

# Radiology of Rheumatic Diseases

#### Lecture 16

### **Objectives**



- Understanding basics of image formation and anatomical landmarks
- Developing system of analyzing findings:
  - Where to look "important site"
  - What to look for "bone density & texture, bone marrow, articular cortices, soft tissue"
- Recognizing imaging features axial spondyloarthritis
- Introduce Imaging approach to skeletal trauma and Identify important findings including sequelae and complications.
- Introduce Imaging approach to skeletal inflammatory process "arthritis" and Identify important findings including sequelae and complications

Color Index:

• Important

Doctor's Notes

Extra

Female slides

male slides

### **Team Leaders**



Omar Aldosari



Leena Alnassar



Shahd Alsalamh

Done by:

Faisal Alqifari

### Terminology in bone trauma

### Pathological fracture

- Green stick & Torus fractures (usually in pediatric).
- Physeal injuries (usually in pediatric).
- Stress fractures (Occurs in patient with repeated minor trauma in certain area, it affects normal bones with excessive stress).

# Describe Fracture Location

- Diaphyseal / Metaphyseal.
- Peri-articular / Intra-articular.

# Describe Fracture Alignment

- Dislocation vs. Subluxation in dislocation there's disturbance of the alignment of the joint (extension, flexion, rotation), while subluxation is partial displacement.
- Displaced / Non-displaced.
- ❖ Angulated
- Depressed.

# Describe Fracture Severity

Open vs. Closed the overlying skin

- Simple.
- Comminute / Segmented segmented refers to large fragments of the fracture while comminuted is multiple tiny fractures.


### important concepts in imaging bone trauma

- Two perpendicular views (because the bones are cylindrical).
- Radiograph should include the joint nearest to the trauma.
- The paired bone concept: when we suspect a fracture in an area with two bones (such as forearm) we should look for both radius and ulna.
- The weakest link concept (Adult vs. Children) In adult the soft tissues are weaker while in children the bones are weaker.
- Comparison films A normal radiographic film to compare it with the abnormal film.

### >> the weakest link

- The weakest link:
  - > The soft tissue structures (muscles / ligaments / tendons) in Adults
  - the physeal plate an anatomical landmark within the bone (growth plate) in children.

### Two perpendicular views





Malalignment and displacement
Not apparent on frontal view but
very clear on lateral view
Arrow: chip fracture

A 6 YO boy with trauma

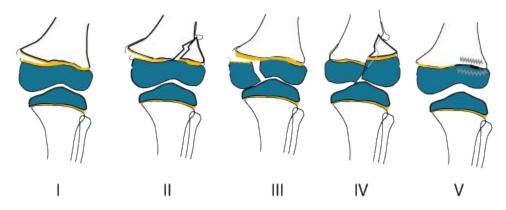
Arrow: obvious fracture line

Not obvious on the frontal view

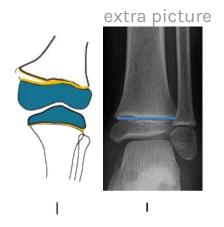


Frontal view looks normal
Oblique view shows fracture and
displacement

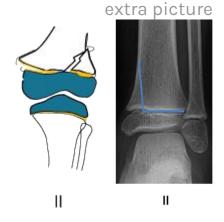
Lateral view shows anterior angulation


as if they are aligned in one axis

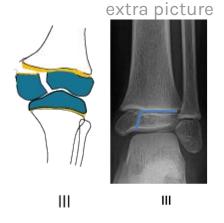
(arrow)


Total dislocation (arrow)

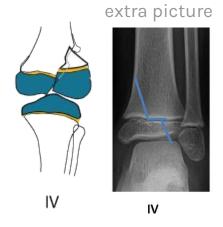
### Physeal plate Injury


## >> physeal plate (growth plate) injury (other name: salter-harris)

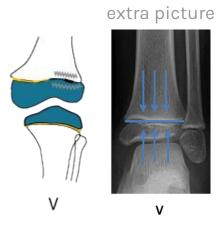



#### weakest point (child)




I- Avulsion or adduction or separation, widening of growth plate.




II- widening of the growth plate with a fracture on metaphyseal shaft. (Most frequently seen).



III-Fracture of epiphysis.



IV- When both II and III combined in one injury.



V-Impaction instead of separation.
with force directed opposite to each
other, for example child jump from
high to floor it can alter the growth of
the bone (the worst prognosis)

### Physeal plate Injury

# >> Salter-Harris injury type I:



Widened growth plate

Not closed yet

normal



Widened growth plate

normal

## Salter-Harris injury type II:

11 years old boy with swelling of wrist pain.



small piece of separated bone

soft tissue swelling

# >>> Salter-Harris injury type IV :

A 12 year old girl fell down



fracture (arrow)

4

### Physeal plate Injury

## >> Salter-Harris injury type IV:

12 year old girl fell down.

Computed tomography delineate more clear



it's IV because of the extension into the metaphysis (arrow)

### >> Salter-Harris injury type V:

Short finger

a complication

A 9 year old boy with pain in his right hand.





Short middle finger because of An old insult in the physeal plate  $\rightarrow$  premature closure of the physeal plate (impaction)  $\rightarrow$  shortening of the bone. So any fracture in growth plate (physeal fracture) results in Salter-Harris injury type V.

### Paired bone concept

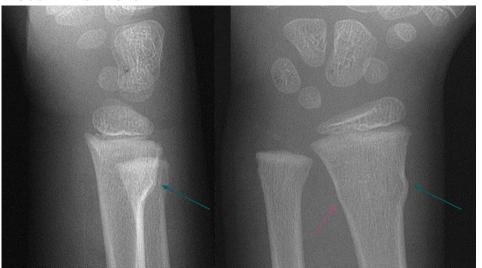
# >> paired bone concept

radiograph should include the joint nearest to the trauma and paired bone concept there are 4 paired bones: radius and ulnar, tibia and fibula. if one breaks it becomes shorter The other bone will either fracture or dislocate or bow. so, it's important to look at both bones (paired bone concept)



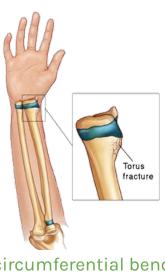
Fracture Ulna & Dislocated Radius

radial and ulnar are fixed by two joints the wrist and the elbow.




Bowing fracture ulna & fractured radius

radial shaft fracture(arrow), so what happened to the ulnar? it became curved (arrow)


# >>> torus fracture

seen in children



cortical bending(arrow) mild on the other side(arrow).





circumferential bending

### Paired bone concept

# >>> Greenstick fracture (In paediatric)

there is involvement of one side of the bone while the opposite side is intact



looks normal could be missed

it's clear on the lateral view disruption of the cortex(arrow)



Fracture(arrow) intact(arrow)





## >> Pathological fracture

a diseased or weak bone, any minor trauma can lead to disruption Fracture occurs in a diseased bones like:

1

enchondroma.

2

Bone cyst

3

osteosarcoma

## >> fracture secondary to enchondroma



cortical thinning (arrow), lytic lesion (arrow)
Enchondroma is a type of benign bone tumor
that originates from cartilage. Most often it
affects the cartilage that lines the inside of the
bones.

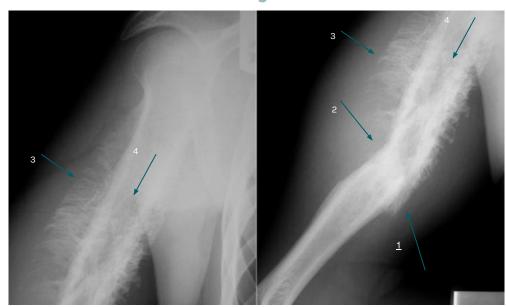
Notice the osteolytic (blackish) circular lesion, it led to the small fracture after the bone became weaker.

# fracture secondary to bone cyst occurs in disease more

2



Fracture



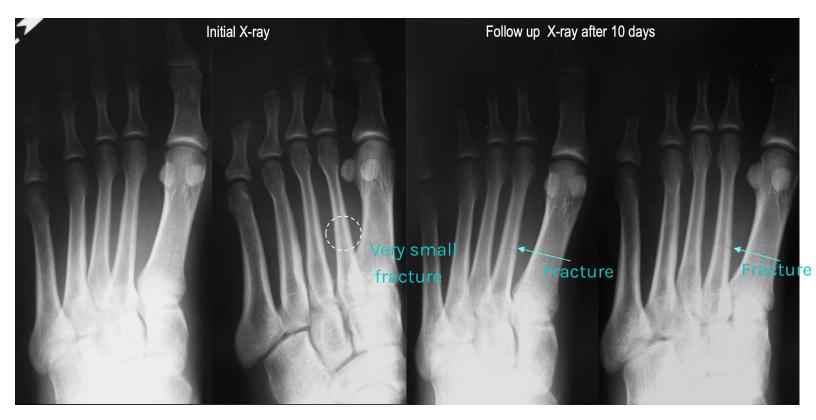

1- bone cyst2- Cortex thinning.

extra picture of cyst



# >> fracture secondary to osteosarcoma

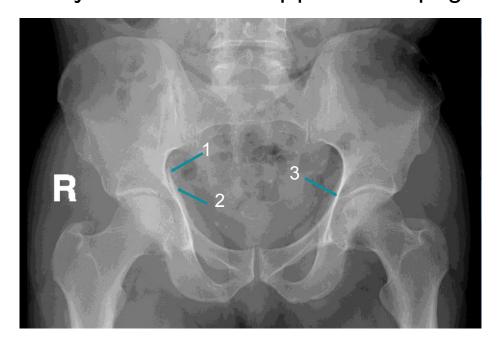



- 1- Fracture.
- 2- Fracture.
- 3- Periosteal reaction.
- 4- Heterogeneous bone texture.

the cortex is ill defined, the pathology is in the proximal limp while the distal limb is normal. the osteosarcoma is more aggressive

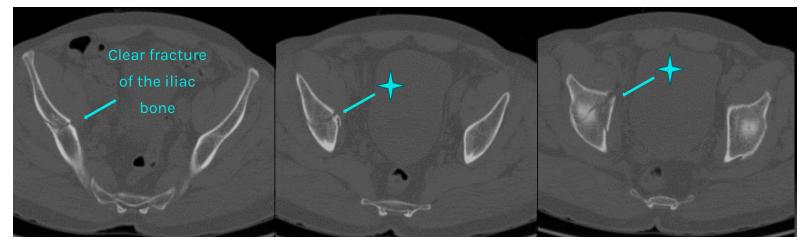
### >>> Stress Fractures

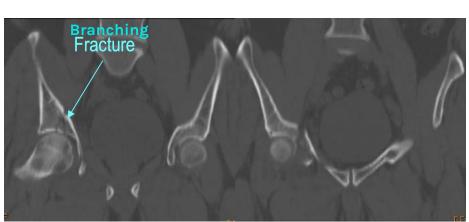
Repeated minor trauma on otherwise normal bone causing perpendicular small fracture. Stress fractures are easily missed.

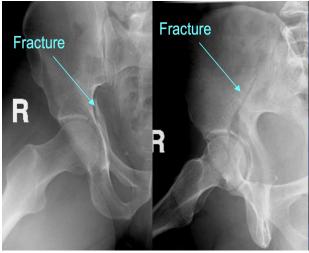

Ex: soldiers when they do the military walk they raise their foot and slam it down, with time it may cause a stress fractures.



The patient visited complaining of pain as shown in the initial X-ray on the left was dismissed as normal, then come for the follow up with the stress fracture more visible.


# >> Hip Fractures


#### A 55 years old man with hip pain and limping

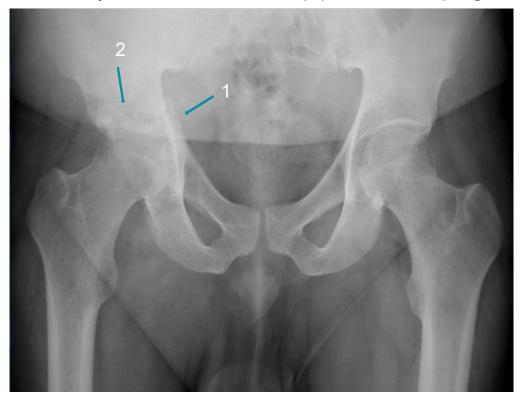



- 1 Fracture line
- 2 Disruption of the cortex outline
- 3 Normal cortex outline

Correlation with Cross sectional Imaging









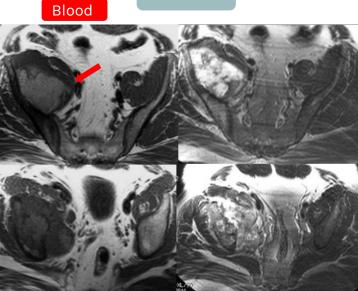

Supra-acetabular fracture

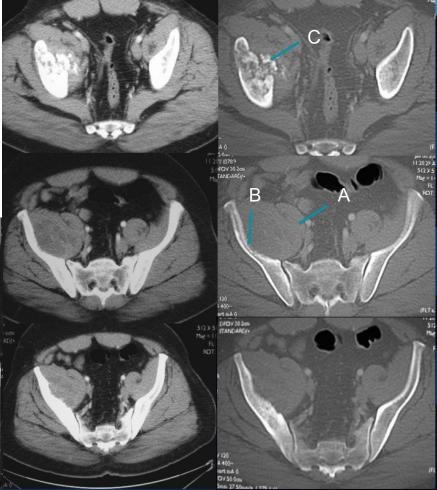
# >> Hip Fractures

A 50 years old man with hip pain and limping



- Disrupted and ill defined fracture line and asymmetry of the cortex outline
- 2 Sclerotic area


# >>> Fracture secondary to sarcoma

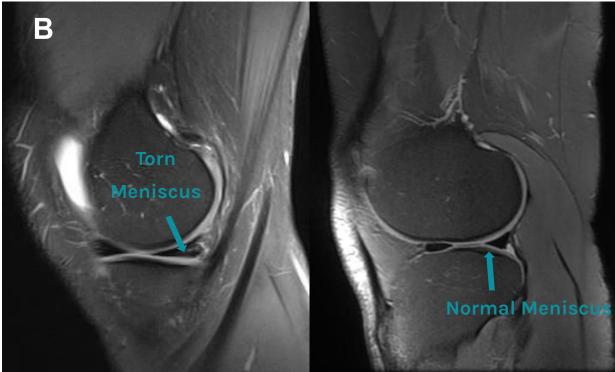

soft tissue swelling

ill defined cortex of the iliac bone

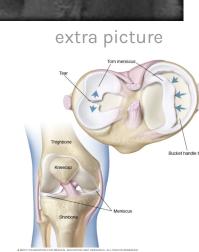
c expansion of the medulla and fragmentation of the bone

MRI






CT


Correlation with Cross sectional Imaging

# >> Knee injuries





ACL injury, you can't see the ACL clearly & it doesn't have the smooth black band.



### **Arthritis**

### >>> Types:

### **Infectious**

(like septic arthritis)

**Metabolic** 

(like gouty arthritis).

**Arthritis** 

#### **Inflammatory**

(like Rheumatoid arthritis).

#### Degenerative

(like osteoarthritis).

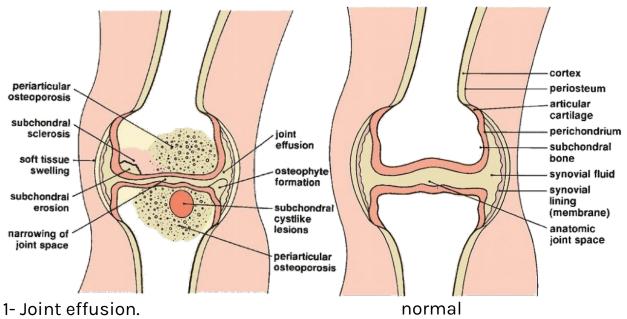
### >> Features to look for:

#### Bone density:

Osteopenia vs. Osteosclerosis. Periarticular / Generalized

#### Bone cortex:

Osteolytic vs. Osteoproliferati on. Erosive / Osteophyte.

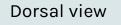

#### Bone alignment:

Distribution / Deformities.

#### Soft tissue changes:

Effusion / Density / Calcification.

how to know? compare it to the soft tissue around it



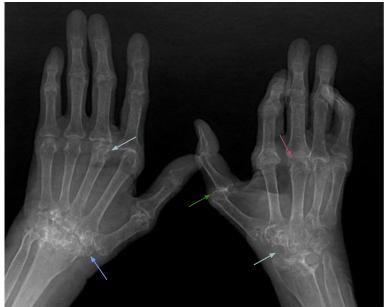

- 2- Osteophyte formation.
- 3- Subchondral cystic changes.
- 4- Periarticular osteoporosis.
- 5- Subchondral sclerosis.
- 6- Soft tissue swelling.
- 7- Subchondral erosion.
- 8- Narrowing of joint space.

#### **Rheumatoid Arthritis**

#### 40 YO woman with joint pain








Palmar view

#### Normal

- Normal bone density & texture.
- Preserved joint space.
- No erosions.
- Normal alignment.
- Normal soft tissue.

#### 48 year old female presented with joint pain of the hands & feet. X-ray of hand was requested :





- Generalized / Diffuse Osteopenia.
- Joint space narrowing (proximal > distal).
- Periarticular erosions & destruction & collapse of carpal bone.
- Subchondral cystic changes.
- Subluxation.

Zoomed images of the above x-ray







Decreased bone density, Whenever you have a reduction in bone density this indicates inflammatory rather than degenerative.

- eaten bone (arrow)
- loss of metacarpophalangeal articulation(arrow)
- loss of articulation of the radius and the carpal bones(arrow)
- malalignment(arrow)

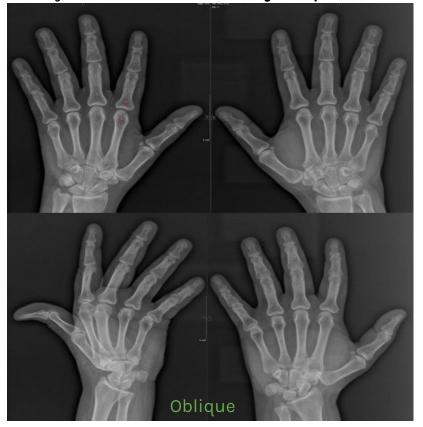




#### **Rheumatoid Arthritis**

#### comparison






- -Density almost same as soft tissue.
- -No corticomedullary differentiation

Normal

Diffuse Osteopenia

53 year old man with small joint pain:





Diffuse osteopenia on top of periarticular / no erosions

generalized decreased bone density but more prominent around the joints

#### Findings:

- Periarticular osteopenia\*star (radiolucent areas). localized
- Preserved joint space.
- No erosions.
- Normal alignment.
- Normal soft tissue.

#### **Rheumatoid Arthritis**

#### 29 year old women with arthralgia (early changes):





Dorsal view

Palmar view

#### Findings:

- \* Periarticular osteopenia (radiolucency -blackish- bone area around the joint).
- Joint space narrowing (radiocarpal & metacarpophalangeal). arrow
- \* Periarticular erosions. arrow
- \* Periarticular soft tissue swelling. arrows
- \* Normal alignment.
- Early manifestation of RA

### Rheumatoid arthritis & deformities (late changes):



- Osteoporosis.
  - Early: Juxta (nearby) articular.
  - Later: Diffuse.



- Erosions.
- Cartilage destruction.
- Deformities.

#### **Osteoarthritis**

### >> osteoarthritis

Elderly male patient presented with joint pain of the hands. An x-ray of the hand was requested:





#### Findings:

- Normal bone density, subchondral sclerosis.
- Joint space narrowing (Distal interphalangeal).
- No erosions.
- Marginal osteophytes, look like sharpening of the joint edges.
- Distribution: weight bearing joints (hips, knees, back).
- In the hands: DIPs, PIPs, CMC of thumb. DIP: distal interphalangeal joint PIP: proximal interphalangeal joint CMC: carpometacarpal



**Subchondral sclerosis** is the hardening of the bone just below the cartilage surface. It shows up in the later stages of osteoarthritis. And it is common in the bones found at the load-bearing joints

### >> Erosive osteoarthritis



#### findings:

- Normal bone density, subchondral sclerosis/cyst.
- Joint space narrowing (Distal interphalangeal)
- Erosions (proximal & distal).
- Marginal osteophytes, look like sharpening of the joint edges.

#### **Arthritis**

### >> Psoriatic arthritis:

**Psoriatic arthritis** is a type of arthritis that develops in some people with the skin condition psoriasis. It typically causes affected joints to become inflamed (swollen), stiff and painful. Like psoriasis, psoriatic arthritis is a long-term condition that can get progressively worse.



#### Findings:

- Normal bone density, subchondral sclerosis/cyst.
- Joint space narrowing (distal & proximal)
   & fusion. (arrow)
- Erosions (proximal & distal).
- Marginal osteophytes proliferation. (arrow)
- Deformities.

# Gouty arthritis:

43 year-old male patient presented with pain and swelling in hands and feet, An x-ray of the hand was requested





#### Findings:

- Normal bone density.
- Preserved joint space.
- Dense periarticular soft tissue tophi. (arrow)
- Erosions (periarticular & marginal overhanging sign). (arrow)
- Periostitis & Marginal osteophytes.
- Deformities.

### Summary

| Terminology in bone trauma                                                                                       |                                                                                                       |                                                                                             |                                                                  |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Pathological fracture                                                                                            | Describe Fracture<br>Location                                                                         | Describe Fracture Alignment                                                                 | Describe Fracture Severity                                       |
| <ul><li>Green stick &amp;</li><li>Torus fractures.</li><li>Physeal injuries.</li><li>Stress fractures.</li></ul> | <ul><li>Diaphyseal /</li><li>Metaphyseal.</li><li>Peri-articular /</li><li>Intra-articular.</li></ul> | <ul><li>Displaced /</li><li>Non-displaced.</li><li>Angulated /</li><li>Depressed.</li></ul> | <ul><li>Simple.</li><li>Comminute /</li><li>Segmented.</li></ul> |

### **Important Concepts**

- Two perpe
- ndicular views.
- Radiograph should include the joint nearest to the trauma.
- The paired bone concept.
- The weakest link concept.
- Comparison films.

### Physeal plate (growth plate) Injury

- a) Salter-Harris injury <u>type 1.</u>
- b) Salter-Harris injury <u>type II.</u>
- c) Salter-Harris injury <u>type III.</u>
- d) Salter-Harris injury <u>type IV.</u>
- e) Salter-Harris injury <u>type V.</u>

#### **Arthritis**

- Rheumatoid Arthritis.
- Osteoarthritis.
- Psoriatic Arthritis.
- Gouty Arthritis.

### quiz

1- The abnormality seen in the following image is:

- a. Bowing fracture.
- b. Torus fracture
- c. Greenstick fracture
- d. Stress fracture



# 2- A physeal plate fracture results in:

- a. Salter-Harris injury type II.
- b. Salter-Harris injury type III.
- c. Salter-Harris injury type IV.
- d. Salter-Harris injury type V.

3- What is the best modality to assess the anterior cruciate ligament:

- a. MRI
- b. CT
- c. X-ray
- d. Nuclear imaging

4- Subchondral sclerosis is seen in:

- a. Osteoarthritis
- b. Rheumatoid arthritis
- c. Gouty arthritis
- d. Psoriatic Arthritis

5-: Osteopenia. Periarticular erosion of MCP joints is sen in?

- a. Rheumatoid arthritis
- b. Osteoarthritis
- c. Psoriatic arthritis
- d. Gouty arthritis

6-A child presented to ER with painful swelling of the left upper arm. No previous history of trauma. X-ray is shown below. What is the most likely diagnosis?

- a. Stress fracture of left humerus
- b. Osteosarcoma of left humerus
- c. fracture of the left humerus 2ry to bone cyst
- d. Ewing sarcoma of left humerus



