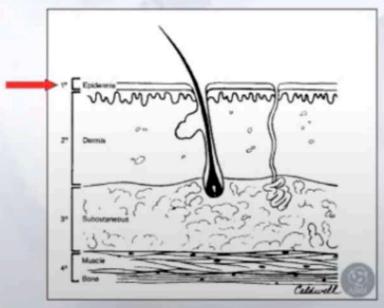

Introduction

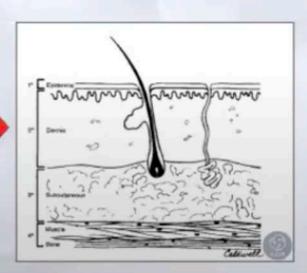
- Estimated 2 million burns/yr. in US
- 500K burns treated in the ER
- 70K burn hospital admissions
- Mortality highest in the age groups: 2-4 yrs. and 17-25 yrs.
- Deep hand burns are a criteria for referral to burn center or hand specialist

Burns are classified by the depth of skin injury


Burns

Essentials of Hand Surgery 2002

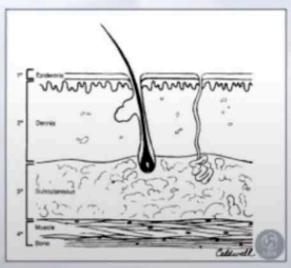
- First Degree: Epidermal injury only
- Clinically characterized by edema and erythema



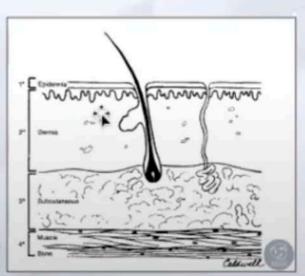
 Second Degree: Injury to epidermal +/- dermal layers

 Clinically characterized by painful blisters

 Skin is repopulated by viable germinal cells in follicles



- Third Degree: Entire Dermal layer and subdermal fat injured
- Clinically produces dry, inelastic, and waxy appearing scar



- Fourth Degree: Dermis
 - + Deep tissue
- Clinically produces injury to all skin layers, and includes tendon, nerve, bone, and joint

Thermal burns

- Heat
- Edema
- Ischemia
- Infection

Thermal burns

 Extent and depth of the injury is proportional to intensity and duration of heat applied

Regional Review Course 1998

- Edema
 - Inflammatory phase
 - Hand edema produces joint fibrosis and contractures

Ischemia - Systemic factors:

- Hypovolemia from evaporation and increased capillary permeability
- Fluid resusitation is required for significant burns
 - Parkland formula: LR 4cc/kg/%Burn
- Local factors:
 - Unyielding eschar/compartment
 - Ischemia leads to loss of injured/viable tissue

Infection

- Multiple factors contribute to development of the infection
- Systemic factors:
 - Impaired immune response
- Local factors:
 - As bacterial counts increase, invasion of bacteria into the dermis occurs

Infection

- Can convert burns from a partial to full thickness injury
- Prior to antibiotic use, Streptococcus species was most common organism. Still seen with burn cellulitis.
- Pseudomonas species is most common cause of systemic sepsis

- Management For significant burns consider transfer to a burn center
 - >25% body surface area (BSA)
 - 20% BSA in children/elderly
 - High voltage burns
 - Inhalation injuries

- Objectives Prevention of
 - Edema
 - Contractures due to poor positioning of the hand and prolonged immobilization
 - Infection
 - Preserve viable tissues

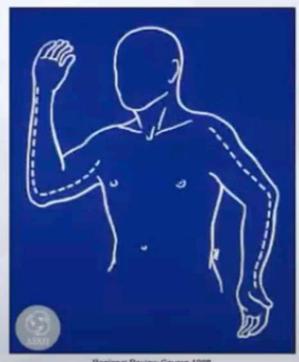
- Treatment First degree burns
 - Symptomatic treatment
 - Mild analgesics / NSAIDs
 - Local wound care
 - Daily cleansing
 - Topical antibiotics (e.g. silver sulfadiazine) if needed
 - Elevation
 - OT
 - Splints in functional position
 - Early range of motion

Treatment – Second degree burns

- Similar to first degree
- Leave blisters intact. If debrided, cover with an occlusive dressing
- Compression garment after wound epithelialization

- Treatment Third degree burns
 - Early tangential skin excision and meshed split thickness skin grafting (within 7 days)

- Treatment Fourth degree burns
 - Skin grafts not adequate for exposed deep structures
 - Treatment options:
 - Amputation
 - Flap coverage with salvage procedures



Escharotomy

- Indications:
 - Poor tissue perfusion
 - Threat to perfusion after volume resusitation
 - Circumferential burns
- Use mid-axial incisions

Regional Review Course 1998

Digital escharotomy

- Use mid-axial incisions
 - · Index, long: ulnar incision
 - · Ring: radial or ulnar
 - · Little: radial incision
- Leave wounds open
- Consider carpal tunnel release
- Consider intrinsic muscle release

Regional Review Course 1998

Antibiotics

- Intravenous or oral antibiotics should cover skin flora for initial treatment
- Topical antibiotics (silver sulfadiazine) for prevention of infection
- Topical application of mafenide acetate penetrates through eschar and may be effective against a wider variety of organisms

Wound closure

- First degree and superficial second degree burns:
 - Local wound care only
- Deep 2nd degree burns:
 - Controversial
 - Functional results worse than superficial 2nd degree burns
 - Consider excision and skin grafting if hand burns will take 14 days to "close"

- Chemical burns Types of burns
 - Acid
 - Base
 - Acute vs chronic
 - Short acting vs long acting
 - Superficial vs deep

- Factors which worsen the burn
 - Area of contact (skin damage, pressure)
 - Amount of contact (Volume of chemical applied)
 - Duration of contact
 - pH of contact solution
 - Concentration of contact solution
 - Form of contact agent

- Acids (pH < 7)
 - Proton donors (H+)
 - Lower number on logarithmic scale is more powerful
 - Necrosis by protein denaturation
 - Forms eschar which limits penetration

Acids (pH < 7)

- Sulfuric acid (#1)
- Hydrofluoric acid
- Hydrochloric acid
- Phosphoric acid
- Nitric acid
- Formic acid

- Acetic acid
- Trichloroacetic acid
- Chloroacetic acid
- Phenol (carbolic acid)
- Cresols

- Where are these acids?
 - Batteries: sulfuric acid, lithium
 - Toilet bowl cleaners/cement removers: muriatic acid
 - Pool cleaner: hydrochloric acid
 - Rust removers: hydrofluoric acid, chromic acid
 - Chemical Peels: phenol

- Bases (pH > 7)
 - Proton acceptor (OH-)
 - Higher pH is stronger on logarithmic scale
 - Liquefaction necrosis
 - Protein denaturation
 - Lipid saponification (exothermic=heat producing)
 - Eschar can not <u>form</u> and base penetrates deeper than acid (continuous action)

- Bases (pH > 7)
 - Ammonia
 - Sodium/calcium hypchlorite
 - Sodium/potassium hydroxide
 - Calcium hydroxide / oxide
 - Silicates, Phosphates
 - Lithium hydride

- Where are these bases?
 - Drain cleaners: sodium hypochlorite (lye), sodium hydroxide
 - Tile cleaners: Ammonium chloride
 - Cement: lye (calcium oxide), alkali
 - Petroleum solvents (organics)
 - Bleaches/household cleaners: oxidizers
 - Air bag deployment: alkali

Special Categories

Oxidants

- Bleaches, peroxides, chromates, manganates
- Neutralize with milk/egg white/starch before water irrigation

Reduction Reactions

- Binds free electrons and thus denatures proteins
- Neutralize first with soda lime, soap, magnesium before water irrigation

Special Categories

- Corrosives
 - White phosphorus (military), metals, aqueous ammonia, phenol
 - Remove particles, Copper sulfate solution
- Desiccants (sulfuric acid, muriatic acid)
 - Dehydrate tissues
 - Exothermic: heat producing
 - Neutralize with lime water/soap/magnesium oxide

- Special Categories
 - Vesicants
 - Chemical warfare (phosgene, mustards, etc)
 - Blisters, edema, ischemic necrosis
 - Special antidotes
 - Chemotherapy agents
 - Protoplasmic Proteins (hydrofluoric acid, acetic acid, tungstic acid, tannic acid)
 - Form salts and bind proteins/calcium/or ions

- Special Chemicals: Hydrofluoric Acid
 - After initial lavage for 30 minutes to treat the H+ ion, treat fluoride ion
 - 10% Calcium gluconate gel topically
 - May need to remove nails to get contact
 - May combine with 50% DMSO (dimethyl sulphoxide)
 - Consider injection (not with digits)
 - Consider intra-arterial injection

- Electrical burns
 - Pathophysiology
 - Severity of an electrical injury depends upon:
 - Voltage
 - Amperage
 - Resistance
 - Type of current
 - Duration of contact
 - Tissue resistance: bone>fat>tendon>skin>muscle>vessel>nerve
 - · Path of current:
 - Low voltage follows least resistance
 - High voltage direct flow

Systemic Injuries

- Cardiac arrhythmias
- Renal failure
- Sepsis
- Peripheral nervous system injury

Electrical burns – Evaluation

- Extent of necrosis hard to assess
- Red, swollen extremity
- Entry and exit wounds
- Skeletal injury possible secondary to a fall or being thrown
- Compartment syndrome
 - Low threshold for fasciotomy

Regional Review Course 1998

- Electrical Burns Treatment
 - Fasciotomy:
 - Within 4 to 6 hours
 - Nerve decompression as needed
 - Debridement of devitalized tissues
 - Second look procedure
 - 48-72 hours
 - Expect additional necrosis from vascular thrombosis
 - Definitive treatment:
 - Amputation and/or flap coverage

References

- Reilly DA, Garner WL. Management of Chemical Injuries to the Upper Extremity. Hand Clinics, 16(2), 2000; 215-224.
- Bentivegna PE, Deane LM. Chemical Burns of the Upper Extremity. Hand Clinics, 6(2), 1990, 253-258.
- Seyb ST et al. A Study to determine the efficacy of Treatments for Hydrofluoric burns, J Burn Care Rehab 16(3:1): 253-257.