

Anatomy and investigation of the Nervous System

Lecture 22

Objectives

- Noura Alturki Jehad Alorainy
- Identify different radiological modalities used for evaluation of CNS.
- Identify the indication & contraindication for each modality.
- Identify the radiological anatomy of brain and its vasculatures in different modalities.

Color Index:

Important

Doctor's Note:

▲ Evtr

Female slides

male slides

Team Leaders

Omar Aldosari

Leena Alnassar

Shahd Alsalamh

Done by:

Abdulrahman M. Bedaiwi

Hashem Bassam

Introduction

- The radiological investigation used for evaluation of the brain and skull:
 - Plain X-ray skull (For skull, intracranial or dural calcification, rarely used now).
 - o CT scan. (most common)
 - o MRI. (modality of choice)
 - o MRA, MRV and CTA (For vessels).
 - Catheter angiogram (The gold standard for vessels, but now used mainly for intervention).
 - Duplex US of carotid arteries.
 - US for neonatal brain.
- The newer imaging modalities have had a great impact on the diagnosis of diseases of the central nervous system.
- CT and MRI have become the standard investigations for disorders of the brain.
 Nowadays they're only limited for certain complications like trauma to assess the presence of fracture.
- Plain films (X-ray) are still the initial investigations for disorders of the bones of the skull, particularly fractures, but otherwise have limited uses.

Plain X-ray skull

Indications:

- 1. Trauma (X-rays cannot detect hemorrhage in the brain it will only show the fracture, and this is not useful because we want to see the secondary effect of trauma, if there is a hemorrhage or not).
- 2. Congenital anomalies (to see the size of the skull whether it's small 'microcephaly' or large 'macrocephaly').
- 3. Calcification: normal or abnormal (vascular, neoplasm).
- **4. Metastasis: lytic/sclerotic** (osteolytic which is destructive or osteoblastic which is sclerotic nowadays it's replaced by CT).
- 5. Multiple Myeloma.
- 6. Metabolic disorders (endocrine disorders: hypoparathyroidism).
 - ★ Plain x-ray of skull only shows the bony outlines nothing from inside.

Introduction Con.

SKULL PA VIEW

Two basic views:

1-PA
occipitofrontal
2- Lateral
also more two
views but rarely
done with the
presence of CT
(submentoverti
cal, towens AP)

submentovertical VIEW

The green arrow represents groove for middle meningeal artery.

Skull X-RAY LAT. VIEW

TOWENS VIEW (AP)

Used to
assess
foramina of
the skull but
now we use
HRCT.

Used to assess the petrous bone and the internal meatus canal.

- 1. Petrous bone.
- 2. Frontal sinus.
- 3. Ethmoid sinuses.
- 4. Orbit.
- 5. Mastoid air cells.
- 6. Mandible.
- 7. Coronal suture.
- 8. Sella turcica.
- 9. External auditory meatus.
- 10. Orbital groove.
- 11. Foramen spinosum.
- 12. Foramen ovale.
- 13. Odontoid.
- 14. Anterior arch of C1.
- 15. Carotid canal.
- 16. Occipital condyle
- 17. Lambdoid suture.
- 18. Foramen magnum.
- 19. Internal auditory meatus.
- 20. Dorsum sellae

CT Scan

Principles

- The axial plane is the routine projection, but it's sometimes possible to obtain direct coronal scans by changing the position of the patient. But we cannot get direct sagittal unlike MRI which we can take axial, coronal and sagittal directly. So how can we have a sagittal image on CT? we do CT image-reformatting by the computer.
- The window settings are selected for the brain, but may be altered to show the bones.

Advantages	Disadvantages
 Spiral CT can perform a head scan in 15 mins pre and post contrast scans. The scan itself can take as little as 10 seconds for the brain. Patients preparation: nill (just ask about pregnancy and kids. If you are giving IV contrast, ask about allergies and renal function). 	 Using ionizing radiation (if we ask which is better CT or MRI? MRI because it uses microwaves and magnetic field). Contraindicated in pregnancy.

>> Indications

- Trauma (the best and initial modality to assess patients with trauma; it's very fast. To detect fracture and hemorrhage → CT without contrast).
- Detection of blood → at any stage (acute, subacute and chronic) or any location.
- Strokes (CT is the first investigation to be done in a patient with stroke, 1- To exclude hemorrhage, 2- To confirm the presence of infarction). Acute stroke center (team) will assess acute stroke patient within 3-6 hours (the window time when you can save the area of infarction) and help to plan management and the need for anti-thrombolytic injection depending on the findings. MRI is more sensitive but we use CT more frequently in acute stroke.
- Tumors.
- Infections (meningitis, encephalitis).
- Vascular disorders (e.g aneurysm).

>> Type of contrast media

• Iodinated contrast \rightarrow nonionic low-osmolar contrast media (L.O.C.M).

> Normal CT brain

- CSF is seen as water density (Black) within the ventricular system and subarachnoid space.
- Grey matter is differentiated from white matter (White matter is relatively darker than grey matter).
- The falx is denser than the brain (dural folds between the hemispheres).
- Large arteries and venous sinuses can be recognized when opacified by contrast medium.
- Posterior fossa may be obscured by artifacts from overlying temporal and occipital bone.
- MRI gives clearer evaluation of brainstem rather than CT. You cannot detect small infarctions in brainstem by CT scan, why? because there are artifacts called "beam hardening artifacts" coming from the thick bones making artifact lines that cover the brain tissue there.

How to know it's a CT? bones > white At the level of the lower part of the brain (lower skull).

A. Orbit.

B. Sphenoid sinus.

C. Temporal lobe.

D. External auditory canal.

E. Mastoid air cells (they are thought to protect the delicate structures of the ear, regulate ear pressure and possibly protect the temporal bone during trauma).

F. Cerebellar hemisphere.

A. Frontal lobe.

B. Frontal bone (superior surface of orbital part)

C. Dorsum sellae is part of the sphenoid bone in the skull.

D. Basilar artery. (it may appear white If you inject)

E. Temporal lobe.

F. Mastoid air cells protects the structures of the ear, regulates pressure and protects the temporal bone.

G. Cerebellar hemisphere.

Consequence cuts of CT scan, you can see the orbit is getting smaller and the frontal lobe starts to appear.

A. Anterior horn of the lateral ventricle.

B. Caudate nucleus.

C. Anterior limb of the internal capsule.

D. Putamen and globus pallidus.

E. Posterior limb of the internal capsule.

F. Third ventricle.

G. Quadrigeminal plate cistern (the portion of the midbrain tectum upon which the superior and inferior colliculi sit).

H. Cerebellar vermis (unpaired medial structure which connects the cerebellar hemispheres).

I. Occipital lobe.

A. Falx cerebri.

B. Frontal lobe.

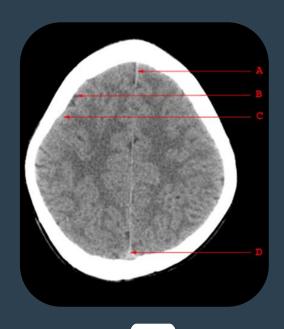
C. Body of the lateral ventricle.

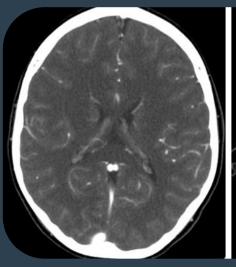
D. Splenium of the corpus callosum, (the thickest and most posterior portion of the corpus callosum).

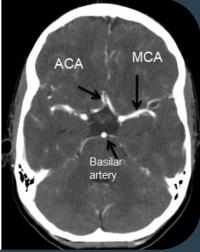
E. Parietal lobe.

F. Occipital lobe.

G. Superior sagittal sinus.


Corona radiata. we see it at the level of lateral


A. Falx cerebri.
B. Sulcus (hypodense)(filled with fluid)


C. Gyrus (hyperdense).

D. Superior sagittal sinus.

This cut is called supraventricular scan (above the level of ventricles) and it's the only part of the brain without the ventricular system. Most of this image is related to the frontal lobe and a small part is related to the parietal lobe.

Contrast enhanced CT

Contrast Enhanced CT

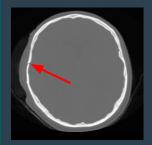
- When do we need to inject contrast? To assess vasculature of the brain (vascular malformations, aneurysms, neoplastic lesion, infection meningitis, cerebritis, and empyema) but we don't need to inject contrast in trauma or stroke.
- IV injection of contrast medium is often given because the abnormality is not seen in pre-contrast scans, it may be rendered visible following contrast enhancement (consequence of breakdown of blood brain barrier allowing contrast to enter the lesion particularly in neoplasm, infection, inflammation and certain stage of ischemia). Also, it helps in demonstrating blood vessels.
- Is there enhancement for the brain parenchyma? No. Why? Because we have BBB that prevents any macromolecules from going inside the brain. We only can see the contrast in the parenchyma in invasive tumors or infections that break the BBB.
- You can adjust the time while injecting the contrast, we have a certain time we can catch the contrast either in the arteries or in the veins (CTA and CTV).

The arrows are pointing to Straight sinus.

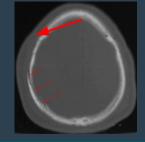
Sagittal reconstruction

Coronal reconstruction

★ Computer reconstructions can, in selected circumstances, be made from the axial sections which then provide images in coronal or sagittal planes:

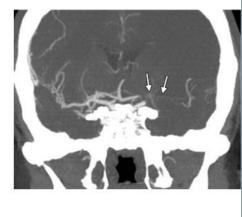

Brain Window

Bone Window

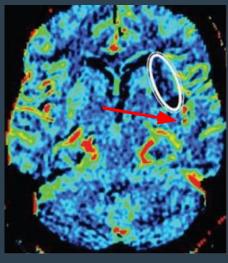

The window settings are selected for the brain, but may be altered to shows the bones.

- Acute Extradural hemorrhage Shows brain parenchyma, we cannot see skull fractures.
- It shows details of the bones & can assess any fracture in the skull. We can't see the hemorrhage here.

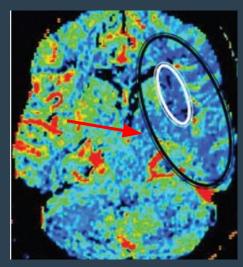
Fracture


CTA (CT Angiogram)

• CT angiography is helpful in the diagnosis of vascular diseases and abnormalities such as stenosis, occlusion or vascular malformation.


>> CT Perfusion

- Asses brain blood flow and volume.
- In acute stroke, very early cranial CT may be normal.
- shows great promise in refining the selection of patients suitable for thrombolysis, as it can accurately determine infarct core from potentially salvageable ischaemic penumbra.
- Some cerebral tumours are associated with angiogenesis and a breakdown of the blood-brain barrier. Angiogenesis can be detected as an increase in flow and volume parameters, and blood-brain barrier breakdown can be quantified as contrast accumulates in the interstitial space. Such aggressive features can distinguish malignant from benign tumours when standard imaging may not.
- It assesses blood flow to the brain tissue. We can also get colored images that show areas with high fowl and low flow to tell us whether we can re-perfuse the tissue or not.
- The normal blood flow to the brain is 600 ml/100 g tissue/min. If <20 ml, hypoperfusion happens and it can go back to normal when reperfusion occurs. If <10 ml, true infarction happens (cellular death) this tissue won't go back to normal again.
- How will we know if this patient will benefit from thrombolytic agents or not? By CT perfusion



Occlusion of left middle cerebral artery, the contrast is not filling the vessels beyond the arrows, so it means there is an occlusion.

Cerebral Blood Volume

Cerebral Blood Flow

- -Red areas mean very high flow = blood vessels.
 - -Blue or green areas are also blood flow but in a different gradient.
- -The circled area demonstrates very low or zero blood flow. This is infarcted tissue (dead cells, necrotic core).

-The black bigger circle
demonstrates the
hypoperfused area and if this
patient starts on thrombolytic
agents this hypoperfused area
can go back to normal.

Pros

- No ionizing radiation
- No patient preparation needed (unless fasting for general anaesthesia)

Cons

Not useful in acute setting

Check lecture 1 for more information

Indications

Strokes

More sensitive in early detection of a stroke, but CT is faster

- Tumors.
- Infection.
- Vascular disorders.
- White matter disease(More sensitive than CT, Eg: MS)
- Some cases of trauma when CT is not enough (Unlike CT, MRI isn't usually used in trauma)

Contraindications

- Cardiac pacemaker (Not absolute because now we have compatible PM), but you have to make sure)
- Cochlear implants (Absolute).
- Ocular prosthesis.
- Intraocular ferrous foreign body
- Neurostimulators.
- Pregnancy (1st trimester) (not absolute, but without contrast).
- Claustrophobics

>> Features of MRI

- MRI is a multi planar technique (can produce images in Sagittal, axial and coronal planes) which is useful for assessment of extent of brain tumors and for better visualization of structures of posterior fossa and cranio-cervical junction.
- MRI is a multi sequential technique (can create images in T1WI, T2WI, FLAIR*, gradient and other sequences).

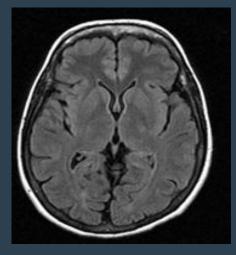

and because of that MRI is more sensitive and better in diagnosing than CT but not in acute settings.

*Fluid attenuation inversion recovery but not all fluid will be attenuated it has to be 1. Clear 2. Within a space

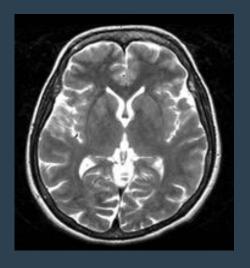
- It is possible to recognize flowing blood and therefore large arteries and veins stand out clearly without the need for contrast medium injection.
- The contrast used if needed is Gadolinium
 less allergic side effects than CT contrast. We should evaluate every patient for renal function before injecting contrast.

MRI

Axial


Temporalists lateral Optic chias in ventri at Midwalli.

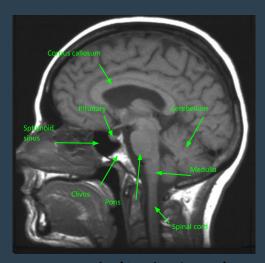
Cere pedu Comballist bila



MRI Brain (Axial T1WI)

FLAIR

T2WI



Coronal

MRI Brain (Coronal T1WI)
MRI gives a very clear evaluation of the brainstem

Sagittal

MRI Brain (Sagittal T1WI)

The Characteristic signal intensity of brain structures in different MRI sequences:

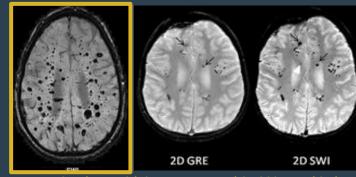
	Grey matter	White matter	CSF (IMPORTANT)
T1WI	Grey	Light	Dark
T2WI	Light	Dark	White The only white CSF
FLAIR for lesions adjacent to ventricles	Light	Dark	

MRI

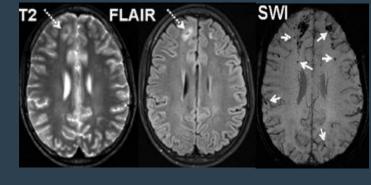
FLAIR_is like T2 except that fluid is suppressed and that's why it appears dark, it only suppresses fluid within a free space (Ventricles and subarachnoid space or fluid in a cyst) but not Interstitial fluid so if there is brain edema it will appear WHITE (hyperintense or bright) because of that it is much more sensitive at detecting lesions than T2 (All lesions in T2 are white so it's hard to distinguish them from CSF), Also flair doesn't suppress turbulent fluids (Hemorrhage and pus) completely, while clear fluid like CSF is suppressed completely.

Susceptibility Weighted Sequence (SWI): Unlike T1,T2 and flair, SWI poorly differentiates between brain tissue (grey matter, white matter and CSF) but it can detect lesions that contain iron and calcification even the small ones (<u>blooming effect</u>).

Signal loss (darkness) in SWI is due to:

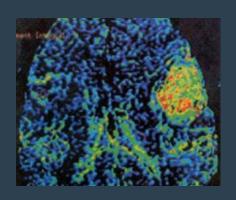

- → Paramagnetic.
- → Diamagnetic.

The best way to detect subarachnoid and micro-hemorrhages in patients with HTN and patients with cavernoma (vascular malformation) is SWI.


Patient post RTA with diminished level of consciousness.

the SWI shows multiple foci of dark signal intensity (blooming) at grey-white matter interface (not seen in T2WI and FLAIR) representing hemorrhagic diffuse axonal injuries.

- → Calcium.
- → Blood product "iron". (can show minor bleeding that can't be detected by CT or MRI)



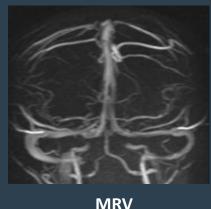
SWI showing multiple cavernoma with old hemosiderin

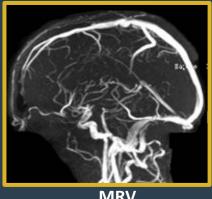
Meningioma

Contrasted T1

Perfusion-Weighted

MRA&MRV


MRA (Angiography)

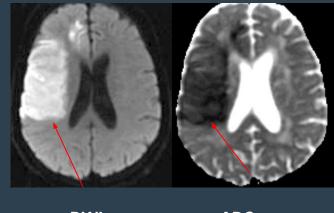

- Can be done without injection of contrast medium using time of flight technique.
- Can be used to assess intra and extracranial arteries for any vascular abnormalities such as stenosis, occlusion or vascular malformation.

MRV (Venography)

- Can be done either with or without injection of contrast medium.
- Assess venous dural sinuses, superficial and deep venous system.
- Can confirm presence of venous thrombosis.

MRV

>> MR Diffusion


MR Diffusion: Depends on movement of water molecules in the extracellular space, any lesion that narrows the ECF, like tumors and edema, will cause diffusion restriction.

- Early brain infarction (Most sensitive, detect infarction at time of stroke or after minutes, while CT after 6 h, T2 and flair after 2-3h).
- Brain abscess.
- Certain types of brain tumor: Lymphoma, Glioblastoma, meningioma.

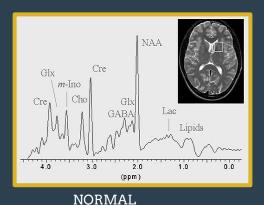
True diffusion restriction: bright in DWI and dark in ADC map, which happens in stroke, some types of tumors, and abscess.

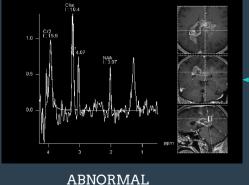
Sensitivity of detecting infarction in order: 1. MRI diffusion.

- 2. FLAIR.
- 3. T2WI.

DWI

ADC map


MR Spectroscopy

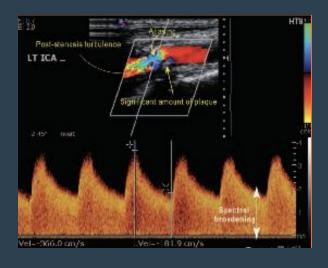

MR Spectroscopy: "I just want you to know what is MR Spectroscopy"

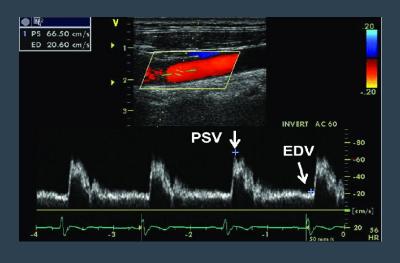
Unlike MRI, the technique of MRS does not generally produce images, instead creates spectra (see figures). Each peak in the spectrum arises from a different brain metabolite (NAA, N-acetylaspartate; Cre; Creatine; Cho, Choline; myol; myo-Inositol, Lac; Lactate, Glx; Glutamate and Glutamine, GABA; gamma aminobutyric acid). The height of each peak is an indication of metabolite concentrations. The NAA peak arises from the neurons in the brain. Loss of this metabolite indicates damage or loss of neurons.

Very helpful in:

- Differentiating neoplastic from non neoplastic processes, if Choline is high and NAA is low > neoplastic processes.
- Differentiating benign from malignant tumors.
- Determining certain types of tumors.
- Assessment of white matter diseases.
- Assessment of neurodegenerative diseases.
- It also helps to detect tumor recurrence or post radiation necrosis.

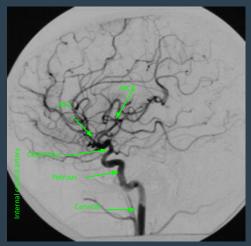
MR Spectroscopy in GBM

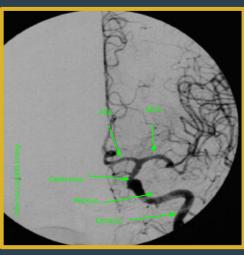

(GBM = Glioblastoma


multiforme)

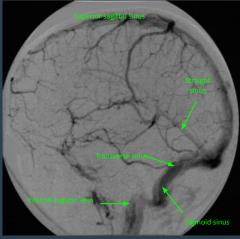
Notice the high Cho and low

Carotid Doppler


Easiest and cheapest way to assess carotid narrowing and the degree of narrowing.



Cerebral Angiogram


- It is the gold standard technique for assessment of intra and extracranial vessels.
- It can demonstrate different vascular diseases (stenosis, occlusion, vascular malformation and blood supply of brain tumors).
- It is an invasive technique.
- Recently its main role is for intervention purposes such as treatment of vascular malformation (aneurysm/arteriovenous malformation) or preoperative embolization of vascular supply of tumor. So it helps in diagnosis of early aneurysm which can't be detected by CT or MRI, and manages it as the same time.

Internal carotid angiogram (lateral view)

Internal carotid angiogram (AP)
Catheter angiography

Venous phase cerebral angiogram (Lateral view)


>> Neonatal brain Ultrasound

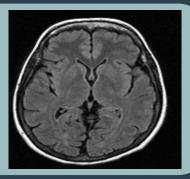
- It is a simple and easy way to scan the head of neonates and young babies (not used in adults because of their skull).
- Doesn't use ionizing radiation.
- Scanning is best done through an open fontanelle.
- Little discomfort to the baby.
- Readily carried out even on ill babies in intensive care units.
- It has proved that it is particularly useful in detecting ventricular dilatation (hydrocephalus), intracerebral hemorrhage and congenital abnormalities of the brain.

Coronal

Sagittal

Summary

Modality	Types and features		Indications	
X-ray		ay of skull only shows i	 1. Trauma 2. Congenital anomalies of the skull 3. Calcification 4. Metastasis: lytic/sclerotic 5. Multiple Myeloma. 6. Metabolic disorders 	
CT scan	 CSF is seen as water density (Black) within the ventricular system and subarachnoid space. Grey matter is differentiated from white matter (White matter is relatively darker than grey matter). 		·	
	Grey m	atter White matter CS	- Visualize brain tissue - FLAIR: distinguishes between CSF and edema,	
	T1WI : Grey	. Light. Dar		
	T2WI : Light	. Dark. Whi	te	
MRI	FLAIR : Light	. Dark. Dar		
	poorly detect brain tissue, but detects brain lesions that contains iron or calcium		Subarachnoid and micro hemorrhage in patients with HTN or cavernoma	
	MRA: Done with or without		Asses any abnormality in intra and extracranial arteries eg: occlusion, stenosis	
	MRV:	contrast	Asses dural sinuses and deep veins eg: venous thrombosis	
	MR diffusion Detects early brain infarction			
	MR spectroscopy	Creates spectra of brain metabolites	Tumor recurrence or post radiation necrosis	
Carotid Doppler	Easy, cheap and non invasive		Carotid narrowing	
Cerebral Angiogram	Gold standard for intra and extracranial vessels (Invasive technique)		Interventions: (aneurysm, arteriovenous malformation), Preoperative embolisation of tumors	
Ultrasound (Neonates)	-simple and easy way to scan the head of neonates		-hydrocephalus -intracerebral hemorrhage - congenital anomalies	


quiz

1-A patient presented with acute upper limb weakness, you suspect brain ischaemia. What is the best modality to detect ischaemia?

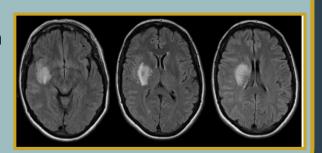
- a. MRI Diffusion.
- b. SWI
- c. MRA
- d. FLAIR

2- what type of image is this?

- a. T1WI
- b. T2WI
- c. SWI
- d. FLAIR

3- A patient comes with papilledema, the patient uses oral contraceptive.

You suspect venous thrombosis. What is the modality of choice?


- a. MRA
- b. MRV
- c. MR diffusion
- d. MR spectroscopy

4- 2 years old boy present with lumbosacral posterior spinal defect and large herniated sac. Which one of the following considered appropriate to evaluate level of spinal cord and content of the sac

- a. X-ray
- b. CT
- c. MRI
- d. Lumbar myelogram

5- MRI done for a 56 years old male. Based on the abnormality shown in the MRI sequence, what is the clinical presentation of the patient?

- a. Hemiparesis
- b. Meningeal symptoms
- c. Severe headache
- d. Loss of consciousness

