Tutorial 3: Screening

Color index:

- Main text
- Males slides
- Females slides
- Doctor notes
- Golden notes

- Important
- Extra

Components of Validity

TABLE 3-A

Screening test result by diagnosis

Screening test results	Diseased	Not diseased	Total
Positive	a (True-positive)	b (False-positive)	$\mathrm{a}+\mathrm{b}$
Negative	c (False-negative)	d (True-negative)	$\mathrm{c}+\mathrm{d}$
Total	$\mathrm{a}+\mathrm{c}$	$\mathrm{b}+\mathrm{d}$	$\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$

Sensitivity

(a) Sensitivity $=a /(a+c) \times 100$

The ability of the test to identify correctly all those who have the disease, that is "true-positive".

90\% sensitivity means that 90\% of the diseased people screened by the test will give a "true-positive" result and the remaining 10\% a "false-negative" result.

Specificity
 (b) Specificity $=\mathrm{d} /(\mathrm{b}+\mathrm{d}) \times 100$

©
The ability of a test to identify correctly those who do not have the disease, that is "true-negatives"

90\% specificity means 90\% of non-diseased persons will give "true-negative" result, 10% of non-diseased people screened by the test will be wrongly classified as "diseased" when they are not "false-positive".

Diagnosis of brain tumours by EEG

EEG results	Brain tumour	
	Present	Absent
Positive	36	54,000
Negative	4	306,000
	40	360,000

Sensitivity $=36 / 40 \times 100=90$ per cent
Specificity $=306,000 / 360,000 \times 100=85$ per cent

Diagnosis of brain tumours by computer assisted axial tomography

CAT results	Brain tumour	
	Present	Absent
Positive	39	18,000
Negative	1	342,000
	40	360,000

[^0]
Cont'

Predictive accuracy

Reflects the diagnostic power of a test.

Depends upon sensitivity, specify and disease prevalence

The probability that a patient with a positive test result has, in fact, the disease in question.

The more prevalent is a disease in a given population, the more accurate will be the predictive value of a positive screening test.
(c) Predicitive value of a positive test $=\mathrm{a}(\mathrm{a}+\mathrm{b}) \times 100$
(d) Predictive value of a negative test $=\mathrm{d} \mid(\mathrm{c}+\mathrm{d}) \times 100$
(e) Percentage of false-negatives $=c /(a+c) \times 100$
(f) Percentage of false-positive $=b /(b+d) \times 100$

Predictive value of a positive gram-stained cervical smear test (with constant sensitivity of 50% and specificity of 90%) at three levels of prevalence

	Prevalence 5\%			Prevalence 15\%				Prevalence 25\%		
	Culture			Culture				Culture		
	+	-	Total		+	-	Total	+	-	Total
Smear	+ 25	95	120	Smear	$+75$	85	160	Smear +125	75	200
	-25	855	880		-75	765	840	-125	675	800
Total	50	950	1000	Total	150	850	1000	Total 250	750	1000
Positive predictive value	$\frac{25}{120} \times \frac{100}{1}=21 \%$			Positiv predict value	$\frac{75}{160} \times \frac{100}{1}=47 \%$			Positive predictive $\frac{125}{20}$ value	ve $\frac{125}{200} \times \frac{100}{1}=63 \%$	

- In the exam you might be given the formula and asked to give the interpretation or vice versa, you might be given the interpretation and asked for the formula. e.g: 90\% of the diseased people screened by the test will give a "true-positive" result and the remaining 10\% a "false-negative" result what is the formula? answer: this is sensitivity and the formula is
$a /(a+c) \times 100$.

Questions and answers

Exercise 1:

In a survey, 100 persons were positive to the reference test for disease A and 900 were negative. The screening test identified 200 persons to be positive. Of these 80 were positive to the reference test.

(a) Sensitivity $=a /(a+c) \times 100$
$=80 / 100 \times 100=80 \%$
(b) Specificity $=\mathrm{d} /(\mathrm{b}+\mathrm{d}) \times 100$
$=780 / 900 \times 100=86.7 \%$
(c) Predictive value of a positive test $=a /(a+b) \times 100$
$=80 / 200 \times 100=40 \%$ who tested +ve actually they have the disease
(d) Predictive value of a negative test $=\mathrm{d} /(\mathrm{c}+\mathrm{d}) \times 100$
$=780 / 800 \times 100=97.5 \%$ who tested -ve actually don't have the disease
(e) Percentage of false-negatives $=c /(a+c) \times 100$
$=20 / 100 \times 100=20 \%$
(f) Percentage of false-positive $=\mathrm{b} /(\mathrm{b}+\mathrm{d}) \times 100$
$=120 / 900 \times 100=13.3 \%$

Questions and answers

Exercise 2:

A new non invasive test has been developed to diagnose breast cancer. Of 1000 patients; 50\% were diagnosed positive. Of those who tested positive, a Biopsy test yielded 475 with positive results. Of those who tested negative; 50 patients were actually Cancer breast positive when tested against the Biopsy.

Diagnostic test
+ve breast cancer -ve breast cancer
Total

Screening test	+ve	475	25	500
	-ve	50	450	500
	Total	525	475	1000

(a) Sensitivity $=a /(a+c) \times 100$
$=90.5 \%$
\rightarrow Among those who are diseased, 90.5% will be positive with the new test
(b) Specificity $=\mathrm{d} /(\mathrm{b}+\mathrm{d}) \times 100$
= 94.7\%
\rightarrow Among those who doesn't have the disease, 94.7% will show true negative
(c) Predictive value of a positive test $=a /(a+b) \times 100$
= 95\%
\rightarrow Among those who tested positive, 95\% are actually have the disease
(d) Predictive value of a negative test $=\mathrm{d} /(\mathrm{c}+\mathrm{d}) \times 100$
= 90\%
\rightarrow Among those who tested negative, 90% will not have the disease
(e) Percentage of false-negatives $=c /(a+c) \times 100$
= 9.5\%
(f) Percentage of false-positive $=b /(b+d) \times 100$
= 5.2\%

Questions and answers

Exercise 3:
 Match the following sentences with the appropriate term:

I. The ability of a test to correctly identify those who have a disease (sensitivity)
II. The proportion of those without the disease correctly identified as negative by screening test (Specificity)
III. Ability of the test to detect true negative cases (Specificity)
IV. Probability of disease in patients with positive test result (PP+ve)
V. Probability of not having the disease in a subject with negative test result (PP-ve)

Exercise 4:

300 known diabetics (positive on the glucose tolerance test) and 250 normal volunteers (negative on the glucose tolerance test) are given finger prick tests, the results are:

Glucose tolerance test
$+\mathrm{ve}$

+ ve

Finger Prick -ve
Total

	Glucose tolerance test	
+ve	-ve	
282	20	302
18	230	248
300	250	550

Sensitivity of the test is:
Specificity of the test is:
a) 20%
a) 90%
b) 90%
b) 92%
c) 94%
c) 94%
d) 98%
d) 98%

The capacity of a test or procedure to screen as "negative" those NOT having a specific disease is:
a) sensitivity
b) positive predictive value
c) specificity
d) negative predictive value

Team leaders

Alaa Alsulmi

Abdulaziz Alghuligah
Khaled Alsubaie

Team Members

Rayan Almasoud

Mohammad Alkhorijah

[^0]: Sensitivity $=39 / 40 \times 100=97.5$ per cent
 Specificity $=342,000 / 360,000 \times 100=95$ per cent

