

Health Indicators

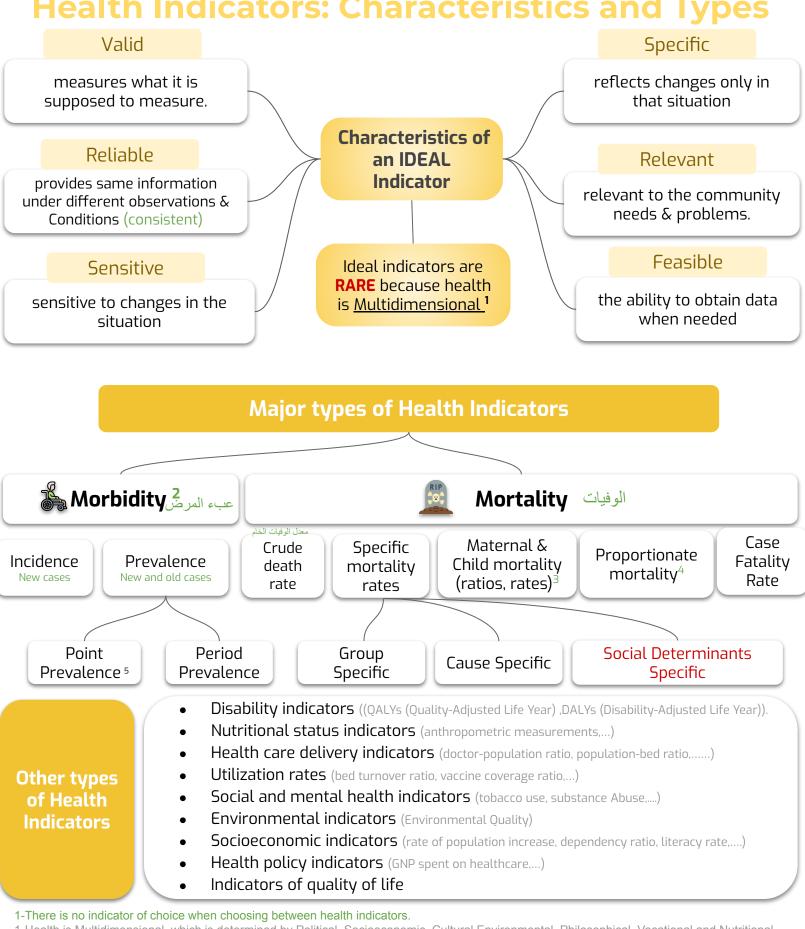
Objectives:

- Explain the need to use "indicators" to measure "health" status
- State the characteristics of health indicators.
- Lists the uses of health indicators.
- State with examples and types of health indicators.

Color index:

- Main text
- Males slides
- Females slides
- Doctor notes
- Golden notes
- Important
- Extra

Health Indicators: Definitions and Uses


 Basically it a and makes y What does this nur Why did we get this Are we getting beth Are we providing th How are we doing it 	is an indication of a given situation and a measurable variable. Incts like a red flag that draws your attention to something that is going on You ask questions such as: Inder mean? Is result? Iter or worse over time?
- Health Indicate	ors: Definition
exists and to are quantita Variables tha They are an They are use They are use	ators are a measure that can be used to help describe a situation that o measure changes or trends over a period of time. Most health indicators tive in nature but some are more qualitative. at measure indirectly ¹ a health status which can not be measured directly indication of a given situation. ed to compare between areas or population ² groups at a certain time. ed to measure changes over a period of time. ators quantify ³ health of the population.
	Measure health status in a community
0	Compare health status between countries over time
0	Assessment of health care needs
Q	Allocation of resources according to needs ⁴
0	Monitoring and evaluation of health services.

2-Population indicators cover such factors as age , sex , geographical area

3- ex, size , amount

4- Allocate resources : like when you have a clinic and you need to defend your budget (ex : 2 or 3 ambulance cars are needed

Health Indicators: Characteristics and Types

1-Health is Multidimensional, which is determined by Political, Socioeconomic, Cultural Environmental, Philosophical, Vocational and Nutritional factors. This means that health is a wide aspect covering almost every aspect of individual.

3-Infant mortality rate is very important health indicator for development and the health system performance.

4-Usually divided into broad groups (communicable diseases, non-communicable diseases, injuries and others.

5- Not more than 3 months.

²⁻Measure the burden of disease not the disability, Morbidity indicators are generally based on the disease-specific incidence or prevalence rates for the common and severe diseases, such as malaria.

Health Indicators Concepts: Tools of Measurements

Tools of Measurements

Indicators are measurements of disease magnitude, Which is expressed in terms of: **Ratio, Proportion and Rate**. Clear understanding of these terms is a <u>MUST</u> for interpretation of indicators.

Tool of Measurement	Ratio (simple ratio) ¹	Proportion ²	Rate ¹
Definition	the relationship in size of one measure/variable to another	A specific type of ratio that relates a part to a whole	A special type of proportion that measures the occurrence of an event in a population during a given time .
Use size of two different variables or quantities		magnitude of the part of a whole	to allow comparisons
Differentiating element	The numerator is NOT a component of the denominator. البسط مختلف عن المقام	The numerator is ALWAYS a component of / INCLUDED in the denominator.	There must be a time dimension and a multiplier (per 1000, per 100,000)

Example

We had 400 deaths from Road Traffic Injuries (RTI) in Riyadh in
 2010, Out of the 400 death, 300 were males and 100 were female.
 In 2010, the population of Riyadh was 1,000,000.

The male to female ratio is Out of the 400 deaths, 300 300/100 or 300:100 or 3:1 The mortality rate from RTI in were males. i.e the i.e. there are 3 male deaths for 2010 is (400/1,000,000 X proportion of males who every female death 100,000)= 40 deaths per died from RTI is (300/400 Use Two different variables to 100,000 population in 2010. X100) = 75%. compare between them 75% 40 deaths Vomen 100,000 population

1. A rate allows you to compare between different populations easily 2-the number or amount of group or part of something when compared to the whole

Health Indicators Concepts: Numerator and Denominator and Multipliers

Numerator and Denominator

Numerator

- Number of times an event (e.g. death, sickness, births, etc) has occurred in a population during a specified time period.
- it is **ALWAYS** a included in the denominator of proportions and rates.
- Numerators are **NOT** a component of the denominator in ratios.

Multipliers (10ⁿ / per 100. 100, 1000,000)

Denominator

- Denominators are especially important for RATES.
- It might be related to:
- The population such as mid-year population(Population at risk) in a given year
- OR total events where it's more relevant than than total population.
- For example, case fatality rate from car injuries, it's more meaningful to have the denominator of 'number of vehicles'. Why?¹
- Majority of formulae include a multiplier of 100 and most often a multiplier of 1000, 10,000 or even 100,000.
- A multiplier is used to:
 - Indicate how often something occurred per 1000 population or per 100,000 population
 - Decrease the use of minute decimal fractions. e.g a mortality rate of 0.000071

Increase data comprehension (how well we understand the presented data)
 In certain rates, rather than specifying a multiplier such as 1000 or 100,000, you can use
 10ⁿ so the most appropriate multiplier can be selected to facilitate the data interpretation.

A rate with a numerator of 190,000 and a denominator of 23,000,000 results in a value of 0.00826.

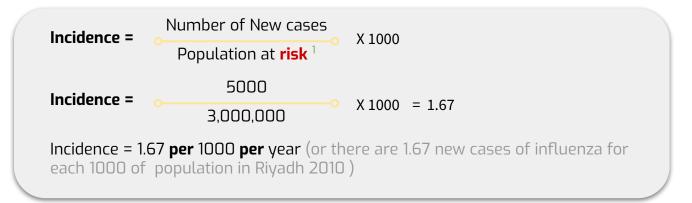
Using a multiplier of 1000:

=1000 × 0.00826 = 8.3 So 8.3 per 1000 population Using a multiplier of 10,000:

= 10,000 x 0.00826 = 82.6 So 82.6 per 10,000 population

1-Taking number of vehicles as the total population will be a more useful denominator than the total population, because many of the target population may not be using vehicles.

Health Indicators: Morbidity Indicators:


Incidence

Definition	Number of NEW cases occurring in a DEFINED POPULATION during a SPECIFIED PERIOD OF TIME .			
Tool of Measurement	Rate			
Numerator	Number of NEW cases of specific disease during a given time period			
Denominator	Population at risk (not yet diseased) during that given time period at the start of the period			
10n	per 1000			
Time frame	per year (usually a year unless otherwise specified)			
Uses	 Taking action (outbreak) Control disease (outbreak) Research for etiology and pathogenesis Efficacy of therapeutic and preventive measures Cohort studies 			
Formula	Incidence = Number of new cases of specific disease during a given time period Population at-risk during that period			

In 2010, the number of new cases of influenza in Riyadh region was 5000. The midyear population of Riyadh region during the same year was 3 million.

Health Indicators: Morbidity Indicators:

Prevalence

Disease Prevalence refers to all cases (NEW & OLD) existing at a given **POINT** in time <u>OR</u> over a **PERIOD** of time in a given **POPULATION**.

Туре	Point-Prevalence	Period-Prevalence (less common)			
Definition	Number of all current cases NEW & OLD occurring in a DEFINED POPULATION at ONE POINT OF TIME (a day, days, or few weeks)	Number of all current cases NEW & OLD occurring in a DEFINED POPULATION at a DEFINED PERIOD of TIME (over months or annual)			
Tool of Measurement	Proportion (BE CAREFUL! It is a proportion even when it is called rate)				
Numerator	Number of all current cases NEW & OLD at a given POINT of TIMENumber of all current cases NEW & OLD at DEFINED PERIOD of TIME				
Denominator	Estimated population at the same given POINT of TIME Estimated population at the same a DEFINE				
10n	per 100 (always expressed as percentage)				
Time frame	Given point of time				
Uses	1) Estimate the magnitude of health, disease and high risk populations, 2) Administrative and planning e.g. hospital beds	Estimate the magnitude of health, disease and high risk populations			
	Cross sectional study				
Formula	Number of all current cases (old and new) of a specified disease existing at a given point in time = Estimated population at the same point in time	Number of existing cases (old and new) of a specified disease during a given period of time interval = Estimated mid-interval population at-risk			

In a survey of 1,150 medical students in Riyadh in 2018, a total of 468 reported symptoms of seasonal allergies during the the first week of September. Calculate the prevalence of seasonal allergies in this group.

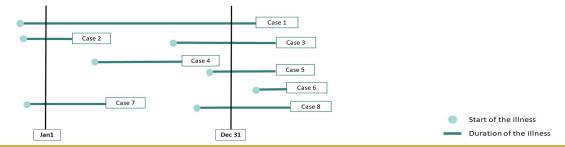
Deried Drevalence -	Number of existing cas		
Period Prevalence = •-	Mid- interval Populatio	——• X 100 n	
Period Prevalence = 👡	468		
	1150	X 100 = 40.7 %	

What is the relationship between the morbidity indicators: Incidence and Prevalence?

The Epidemiologist Bathtub!

Water from the faucet represent **Incidence**

- The **more\less** water that is in the tub the **more \less** disease prevalence is there.
- The prevalence represents burden of disease = how many people have the disease


So, how can we decrease this burden?

- So we can get rid of the water **(prevalence)** from the tub **(Community)** by draining it so we can lower the prevalence!
- To drain the tub **(lower the prevalence)** we have to get rid of people who have the disease: by two ways: they can be **CURED** or **DIE**
- How can we get water (Incidence) in the tub? Obviously through the faucet
 - Open the faucet all the way **(fast running water) = HIGH INCIDENCE**
 - Almost closed (low running water) = LOW INCIDENCE

Prevalence = Incidence x Duration of Disease

Exercise

What cases will be included in the **Incidence**, **Point Prevalence** and **Period Prevalence** during the below period of time?

- **Incidence**: 3, 4, 5, 8
- **Point prevalence (Jan 1):** Cases : 1, 2, 7
- Point prevalence (Dec 31): Cases : 1, 3, 5, 8
- **<u>Period prevalence:</u>** 1, 2, 3, 4, 5, 7, 8

Health Indicators – Mortality: Crude Death Rate

Crude Death Rate (CDR)

Definition	Number of deaths from ALL CAUSES occurring in ESTIMATED MID-YEAR POPULATION during ONE YEAR in a GIVEN PLACE.			
Tool of Measurement	Rate			
Numerator	Number of deaths from ALL CAUSES during the YEAR			
Denominator	Mid-year population			
10n	per 1000			
Time frame	One year			
Uses	Gives an impression of mortality in a single figure!			
Formula	$\frac{\text{Number of deaths during the year}}{\text{Mid-year population}} \times 1000$			

• A Major **Disadvantage** of CDR is Lack of comparability ¹ for communities with populations that differ by age, gender, race, etc. HOW? Team 438

Here population B appears to be healthier than A	•	 But when we check the composition by age (age specific mortal rates) B has higher mortality rates in all age groups. Why? Because the higher CDR in population A is due to more OLDER population in comparison to B with relatively younger population 							
Popula Crude -tion death rate		Popula -tion	Crude death rate	Age-s 0-1	specific o 1–4	leath rai 5–7	tes per 10 8–44	000 popula 45–64	ation 65+
A 15.2 B 9.9		A B	15.2 9.9	13.5 22.6	0.6 1.0	0.4 0.5	1.5 3.6	10.7 18.8	59.7 61.1

In Saudi Arabia in 2017, a total of 119,157 deaths occurred. The estimated population was 33,099,147. **Calculate crude death for Saudi Arabia in 2017**

Exercise

			110 157		
CDR =	Number of deaths during the year $\times 1000$	•	119,157	—• X 1000	= 3.6 per 1000 people
CDR -	Mid-year population	0	33,099,147		

S.

Health Indicators – Mortality: Specific Mortality Rates

Specific Mortality Rates (SMR)

	Group-specific mortali	bifferent type of SMR	Social determinant-specific mortality rate		
Age-specific Race-specific Gender-specific		Disease specific	Income Education Housing		
	Definition	Number of deaths from/in SPECIFIC (CAUSE, GROUP, SOC ESTIMATED MID-YEAR POPULATION during a ONE YEAR in	IAL DETERMINANT) occurring in		
	Tool of Measurement	Rate			
	Numerator	Number of deaths from specific (cause, group, social determinant) during the year			
	Denominator ¹	Cause-specific: mid-year population. group, social determinant: mid-year population of sp group, social determinant measuring mortality relate can include more than one specific calculate Gender , cause specific mortality rate			
	10n	per 1000 or per 100,000			
	Time frame	One year			
	Uses	 Identify at risk groups for preventive action, They allow comparison between different causes within the same population 			
	Formula	1. Specific death rate due to tuberculosis = N 2. Specific death rate for males = Number of deaths Mid-y Mid-y	om tuberculosis during a calendar year Mid-year population among males during a calendar year year population of males f persons aged 15–20 during a calendar year × 1,000		
		S. Specific death rate in age group 15-20 years = Mid-year	population of persons aged 15–20		

Exercise

W

In 2001, a total of 15,555 deaths from Road Traffic Injuries occurred among males and 4,753 deaths occurred among females. The estimated 2001 midyear populations for males and females were 139,813,000 and 144,984,000, respectively. **Calculate Gender-specific mortality rates?**

RTI deaths among Male\female	s among Male\female 139,813,000		• X 100,000	= 11.1 RTI deaths per 100,000 population among males
Male\female population	Female= ㅇ	4,753	o X 100,000	= 3.3 RTI deaths per 100,000
not whole population be aware of question	remale- 👻	144,984,000		population among females

1. Example: when we measure the number of cancer deaths (Cause-specific) in Saudi Arabia the denominator should be the mid year of **whole** population, while when we measure the number cancer deaths in female (Group-specific) in saudi arabia the denominator should be the mid year of population of female **ONLY**

Health Indicators – Mortality: Proportionate Mortality

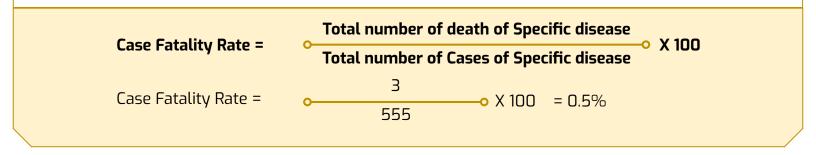
Proportionate Mortality

Definition	Number of deaths due to a particular cause (or in a specific age group) per 100 total deaths			
Tool of Measurement	Proportion			
Numerator	Number of deaths from SPECIFIC CAUSE OR AGE GROUP during the YEAR			
Denominator	TOTAL deaths from ALL CAUSE S (not the POPULATION in which the deaths occurred)			
10n	per 100 (percentage %)			
Time frame	One year			
Uses	 Used in broad disease groups (e.g. communicable, non-communicable, injuries) Specific diseases of public health importance (e.g Cancer) 			
Formula	= $\frac{\text{Number of deaths from the specific disease}}{\text{Total deaths from all causes in that year}} \times 100$			

Exercise

In 2003, a total of 128,294 deaths occurred among 24-44 years old. 16,283 deaths were due to heart disease and 7,367 were due to cancer. **Calculate Proportionate mortality for heart disease and cancer among 25–44 years**.

Proportionate mortality =	deaths from Specific disease deaths from all causes	X 100
Proportionate mortality for heart disease, 25–44 years =	16,283 • X 100 128,294	= 12.6%
Proportionate mortality for cancer, 25–44 years =	7,367 • X 100 128,294	= 5.7%


Health Indicators – Mortality: Case Fatality Rate

Case Fatality Rate

Definition	Number of deaths due to a PARTICULAR CAUSE (DISEASE) per 100 TOTAL CASES		
Tool of Measurement	Proportion (although it is called rate!, called also: Deaths to Cases Ratio)		
Numerator	Number of deaths due to a PARTICULAR CAUSE (DISEASE)		
Denominator	TOTAL number of number of CASES (not the POPULATION in which the cases occurred)		
10n	per 100 (percentage %)		
Time frame	Not specified		
Uses	 Reflects the killing power of a disease. Used mainly in acute infectious diseases. 		
Formula	= Total number of deaths due to a particular disease Total number of cases due to the same disease		

Exercise

In an epidemic of hepatitis A traced to green onions from a restaurant, 555 cases were identified. Three of the cases died as a result of their infections. **Calculate the case-fatality rate**

Summary

Health indicator Variables that **measure indirectly** a health status which can not be measured directly. They are an indication of a given situation. • Definition They are used to **compare** between areas or population groups at a certain time. They are used to **measure changes** over a period of time. Health indicators **guantify** health of the population. • 1. Measure health status in a community. Compare health status between countries over time. 2. Uses З. Assessment of health care needs. 4. Allocation of resources according to needs. 5. Monitoring and evaluation of health services. - Valid - Specific - Reliable - Relevant **Characteristics** - Sensitive - Feasible Morbidity Mortality 1- Incidence 1- Crude death rate 2- Prevalence 2- Specific mortality rates 2.1 - Point Prevalence 2.1- Group specific **Major types** 2.2- Period Prevalence 2.2- Cause specific 2.3- Social determinants specific 3- Maternal & Child mortality (ratios, rates). 4- Proportionate mortality 5- Case Fatality Rate **Proportionate** Ratio Rate - the relationship in size of - A specific type of ratio that - A special type of proportion one measure/variable to relates a part to a whole. that measures the occurrence another. of an event in a population Tools of - size of two **different** - magnitude of the part of a during a **given time**. variables or quantities. whole. - to allow comparisons measurement - The numerator is **NOT** a - There **must** be a time - The numerator is **ALWAYS** a component of the dimension and a multiplier (per denominator. component of / INCLUDED in 1000, per 100,000). the denominator. **Multiplier** Numerator Denominator - Number of times an event - Denominators are especially (e.g. death, sickness, births, important for **RATES**. - Majority of formulae include etc) has occurred in a - It might be related to: a multiplier of 100 and most Numerator. population during a The population such as often a multiplier of 1000, mid-year population in a given specified time period. Denominator. - it is **ALWAYS** a included in vear. Multiplier. the denominator of OR total events where it's proportions and rates. more relevant than than total - Numerators are **NOT** a population. component of the denominator in ratios

Summary

	Tool	Formula	Uses
Incidence	Rate —> x1000	New cases ———————————————————————————————————	 1- Taking action (outbreak) 2- Control disease (outbreak) 3- Research for etiology and pathogenesis 4- Efficacy of therapeutic and preventive measures 5- Cohort studies
Prevalence	P roportion —> x100	Point New + old cases x 100 Population at the same point of time	 Estimate the magnitude of health, disease and high risk populations. Administrative and planning e.g. hospital beds
		Period New + old cases x 100 Mid-interval population at risk	1- Estimate the magnitude of health, disease and high risk populations.
Crude death rate	Rate —> x1000	All deaths x 1000 Mid-year population	1- Gives an impression of mortality in a single figure!
Specific mortality rates	Rate —> x1000	Deaths from specific cause ————————————————————————————————————	 Identify at risk groups for preventive action, They allow comparison between different causes within the same population.
Proportionate morality	Proportion —> x100	Deaths from specific cause ————————————————————————————————————	1- Used in broad disease groups (e.g. communicable, non-communicable, injuries) 2- Specific diseases of public health importance (e.g Cancer)
Case fatality rate	Proportion —> x100	Deaths from specific cause ————————————————————————————————————	1- Reflects the <mark>killing power of a disease</mark> 2- Used mainly in acute infectious diseases.

Practice Questions							
Q1: Number of times an event (e.g. death, sickness, births, etc) has occurred in a population during a specified time period is :							
A. Denominators	B. Numerator	C. Incidence	D. Prevalence				
Q2: Total population: 10007334, Mid year population: 9982709, Total deaths: 90000. Based on these measures, what is the estimated total crude death rate?							
A. 1.68 deaths per 1000	B. 4.09 deaths per 1000 C. 9.02 deaths per 1000		D. 7.11 deaths per 1000				
Q3: In 2005, a total of 132,307 deaths occurred among 25-45 years old. 20,543 deaths were due to road traffic guiles and 12,233 were due to cancer. Calculate Proportionate mortality for cancer among 25–45 years.							
A. 9.2%	B. 8.7%	C. 12.6%	D. 10.9%				
Q4: In a survey of 1,370 medical students in Riyadh in 2017, a total of 522 reported symptoms of seasonal allergies during the the first week of September. Calculate the prevalence of seasonal allergies in this group.							
A. 22.5%	B. 38.1%	C. 33.2%	D. 41.7%				
Q5: In an epidemic of hepatitis A traced to green onions from a restaurant, 444 cases were identified. Two of the cases died as a result of their infections. Calculate the case-fatality rate.							
A. 0.7%	В. 0.2%	C. 0.92%	D. 0.45%				
Q6: In 2020, from March to November, the number of new cases of Covid-19 in Saudi Arabia is 350,000. Mid year population of Saudi Arabia during the same year was 34,813,871, Calculate the incidence per 1000.							
A. 10.05 per 1000 per 8 months	B. 15.22 per 1000 per 8 months	C. 17.45 per 1000 per 8 months	D. 19.14 per 1000 per 8 months				
Answer key: 1 (B) , 2 (C) , 3 (A) , 4 (B) , 5 D) , 6 (A)							

Team leaders

Alaa Alsulmi

Abdulaziz Alghuligah

Khaled Alsubaie

Members

