same time. In this case, 32 boats 
is the wrong answer since 32 boats are needed in Cairo 
and another boat is needed at Khartoum. In this example, 
the real world includes location (Cairo vs. Khartoum), 
but the conceptual model includes only the number of 
people; location and distance are ignored. Thus, the 
computational model (based on the conceptual model) 
gives an inappropriate answer. It can’t be said that the 
answer is “wrong.” Clearly 256/8 = 32; the computer did 
not malfunction. However, in the case where location is 
important, the numerical answer is not useful.

The distinction between the real (represented) world, 
the conceptual model (representing world) and the 
computational model (that which the computer manip-
ulates) is fundamental to informatics. 

When the real world, the conceptual model and the 
computational model match, it is possible to get useful 
answers from the computer. When they do not match, 
such as the case when a critical constraint was left out 
of the conceptual model, the answers obtained from 
the computer are not useful. This is what happened in 
the case of e-patient Dave. Formal methods (computer 
programs) were developed that linked fields in the Beth 
Israel Deaconess EHR to fields in Google Health. Data 
from one were dutifully transferred to the other. However, 
the meaning (i.e., that the data being transmitted were 
billing codes, not actual diagnoses) was lost. Further, 
there was a flaw in the conceptual model, the computa-
tional model or both models that prevented dates from 
being maintained correctly; perhaps because the dates 
reflected billing dates, rather than the date when a diag-
nosis was made.

Data to Information

The next step is to convert data into information. 
Consider the example in Figure 2.1. “C34.9” is, in and 
of itself, meaningless (i.e., it is a data item or datum). 
However, ICD-10-CM gives us a way to interpret C34.9 
as “Lung neoplasm, not otherwise specified.” Thus, the 
vocabulary ICD-10-CM turns the datum into a unit of 
information. 

The computer still stores only data, not informa-
tion. Thus, only a human can determine whether the 
meaning is preserved or not. In the case of e-patient 
Dave, all the computer systems functioned as they were 
designed. There were no “computer errors,” but upon 
human review, the meaning was mangled.
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choose to use a particular vocabulary for medication 
orders, allow specific dosing frequencies, etc. Inevitably, 
however, physicians will want to write unusual orders 
that will be difficult to accommodate.

Free text, on the other hand, has the advantage of 
being able to express anything that can be expressed 
using natural language. On the other hand, it is difficult 
for computers to process. Indeed, the field of natural 
language processing (NLP) is an active area of research 
in both computer science and informatics. Within clin-
ical records, the free text notes are critically important. 
Indeed, as in the case of e-patient Dave, structured data 
(such as billing codes) may not accurately reflect clinical 
reality. This is not necessarily anyone’s fault. Billing 
codes were assigned for billing, not for clinical care. 
Thus, it should not be surprising that using billing codes 
for a different purpose does not yield the desired result. 
Over 20 years ago, van der Lei warned: 

…under the assumption that laws of medical 
informatics exist, I would like to nominate 
the first law: Data shall be used only for 
the purpose for which they were collected. 
This law has a collateral: If no purpose was 
defined prior to the collection of the data, then 
the data should not be used.15

To make sense of clinical records, both structured data 
and free text must be leveraged. This remains an active 
area of informatics research.

A clinical data warehouse is a database system that 
collects, integrates and stores clinical data from a variety 
of sources including electronic health records, radiology 
and other information systems. EHRs are designed to 
support real-time updating and retrieval of individual 
data (e.g., Joan Smith’s age). The general process is shown 
in Figure 2.6. Data from multiple sources including 
one or more EHRs are copied into a staging database, 
cleaned and loaded into a common database where they 
are associated with meta-data. Meta-data are data that 
describe other data. For example, the notation that a data 
item is an ICD-10-CM term represents meta-data.

Once loaded into a CDW, a variety of analytics can 
be applied, and the results presented to the user via a 
user interface. Examples of simple analytics include 
summary statistics such as counts, means, medians and 
standard deviations. More sophisticated analytics include 
associations (e.g., does A co-occur with B) and similarity 
determinations (e.g., is A similar to B).

In contrast to EHRs, CDWs are designed to support 
queries about groups (e.g., average age of patients with 
breast cancer). Although in principle an EHR may contain 
the same data as a CDW, databases that support EHRs 
are designed for efficient real-time updating and retrieval 

faster than manually reviewing paper clinical charts. 
“Transform” means developing methods that allow 
researchers to do things that they could not do using 
existing methods. For example, it is not possible to use 
aggregated clinical data contained in paper records to 
help clinicians make decisions in real time. One cannot 
ask, in real-time or near real-time, “what happened to 
patients like me, at your institution, who chose treatment 
A vs. treatment B?” Although the information required 
to answer this question is found in the clinical records, 
a manual chart review cannot be performed in real time. 
However, to derive knowledge from information and 
realize the benefits of computerized information, we 
must ensure that meaning is preserved.

CLINICAL DATA WAREHOUSES (CDWS)

The enterprise data warehouse was introduced in 
chapter 1. In this chapter, the focus will be on clinical, 
rather than administrative data, hence the reference to 
a clinical data warehouse or CDW.

Increasingly, clinical data are collected via electronic 
health records (EHRs). Clinical records within EHRs are 
composed of both structured data and unstructured 
or (free text). Structured data may include billing codes, 
lab results (e.g., Sodium = 140 mg/dl), problem lists (e.g., 
Problem #1 = ICD-10-CM C34.9 = “Lung Neoplasm, Not 
Otherwise Specified”), medication lists, etc. In contrast, 
free text is similar to this chapter – simply human 
language such as English, called natural language. 
Although templates are often used, key portions of clin-
ical notes are still often dictated and are represented in 
records as free text.

From an informatics perspective, structured data are 
much easier to manage – structured data are computa-
tionally tractable. Ideally, but not always, these data are 
encoded using a standard such as ICD-10-CM (previously 
ICD-10-CM in the United States, see chapter on data 
standards). Thus, retrieving patients with a particular 
problem is, theoretically, simply a matter of identifying 
all records that are tagged with a particular code. As 
one will see later in this chapter, in practice this does 
not always work. Further, nuances (e.g., similarity to 
a previous case) or vague concepts (e.g., light-colored 
lesion, tall man) may be difficult to convey with a “one 
size fits all” vocabulary.

Similarly, computerized physician order entry (see 
chapter on electronic health records) can be difficult to 
implement. If designers allow only structured data, they 
must anticipate what will be ordered and make choices 
that constrain the possible inputs. For example, they may 
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quality improvement strategies) in specific patient popu-
lations (e.g., retrieve all women who are 40 years old or 
older who have not had a mammogram in the past year). 
Similarly, clinical and translational researchers use CDWs 
to identify trends (e.g., did screening mammograms detect 
breast cancer at an early stage?).16 Comparative effec-
tiveness research (CER) or, more broadly, practice-based 
research, are increasingly important fields that attempt 
to link research with clinical practice using CDWs. They 
complement traditional clinical trials that ask very focused 
questions. For example, a clinical trial might be designed 
to compare treatment A vs. treatment B in a particular 
population of patients. In contrast, CER practitioners ask 
what happened in practice. For example, treatment A has 
been found to be more effective than treatment B in a 
clinical trial. What actually happened in practice?

Hospital infection control specialists use CDWs to 
track pathogens within hospitals. Public health agencies 
traditionally rely on reporting to conduct surveillance 
for natural or man-made illnesses (see chapter on public 
health informatics). However, reporting introduces a 
delay. Accessing aggregated data at the institutional level 
can be done much faster using a CDW.

One of the most popular clinical data warehousing 
platforms is the product of the Informatics for Integrating 
Biology and the Bedside (i2b2) project based at Harvard 
Medical School.17 The open source and very modular i2b2 
platform was designed to enable the reuse of clinical data 
for research but can also be very useful for non-research 
tasks such as quality monitoring. As of August 2017, i2b2 
has been implemented at over 100 institutions including 
academic institutions and commercial entities in the US 
and abroad.18

I2b2 relies on a star schema composed of facts and 
dimensions (Figure 2.7.). Facts are pieces of information 
that are queried by users (e.g., diagnoses, demographics, 

of individual data. Thus, a query across patients rather 
than regarding an individual may take much more time. 
Further, since EHRs support patient care, queries about 
groups may be restricted to ensure adequate perfor-
mance for clinicians. Another important distinction is 
that CDWs are usually not updated in real-time. Although 
update schedules differ, daily or weekly updates of the 
institutional CDW are typical.

CDWs are rapidly becoming critical resources. They 
enable organizations to monitor quality by allowing users 
to query for specific quality measures (see chapter on 

Figure 2.6: Overview of clinical data warehousing (ETL 
= Extract, transform and load) 

Figure 2.7: i2b2 data model 12
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clinical data meaningful (data → information) and then 
learn from aggregated clinical data (information → 
knowledge). In practice, many of the benefits of EHRs 
(see chapter 3) actually require a CDW. The transfor-
mation of data into information and knowledge is a core 
concern of informaticians.

Use of Aggregated Clinical Data

To make use of aggregated clinical information, we 
must be able to recognize records that belong to patients 
with specific conditions. For example, it is necessary to 
identify records belonging to patients who have been 
diagnosed with breast cancer. A simple answer is to 
rely on billing codes, one of the most common forms of 
structured data in clinical records. However, as we saw 
in the case of e-patient Dave, one cannot simply rely on 
billing codes. Sometimes other structured data are avail-
able, problem lists are particularly useful. Unfortunately, 
problem lists are often out of date or incomplete.19 Thus, 
a great deal of interest has focused on extracting infor-
mation from free text clinical notes.

Concept extraction refers to the problem of iden-
tifying concepts within unstructured data, such as 
discharge summaries or pathology reports. Usually, 
these concepts are mapped to a controlled vocabulary, 

laboratory results, etc.) and dimensions describe the 
facts. Note that the data model is organized around facts, 
rather than individual patients, as would be the case for 
an EHR. Another benefit of organizing the CDW around 
observations is that data from multiple sources (e.g., 
different hospitals) can be aggregated into a common 
data model – new observations are simply added to the 
table of facts. Meta-data, such as the vocabulary that was 
used for encoding the fact, is an important component. 
Thus, the i2b2 data model by itself is not sufficient to 
ensure interoperability.

I2b2 also provides a very usable interface to an insti-
tutional CDW that can be used by non-informaticians 
(see Figure 2.8). Users click and drag concepts from the 
ontology window (upper left) into the query panes (upper 
right) and obtain results, such as the number of patients 
fulfilling certain criteria, in lower right. In addition to 
the basic i2b2 package, specialized modules have been 
developed for NLP and other tasks.

In short, clinical data are collected via EHRs and 
archived in CDWs. As EHRs are becoming increasingly 
common, CDWs are becoming increasingly important. 
However, to realize the potential of CDWs to improve 
health, we must do more than archive data. One must 
turn these data into information and knowledge. Users 
must be able to “make sense” of clinical data; to make 

Figure 2.8: i2b2 screenshot showing the result (patient count) of a query for female patients ages 45-64 
with ischemic heart disease 
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of the features that characterize annotated positive 
(patients with breast cancer) and negative (patients 
without breast cancer) cases. New cases can then be 
categorized automatically based on the extent to which 
their features are characteristic of previously encoun-
tered positive or negative examples. Deep learning 
using multi-layer neural networks described above, is 
an example of supervised learning approaches.

WHAT MAKES INFORMATICS DIFFICULT?

Why are some domains highly computerized, while 
health care and biomedicine resist computerization? 
Consider the banking system.4 It is clearly very complex 
and involves a vast quantities data and meaning. Why do 
all banks use computers? In contrast to health care, there 
are no arguments regarding the suitability of computers 
to track accounts. We argue that in the case of banking, 
there is a very narrow “semantic gap” between data and 
information. In other words, the correspondence between 
the data (numbers) and information (account balances) 
is very direct. As one manipulates the computational 
model, the meaning of these manipulations follows easily.

Consider the differences between banking data and 
health care data, such as an account at a bank versus a 
patient (Table 2.2). One difference is that concepts rele-
vant to health are relatively poorly defined compared to 
banking concepts. The symbols require significant back-
ground knowledge to interpret properly. For example, 
there are multiple ways that a patient can be “sick” 
including derangements in vital signs (e.g., extremely 
high or low blood pressure), prognosis associated with a 
diagnosis (e.g., any patient with an acute aortic dissection 
is sick), or other factors. Two clinicians when asked to 
describe a “sick” individual may legitimately focus on 
different facts. In contrast, a bank account balance (e.g., 
$1058.93) is relatively objective and is captured by the 
symbols. Thus, data-manipulating machines (IT) are 
much better suited to manipulating bank accounts than 
clinical descriptors.

In general, if the problem relates strictly to form 
(data) or is easily reduced to a form-based problem, then 
computers can easily be applied to solve the problem. 
Retrieving all abstracts in PubMed containing the string 
“breast cancer” is a question related to data and is easily 
reducible to a form-based data query. On the other hand, 
retrieving all documents that report a positive correlation 
between beta blockers (a class of medications) and weight 
gain is an information retrieval question that depends on 
the meaning of the query and the meaning of the text in 

such as ICD-10-CM, SNOMED-CT and others. While 
this may on the surface appear to be a trivial problem, 
there are many ways in which a single concept might 
be expressed (for example “high blood pressure” and 
“hypertension”), and it is often the case that a single 
word or acronym may have multiple medically relevant 
meanings (for example “DM” may refer to “Diabetes 
Mellitus” or “Depressed Mood”) that cannot be teased 
apart without considering contextual cues. Consequently, 
much effort has been devoted toward the development of 
systems that aim to map between terms or phrases and 
controlled vocabularies with accuracy.

Multiple biomedical concept extraction systems exist 
including MetaMap20 and cTAKES.21 Broad-purpose 
medical language processing systems such as MedLEE,22 
have also been adapted to this end. These systems can be 
tuned to perform well but require re-tuning when applied 
to different corpora (e.g., changing institutions) or clinical 
problems (e.g., breast cancer vs. diabetes mellitus). Table 
2.1 summarizes the published performance of these three 
concept extraction systems; note that the results are not 
directly comparable to each other due to different tasks, 
experimental design (e.g., pre-processing), and gold 
standards (a common limitation).23-24

Table 2.1: Published performance of three notable 
biomedical systems

Concept 
Extractor

Gold  
Standard

Precision Recall F-score 
(F1)

cTAKES21 Mayo clinic 0.80 0.65 0.72

MetaMap 
(MMTx)25

Proprietary 0.74 0.76 0.748

MEDLEE26 Proprietary 0.86 0.77 0.81

Classification refers to the problem of categorizing 
data into two or more categories. For example, one might 
want to classify medical records as belonging to patients 
who have vs. have not been diagnosed with breast 
cancer. A variety of classification algorithms have been 
developed, most of which rely on statistical methods. 
These classification algorithms generally depend on 
the selection of a set of features, such as the presence 
or absence of particular terms, concepts or phrases. 
Once these features have been selected, either manually 
or through automated methods, medical records can 
be categorized based on these features. A commonly 
utilized approach is supervised machine learning, in 
which an algorithm is used to learn a representation 



Chapter 2: Healthcare Data, Information, and Knowledge    39 

blood vessels and raises blood pressure)? The nervous 
system? And so on. With a bank account, it is easy to 
draw boundaries around the real-world concepts that 
affect an accurate account balance. On the other hand, 
in biomedicine these boundaries are often impossible to 
precisely define, so our conceptual and computational 
models are rarely complete and often lead to inaccurate 
results, such as was seen with e-Patient Dave. 

COMPLEXITY OF KNOWLEDGE MODELS

Modeling health care is difficult, but this has not 
stopped informaticians from trying. Notable modeling 
attempts include the HL7 Reference Information Model 
or RIM (see chapter on data standards). Work on the 
RIM started in 1997 and Release 1 was approved by the 
American National Standards Institute (ANSI) in 2003. 
The RIM is one of the major differences between the 
commonly adopted HL7 version 2.x that has been widely 
used for decades and version 3, which has not been as 

the documents. The latter question is not easily reducible 
to form and is therefore much harder to automate.

Concepts definable with necessary and sufficient 
conditions are usually relatively easy to reduce to form, 
and thereby permit some limited automated processing 
of meaning. However, concepts without necessary and 
sufficient conditions (e.g., recognizing a sick patient, 
or defining pain) cannot be easily reduced to data and 
are much more difficult to capture computationally. 
Informatics is interesting (and difficult), in part, because 
many biomedical concepts defy definition via necessary 
and sufficient conditions. 

Blois argued that, to compute upon a system, one must 
first determine the system’s boundaries.27 In other words, 
one must define all the relevant components and assume 
that everything else is irrelevant. However, this is very 
difficult to do for biological (or human) systems. If the 
goal is to model the circulatory system, can the renal 
system be excluded? The endocrine system that includes 
the adrenal glands (releases epinephrine that constricts 

Table 2.2: Comparison of health and banking data

Banking data Health data

Concepts and 
descriptions

Precise

Example:
Account 123 balance = $15.98

General, subjective

Example:
sick patient

Actions Usually (not always) reversible

Example:
Move money A � B

Often not easily reversible

Example:
Give a medication
Perform procedure

Context Precise, constant

Example:

US $

Vague, variable

Example:

Normal lab values di"er by lab

User autonomy Well-de#ned and constrained

Example:
What I can do with my checking 
account = what you can do

Variable and dependent on circumstance

Example:
Clinical privileges depend on training, change over time, 
depend on circumstances

Users Clerical sta" Varied, including highly trained professionals

Time sensitivity Few true emergencies (seconds) Many time sensitive tasks, highly variable time sensitivity 
depending on context

Work!ow Well-de#ned Highly variable, implicit
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example, antibiotics can treat bacterial pneumonia, 
but are of little use to a patient with viral pneu-
monia.

• Vague information: Information that includes ele-
ments (e.g., predicates or quantifiers) that permit 
boundary cases (tall woman, may have happened, 
large bruise, big wound, elderly man, sharp radi-
ating pain, etc.). Unlike uncertain information, with 
vague information there is no underlying matter of 
fact. Even if the age of every female human in the 
US was known, one could not precisely answer the 
question of how many mature women were in the 
US at that time, because “mature” is a term that has 
boundary cases; there are women who are clearly 
mature, those who clearly are not, and a number 
in between for whom one cannot be sure that term 
applies.

• Inconsistent information: Information that contains 
two or more assertions that cannot simultaneously 
hold.
° Example: Birthdate: 8/29/66 AND 9/17/66

As illustrated in the above examples, all these imper-
fections may be found in healthcare information. Humans 
can deal with these imperfections. For example, it can 
be decided that for clinical purposes, a difference in 

widely adopted.28 One of the problems is that the RIM is 
very complex (see Figure 2.9) and does not necessarily 
match all health care environments.

Biomedical informatics is also difficult because 
biomedical information can be imperfect in several 
different ways:

• Incomplete information: Information for which some 
data are missing, but potentially obtainable. 
° Example: What is the past medical history of an 

unconscious patient who arrives at ED?
• Uncertain information: Information for which it is 

not possible to objectively determine whether it is 
true or false. This can also be called epistemic uncer-
tainty, because it arises from a lack of knowledge 
of some underlying fact. This type of imperfection 
is addressed by probability and statistics.
° Example: how many female humans are in the 

US? Although there is a precise answer to this 
question at any given moment, we can only esti-
mate the answer using statistics.

• Imprecise information: Information that is not as 
specific as it should be.
° Example: Patient has pneumonia. This may be 

precise enough for some purposes but is not 
sufficiently precise to determine treatment. For 

Figure 2.9: Overview of the HL7 version 3 RIM (Courtesy HL7 29) 
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artificial intelligence, resulting in cycles of excitement 
and disappointment (in artificial intelligence, these cycles 
are sometimes called “AI winters”).

Effects of HIT

HIT is an “easy sell” to an American public increas-
ingly dissatisfied with our health care system. Indeed, 
there is evidence that HIT can improve health care 
quality, prevent medical errors, and increase effi-
ciency.31-32 Thus, there is reason for optimism. With the 
American Recovery and Reinvestment Act (ARRA) of 
2009, the US government made a multi-billion-dollar 
investment in HIT.33 Similar investments have been made 
by the governments of Australia,34 Belgium,35 Canada,36 
Denmark,37 and the United Kingdom.38

However, many and perhaps even most HIT proj-
ects fail.39 There is also evidence that HIT can worsen 
health care quality to the point of increasing mortality, 
increasing errors and decreasing efficiency.40-42 In 
November 2011, the Institute of Medicine issued a 
report entitled “Health IT and Patient Safety: Building 
Safer Systems for Better Care” that concluded: “...some 
products have begun being associated with increased 
safety risks for patients.”43 There is even a term, “e-iat-
rogenesis,” that refers to the unintended deleterious 
consequences of HIT.44 Notably, systems that increase 
mortality at one institution , do not seem to have the same 
effect at another institution;40,45 even though the clinical 
setting (pediatric intensive care) was similar. Thus, one 
cannot simply conclude that the system itself is wholly 
responsible. It is not just the system being implemented, 
but how it is implemented and in what context that affects 
the clinical outcomes.

We’ve Been Here Before: AI Winters

During the 1950s, we were faced with a different 
problem: the Cold War. Similarly, the government saw 
IT as a promising (at least partial) solution. If researchers 
could develop automated translation, we could monitor 
Russian communications and scientific reports in “real 
time.” There was a great deal of optimism and “…many 
predictions of fully automatic systems operating within 
a few years.”46

Although there were promising applications of poor-
quality automated translation, the optimistic predictions 
of the 1950s were not realized. The fundamental problem 
of context and meaning remains unsolved. This made 
disambiguation difficult resulting in amusing failures. 
Humorous examples include: “the spirit is willing but the 
flesh is weak” translated English → Russian → English 

patient age of a little over two weeks (a vague statement), 
is insignificant for clinical purposes. Computers, on the 
other hand, must be explicitly programmed to make such 
“judgments.” However, the number of possible variances 
and exceptions is effectively infinite. Thus, they cannot 
all be anticipated and addressed in advance. This is one 
reason why clinical decision support often gives advice 
that is, to a clinician, obviously inappropriate to the 
current patient situation. 

In addition, definitions in health care and biomedi-
cine often change over time. Consider the definition of 
a gene.30 

Designing systems that adapt to changes in definition 
that, in turn, can affect other definitions is difficult. Our 
computers and programming languages process discrete 
symbols according to precise formal rules or mathemat-
ical expressions. They do not make sense of a highly 
ambiguous, noisy world or do meaning-based processing. 
With this background, one can now consider health IT 
and its various successes and failures in the real world.

WHY HEALTH IT SOMETIMES FAILS

“To improve the quality of our health care 
while lowering its cost, we will make the 
immediate investments necessary to ensure 
that within five years all of America’s medical 
records are computerized. This will cut 
waste, eliminate red tape, and reduce the 
need to repeat expensive medical tests… it 
will save lives by reducing the deadly but 
preventable medical errors that pervade 
our health care system.” —Barack Obama 
(Speech on the Economy, George Mason 
University, January 8, 2009)

Widespread dissatisfaction with health care in America 
and rapid advancement in information technology has 
focused attention on Health IT (HIT) as a possible solu-
tion. The need for HIT is one of the few topics upon 
which Democrats and Republicans agree. Both former 
President Bush and President Obama set 2014 as the goal 
date for computerizing medical records. To many, HIT 
seems like an obvious solution to our health care woes. 
The government’s HIT website says that HIT adop-
tion will: improve health care quality, prevent medical 
errors, reduce health care costs, increase administrative 
efficiencies, decrease paperwork and expand access to 
affordable care.9 However, there is increasing evidence 
that HIT adoption does not guarantee these benefits. 
Unmitigated enthusiasm is dangerous for HIT adoption. 
Similar enthusiasm repeatedly threatens the field of 
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multiple others.50 To some, clinicians’ resistance to 
computerization appears irrational. However, caution 
seems increasingly reasonable given the mixed evidence 
regarding the benefits of poorly-implemented HIT. 

FUTURE TRENDS

Significant research problems must be addressed 
before HIT becomes more attractive to clinicians. Many 
of these are outlined in a National Research Council 
report.48 First, there is a mismatch between what HIT 
can represent (data) and concepts relevant to health care 
(data + meaning). This is a very difficult and fundamental 
challenge that includes multiple long-standing challenges 
in artificial intelligence (e.g., how computers can be 
“taught” context or common sense) that have proven 
very difficult to solve. It seems that until one has true 
information processing, rather than data processing, 
technology, the benefits of HIT will be limited. 

Second, HIT must augment human cognition and 
abilities. Friedman expressed this elegantly as the “funda-
mental theorem of informatics”: human + computer > 
human (humans working with computers should perform 
better than a human alone).51 The theorem argues that 
there must be a clear and demonstrable benefit from HIT. 
Despite the problems with current HIT, there are clearly 
situations where HIT can be beneficial. In some ways, 
human cognition and computer technology are very 
complementary. For example, monitoring (e.g., wave-
forms) is much easier for computers than for humans. In 
contrast, reasoning by analogy across domains is natural 
for humans but difficult for computers. 

How Progress Will Be Made

Researchers are exploring multiple promising para-
digm-shifting ideas. Examples of approaches that address 
some of the fundamental problems described in this 
chapter can be provided.

One approach is to recognize the complementary 
strengths of humans and computers. Humans are good 
at constructing and processing meaning. In contrast, 
computers are much better at processing data. Users 
can leverage this understanding to design systems that 
harness the data-processing power of computers to 
present (display) data in ways that make it easier for 
humans to grasp and manipulate meaning. For example, 
a word cloud visualization shows the term frequency in 
text.52 The size of the font is proportional to the frequency 
of the term. 

Returning to HIT, one can apply these same princi-
ples. For example, Figure 2.10 shows an example of an 

resulted in the phrase “the vodka is good but the meat 
is rotten.”

In 1966, the influential Automatic Language Processing 
Advisory Committee (ALPAC) concluded that ‘‘there is 
no immediate or predictable prospect of useful machine 
translation.’’47 As a result, research funding was stopped 
and there was little automated translation research in the 
United States from 1967 until a revival in 1976-1989.46

Similarly, there is currently tremendous interest in 
HIT. Although there is good evidence that HIT can be 
useful, some will certainly be disappointed. A recent 
report by the National Research Council (the same body 
that published the ALPAC report) concluded that “…
current efforts aimed at the nationwide deployment of 
health care IT will not be sufficient to achieve the vision 
of 21st century health care, and may even set back the 
cause if these efforts continue wholly without change 
from their present course.”48 Thus, there is reason for 
concern that HIT (and perhaps even informatics, in 
general) may be headed for a bust. Such an “HIT winter” 
would be unfortunate, since there are real benefits of 
pursuing research and implementation of HIT.

The Problem: Health Information Technology  
is Really Health Data Technology

The fundamental problem is that existing technology 
stores, manipulates and transmits data (symbols), not 
information (data + meaning). Thus, the utility of HIT 
is limited by the extent to which data approximates 
meaning, or more precisely to the ability of HIT to act “as 
if” it understands the meaning of the data. Unfortunately, 
in health care, data do not fully represent the meaning. 
In other words, there is a large gap between data and 
information. Since the difference between data and infor-
mation is meaning (semantics), this gap is referred to as 
the “semantic gap.”

Social and Administrative Barriers to HIT 
Adoption. Manipulating data and not information has 
many consequences for HIT. Note that there is no shortage 
of computers in hospitals. Hospitals managed their finan-
cial data electronically long before they computerized 
clinical activities. Just like any other organization, many 
hospitals have functioning e-mail systems and maintain 
a Web presence. Many clinicians used personal digital 
assistants,49 some even communicate with patients using 
e-mail. 

The social and administrative barriers to HIT adoption 
have been discussed by multiple authors in countless 
papers. Such barriers include a mismatch between costs 
and benefits, cultural resistance to change, lack of an 
appropriately trained workforce to implement HIT and 
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EHR that integrates clinical decision support. This is not 
novel, but this example illustrates what could be done 
by combining multiple types of information on the same 
screen with an understanding of the user’s task.

Defining scenarios when HIT is beneficial with all 
relevant parameters and demonstrating that using HIT is 
reliably beneficial in these scenarios remains a research 

challenge. In its present form, HIT will not transform 
healthcare in the same way that IT has transformed other 
industries. This is due in part to the large semantic gap 
between health data and health information (concepts). 
In addition, many problems with healthcare require 
non-technological solutions, such as changes in health-
care policy and financing.

Figure 2.10: EHR screen (from John Halamka) showing integration of decision support into the EHR 53 
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14. Payne, P.R., P.J. Embi, and M.G. Kahn, Clinical 
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Journal of biomedical informatics, 2011.

CONCLUSION

Problems in healthcare are information and knowledge 
intensive. Current technology is centered on processing 
data. This mismatch, or semantic gap, between the prob-
lems healthcare IT tries to address and the available 
technology explains the difficulties that informaticians 
face every day. It also explains the differences between 
Informatics and Computer Science. Informatics must 
advance our information and knowledge-processing 
capabilities to continue improving healthcare through 
technology.
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