Objectives

- Factors mediating the metabolic response
- Consequences of the metabolic response
- The differences between metabolic responses to starvation and trauma
- The effect of trauma on metabolic rate and substrate utilization
- Modifying the metabolic response

- The Acute Inflammatory Response
 - Cellular activation
 - Inflammatory mediators (TNF, IL1, etc)
 - Paracrine Vs endocrine effects

- The Endothelium
 - Selectins, Integrins, and ICAMs
 - Nitric Oxide
 - Tissue Factor

- Afferent Nerve Stimulation
 - Sympathetic Nervous System
 - Adrenal Gland Medulla

- The Endocrine System
 - Pituitary Gland (GH, ACTH, ADP)
 - Adrenal Gland (Cortisol, Aldosterone)
 - Pancreatic (Glucagon, ↓ Insulin)
 - Others (Renin, Angiotensin, ↓ Sex hormones, ↓ T4)

Consequences of the Response

- Limiting injury
- Initiation of repair processes
- Mobilization of substrates
- Prevention of infection
- Distant organ damage

Starvation & Injury

Metabolic Response to Fasting

LEGEND	I	П	Ш	IV	V
FUEL FOR BRAIN	GLUCOSE	GLUCOSE	GLUCOSE	GLUCOSE, KETONES	GLUCOSE, KETONES

Starvation – Early Stage

Starvation – Late Stage

Metabolic Response to Starvation

<u>Hormone</u>	<u>Source</u>	Change in Secretion
Norepinephrine	Sympathetic Nervous System	$\downarrow\downarrow\downarrow$
Norepinephrine	Adrenal Gland	\uparrow
Epinephrine	Adrenal Gland	↑
Thyroid Hormone T4	Thyroid Gland (changes to T3 peripherally)	$\downarrow\downarrow\downarrow$

Landberg L, et al. *N Engl J Med* 1978;298:1295.

Energy Expenditure in Starvation

Cutherbertson DP, et al. Adv Clin Chem 1969;12:1-55

Metabolic Response to Injury: Ebb Phase

- Characterized by hypovolemic shock
- Priority is to maintain life/homeostasis
 - **↓** Cardiac output
 - **↓** Oxygen consumption
 - **↓** Blood pressure
 - **↓** Tissue perfusion
 - **↓** Body temperature
 - **↓** Metabolic rate

Metabolic Response to Injury: Flow Phase

- † Catecholamines
- † Glucocorticoids
- ↑ Glucagon
- Release of cytokines, lipid mediators
- Acute phase protein production

Fatty Deposits

Liver & Muscle (glycogen)

Muscle (amino acids)

Fatty Acids

Glucose

Amino Acids

Metabolic Changes after Injury

Long CL, et al. *JPEN* 1979;3:452-456

Severity of Injury: Effects on Nitrogen Losses and Metabolic Rate

Comparing Starvation and Injury

The body adapts to starvation, but not in the presence of critical injury or disease.

Popp MB, et al. In: Fischer JF, ed. Surgical Nutrition. 1983.

Modifying the Response

- Medication (before or after injury)
- Nutritional status
- Severity of injury
- Temperature
- Anesthetic technique

Summary

- Injury (Trauma or Surgery) leads to a metabolic response
- Metabolic response to injury is an adaptive response
- Metabolic response could overwhelm the body and lead to increased morbidity and mortality
- We can modify the metabolic response before and sometimes after injury

Questions