

Approach to Acute Kidney Injury

Dr. Mohammed Al-Ghonaim MBBS,FRCP(C)

Objective

- At the end of this tutorial you will be able to:
 - Define AKI
 - Know the epidemiology of AKI
 - Know the etiology of AKI
 - Manage AKI
 - Diagnose AKI
 - Treat AKI

Acute Kidney Injury (AKI)


- Deterioration of renal function over a period of hours to days, resulting in
 - the failure of the kidney to excrete nitrogenous waste products and
 - to maintain fluid and electrolyte homeostasis

- Oliguria: <400 ml urine output in 24 hours
- Anuria: <100 ml urine output in 24 hours

Acute Kidney Injury (definition)

ARF in one study was defined as:

- a 0.5 mg/dL increase in serum creatinine if the baseline serum creatinine was ≤1.9 mg/dL,
- an 1.0 mg/dL increase in serum creatinine if the baseline serum creatinine was 2.0 to 4.9 mg/dL, and
- a 1.5 mg/dL increase in serum creatinine if the baseline serum creatinine was ≥5.0 mg/dl

Acute Kidney Injury (AKI)

 An abrupt (within 48 hours) absolute increase in increase in creatinine by 0.3 mg/dl (26.4 µmol/l)or percentage increase of >50% from base line or urine output <0.5 ml/hour for 6 hours

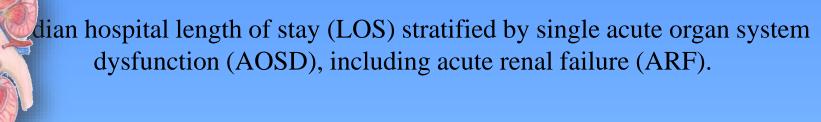
Why a creatinine of (26.4)?

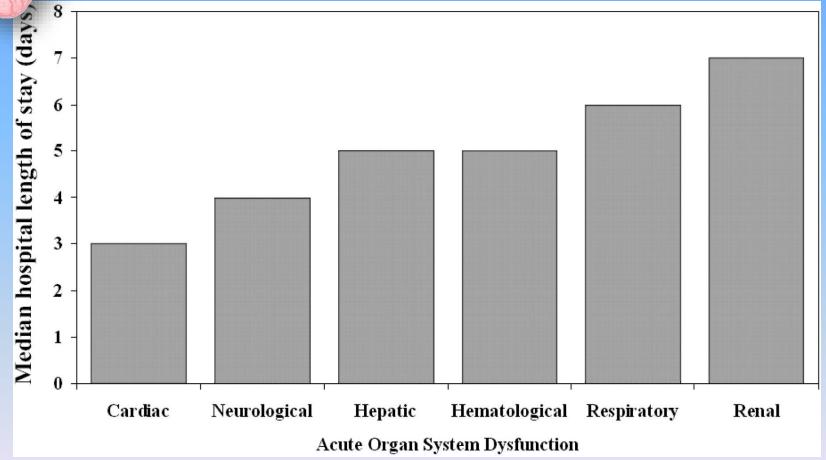
"Acute kidney injury, mortality, length of stay, and costs in hospitalized patients" 19,982 pts admitted to academic medical centre in SF 9,205 pts with >1 creatinine results

Rise in creatinine	Multivariable OR (hospital mortality)		
≥ 0.3 mg/dl (26.4 µmol/L)	4.1		
≥ 0.5 mg/dl (45 µmol/L)	6.5		
≥ 1.0 mg/dl (90 µmol/L)	9.7		
≥ 2.0 mg/dl (180 µmol/L)	16.4		

Chertow et al. JASN 2005; 16:3365-3370

Definition of Acute Kidney Injury (AKI) based on "Acute Kidney Injury Network"


Stage	Creatinine criteria	Urine Output criteria
AKI stage I	 1.5-2 times baseline OR 0.3 mg/dl increase from baseline (≥ 26.4 µmol/L) 	<0.5 ml/kg/h for >6 h
AKI stage II	2-3 times baseline	<0.5 ml/kg/h for >12 h
AKI stage III	3 times baseline OR 0.5 mg/dl (44 μmol/L) increase if baseline>4mg/dl(≥ 354 μmol/L) OR Any renal replacement therapy given	<0.3 ml/kg/h for >24 h OR Anuria for >12 h

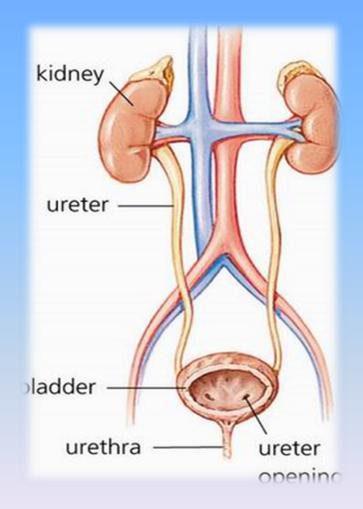

Mehta R et al. Crit Care 2007;11(2):R31 Ostermann *et al. Critical Care* 2008 **12**:R144

Epidemiology

- It occurs in
 - 5% of all hospitalized patients and
 - -35% of those in intensive care units
- Mortality is high:
 - up to 75–90% in patients with sepsis
 - 35–45% in those without

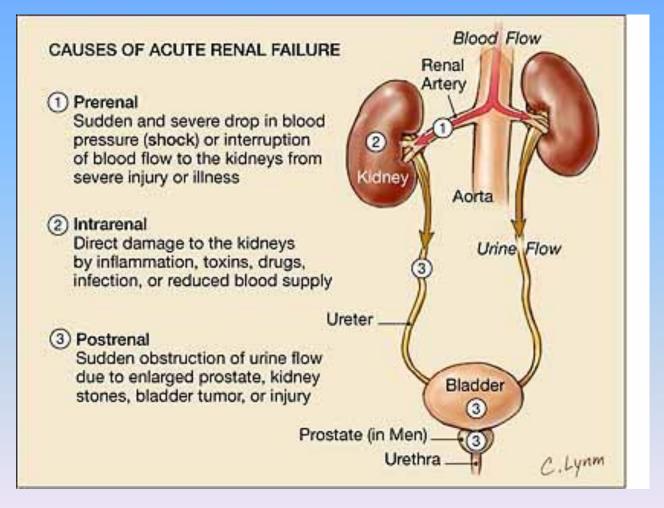
Impact of AKI

Correlation between AKI classification and outcome

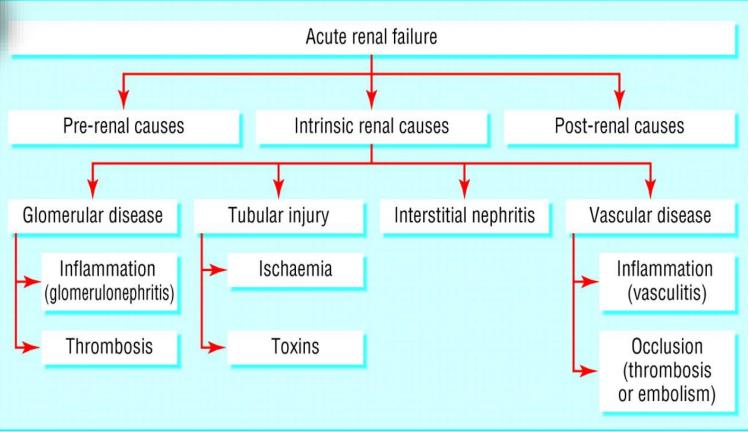

22,303 adult patients admitted to 22 ICUs in UK and Germany between 1989–1999 with ICU stay ≥24 hours

	No AKI	AKII	AKI II	AKI III
	65.6%	19.1%	3.8%	12.5%
Mean age	60.5	62.1	60.4	61.1
ICU mortality	10.7%	20.1%	25.9%	49.6%
Hospital mortality	16.9%	29.9%	35.8%	57.9%

Ostermann et al, Critical Care 2008;12:R144



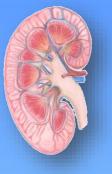
Etiology of ARF



Etiology of ARF

Causes of AKI

Hilton, R. BMJ 2006;333:786-790


Pre-renal AKI

Volume depletion

- Renal losses (diuretics, polyuria)
- GI losses (vomiting, diarrhea)
- Cutaneous losses (burns, Stevens-Johnson syndrome)
- Hemorrhage
- Pancreatitis

Decreased cardiac output

- Heart failure
- Pulmonary embolus
- Acute myocardial infarction
- Severe valvular heart disease
- Abdominal compartment syndrome (tense ascites)

Case -1

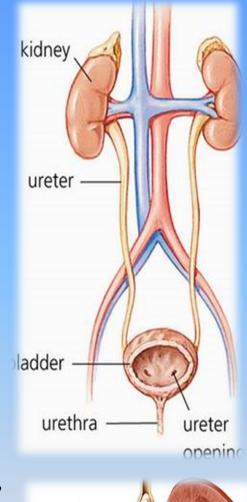
- 75 years old female, known to have:
 - DM II
 - HTN
- Presented with nausea, vomiting and diarrhea for 3 days
- Medication: Insulin, lisinopril,
- Serum Creatinine 205

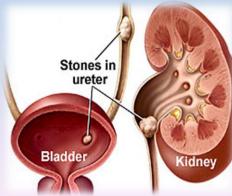
Case-1

- What other information do you want to know?
 - History:
 - Physical examination:
 - Investigations
- What is your diagnosis?
 Acute Kidney Injury.
- What is the etiology of AKI?
 Pre renal (dehydration)

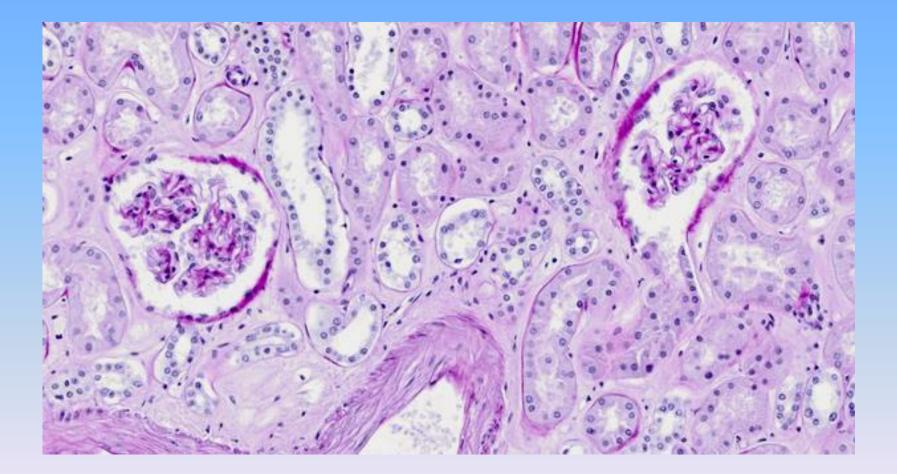
Case -1

- What do you expect to fined in urine analysis?
 Normal
- What do you expect urinary Na, osmolality?
 - Urinary Na<10
 - Osmolality > 300
 - Fractional excretion of Na <1%


Post-renal AKI


Ureteric obstruction

- Stone disease,
- Tumor,
- Fibrosis,
- Ligation during pelvic surgery

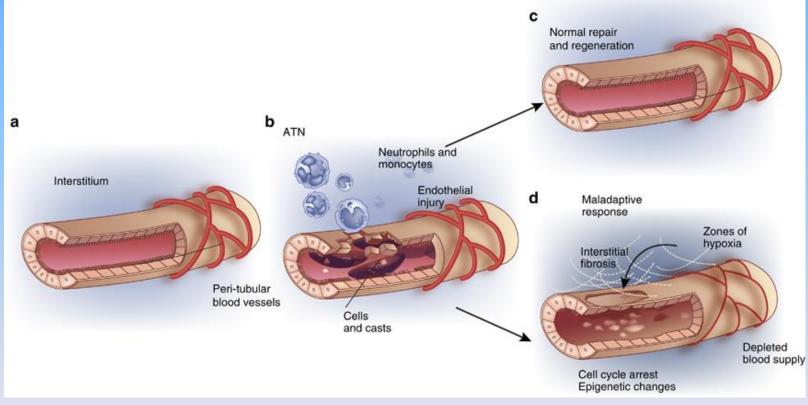

Bladder neck obstruction

- Benign prostatic hypertrophy [BPH]
- Cancer of the prostate
- Neurogenic bladder
- Drugs(Tricyclic antidepressants, ganglion blockers,
- Bladder tumor,
- Stone disease, hemorrhage/clot)
- Urethral obstruction (strictures, tumor)

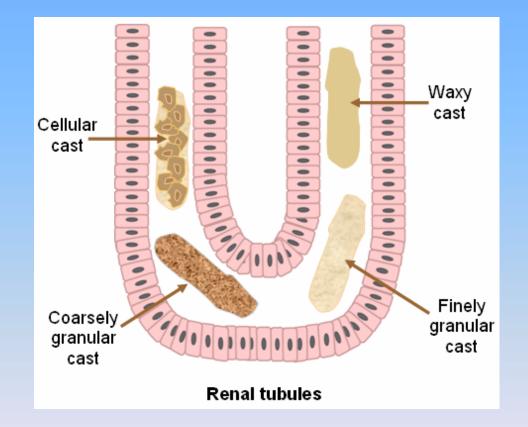
Renal

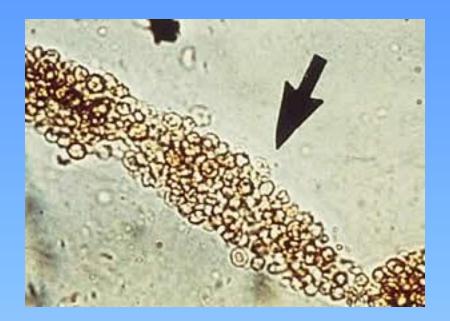
Tubular injury

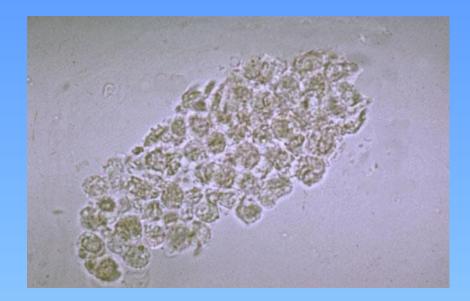
Ischemia:

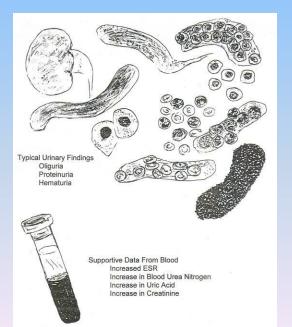

Hypotension, sepsis, prolonged pre-renal state

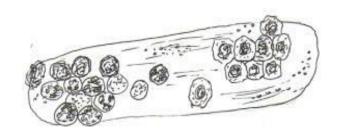
• <u>Totoxic</u>


- Heme pigment (rhabdomyolysis, intravascular hemolysis)
- Crystals (tumor lysis syndrome, seizures, ethylene glycol poisoning, megadose vitamin C, acyclovir, indinavir, methotrexate)
- Drugs (aminoglycosides, lithium, amphotericin
 B, pentamidine, cisplatin, ifosfamide,
 radiocontrast agents)




Tubular injury




Cast formation

Acute Tubular Necrosis

- Diagnose by history, $\uparrow FE_{Na}(>2\%)$
- sediment with coarse granular casts, RTE cells
- Treatment is supportive care.
 - Maintenance of euvolemia (with judicious use of diuretics, IVF, as necessary)
 - Avoidance of hypotension
 - Avoidance of nephrotoxic medications (including NSAIDs and ACE-I) when possible
 - Dialysis, if necessary
- 80% will recover, if initial insult can be reversed

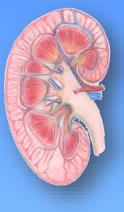
Interstitial

Box 1: Common causes* of acute interstitial nephritis^{2,4,6}

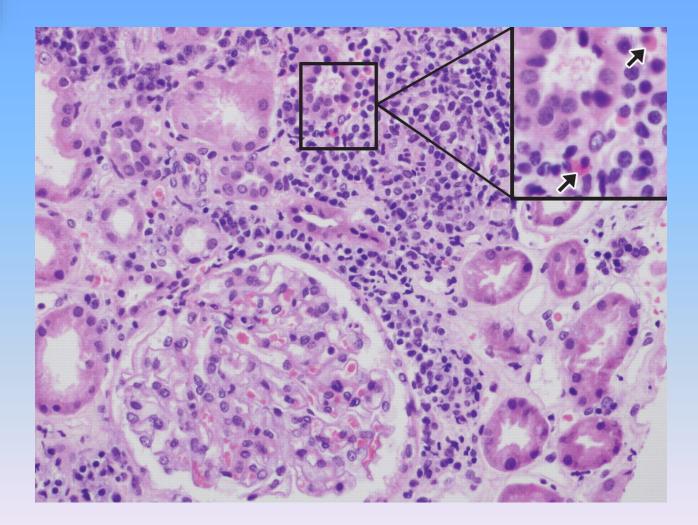
Drugs

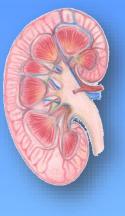
- Antimicrobials (ampicillin, ciprofloxacin, methicillin, penicillin, rifampicin, sulfonamides)
- Nonsteroidal anti-inflammatory drugs (acetylsalicylic acid, fenoprofen, ibuprofen, indomethacin, naproxen, phenylbutazone, piroxicam, tolmetin, zomepirac)
- Acid suppressors (omeprazole, pantoprazole, rabeprazole, cimetidine)
- Others (phenytoin, furosemide, allopurinol, phenindione)

Infections


- Direct infiltration (leptospirosis, cytomegalovirus, candidiasis)
- Reactive to systemic infections (streptococcal infection, diphtheria, *Hantavirus*)

Systemic diseases


- Metabolic diseases (urate nephropathy, hypercalcemic nephropathy, oxalate nephropathy)
- Immunologic reactions (transplant rejection, systemic lupus erythematosis, sarcoidosis, cryoglobulinemia)
- Neoplastic diseases (lymphoproliferative diseases)

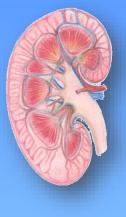

Idiopathic causes

*These are the most common causes of acute interstitial nephritis, but this list is not exhaustive.

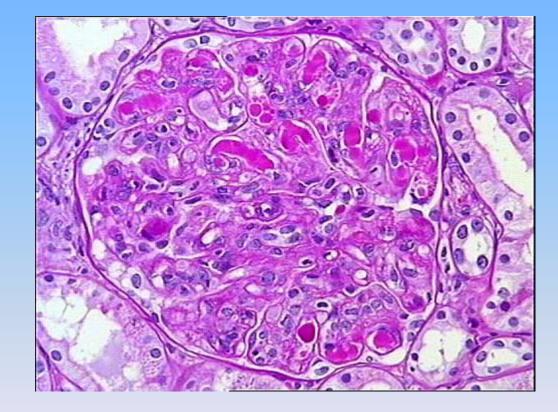
Interstitial



Interstitial


Box 2: Characteristics of acute interstitial nephritis

- Acute elevation in creatinine levels (not caused by pre- or post-renal etiologies)
- General malaise, nausea (caused by buildup of metabolites)
- Normal blood pressure, no edema (distinguishes acute interstitial nephritis from acute tubular necrosis)
- Polyuria and polydypsia (kidneys unable to concentrate urine)
- Maculopapular rash (may be an early indication of drug-induced acute interstitial nephritis)
- Proteinuria (caused by tubular damage)
- Pyuria (occurs in almost all cases)
- Hematuria (occurs in about 90% of cases)
- Eosinophiluria (occurs in 80% of cases of drug-induced acute interstitial nephritis)



Glomerular

- Anti–glomerular basement membrane (GBM) disease (Goodpasture syndrome)
- Anti–neutrophil cytoplasmic antibody-associated glomerulonephritis (ANCA-associated GN) (Wegener granulomatosis, Churg-Strauss syndrome, microscopic polyangiitis)
- Immune complex GN (lupus, postinfectious, cryoglobulinemia, primary membranoproliferative glomerulonephritis)

Glomerular

Acute Glomerulonephritis

- Rare in the hospitalized patient
- Diagnose by history, hematuria, RBC casts, proteinuria (usually non-nephrotic range), low serum complement in post-infectious GN), RPGN often associated with anti-GBM or ANCA
- Usually will need to perform renal biopsy

Clinical feature-1

- Signs and symptoms resulting of primary disease
- Signs and symptoms resulting from loss of kidney function:
 - decreased or no urine output, flank pain, edema, hypertension, or discolored urine
 - weakness and
 - easy fatiguability (from anemia),
 - anorexia,
 - vomiting, mental status changes or
 - Seizures
 - edema

Clinical feature-2

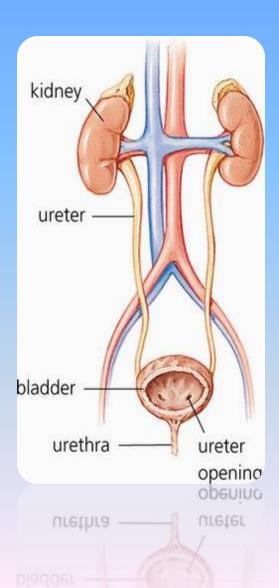
- Asymptomatic
 - elevations in the plasma creatinine
 - abnormalities on urinalysis
- Systemic symptoms and findings:
 - fever
 - arthralgias,
 - pulmonary lesions

AKI Diagnosis

- Blood urea nitrogen and serum creatinine
- CBC, peripheral smear, and serology
- Urinalysis
- Urine electrolytes
- U/S kidneys
- Serology: ANA, ANCA, Anti DNA, HBV, HCV, Anti GBM, cryoglobulin, CK, urinary Myoglobulin

AKI Diagnosis

- Urinalysis
 - Unremarkable in pre and post renal causes
 - Differentiates ATN vs. AIN. vs. AGN
 - Muddy brown casts in ATN
 - WBC casts in AIN
 - RBC casts in AGN
 - Hansel stain for Eosinophils


AKI - Diagnosis

Urinary Indices;

• UNa x PCr FENa = _____ x 100 PNa x UCr FENa < 1% (Pre-renal state) – May be low in selected intrinsic cause

- » Contrast nephropathy
- » Acute GN
- » Myoglobin induced ATN
- FENa > 1% (intrinsic cause of AKI)

TABLE 3-3. Laboratory Tests Useful in the Diagnosis of Acute Renal Failure

Test	Favors Prerenal Disease	Favors ATN
BUN/P _{cr} ratio	>20:1	10-15:1
Rise in P _{cr}	Variable rate of rise with downward fluctuations in some patients	Progressive increase of ≥0.5 mg/dL per day, particular oliguric patients
Urinalysis	Normal or near normal; hyaline casts may be seen but are not an abnormal finding	Many granular casts with re tubular epithelial cells and epithelial cell casts
U _{osm}	>500 mosmol/kg	<350 mosmol/kg
U _{Na}	<20 meg/L	>40 meq/L
FE _{Na}	<1 percent	>2 percent

Case -2

- 16 years old Saudi male,
- s/p road traffic accident developed quadriplegia,
- Creatinine 32 few days ago, now 201
- Urine out put 2 L/day

What is next?

Case -2

• History:

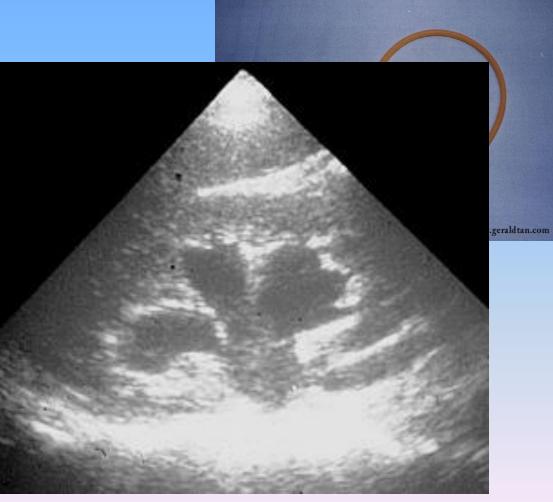
- No history of vomiting or diarrhea
- no new medication added

• On examination:

- BP 123/73 mmHg pulse 78 /min
- FiO2 saturation is 99% on room air

• Diagnosis:

acute


Serum creatinine 5 days ago 32

• First step:

- Investigations
 - Urine analysis, Urii
 - Ultra sound kidney

Case-3

- You are working as nephrology resident and ER resident calls you for a consult:
- 25 years old Saudi male sustained Road traffic accident this morning in ER was hypotensive and required 6 units of blood transfusion urine out put decreased significantly serum creatinine 285µmol/l?
- How would you approach this patient?

Case-3

- What other information you need to know?
 - Previously healthy
 - And urine output for the last 3 hours is <10 cc and dark colour

Case-3

- Physical examination
 - Asses volume status
 - Blood pressure
 - Pulse
 - JVP
 - Urine out put
- Laboratory investigation:
 - K 4.7, Bicarbonate 21, Cl 99, Na 137
 - Urinary Na> 10, Urine osmolality < 350

Case -3

- What is your diagnosis?
 Acute Kidney Injury
- Where is the etiology?
- Renal?
 - ATN (acute tubular necrosis)
 - AIN (acute interstitial nephritis)
 - GN (glomerulonephritis)

Case-3

• Diagnosis:

 Acute Kidney Injury secondary to Acute tubular necrosis due to shock

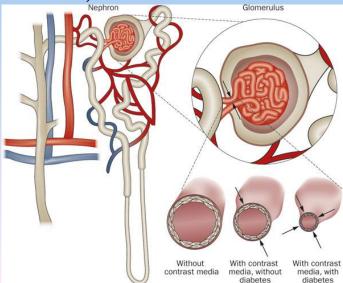
Treatment of AKI

- Optimization of hemodynamic and volume status
- Avoidance of further renal insults
- Optimization of nutrition
- If necessary, institution of renal replacement therapy

Case-3

- After assessment your staff advise the following:
 - IVF bolus 1 litter then 100 cc/hour, after blood transfusion
- Next day when you came to assess the patient you found him incubated and they told you he went into respiratory distress
 - BP 120/78mmHg
 - Urine output none for the last 3 hours

Case-3


- Lab result as follow:
 - К 6.3
 - Creatinine 499µmol/l
 - Bicarbonate 12
- What next:

Indication for renal replacement therapy

- Symptoms of uremia (encephalopathy,...)
- Uremic pericarditis
- Refractory volume over load
- Refractory hyperkalemia
- Refractory metabolic acidosis

Contrast nephropathy

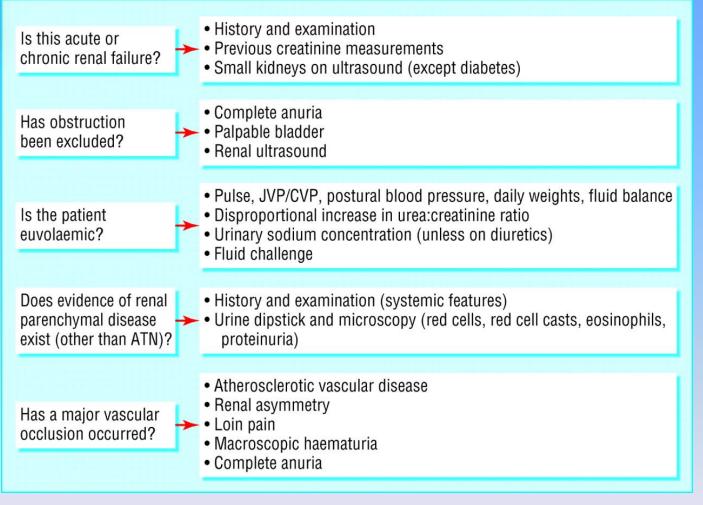
- 12-24 hours post exposure, peaks in 3-5 days
- Non-oliguric, FE Na <1% !!
- RX/Prevention:
 - 1/2 NS 1 cc/kg/hr 12 hours pre/post
 - N-acetyle cystein 600 BID pre/post (4 doses)
- Risk Factors:
 - CKD,
 - Older age
 - Hypovolemia ,DM,CHF

Rhabdomyolysis

- Diagnose with ↑ serum CK (usu. > 10,000), urine dipstick (+) for blood, without RBCs on microscopy, pigmented granular casts
- Common after trauma ("crush injuries"), seizures, burns, limb ischemia occasionally after IABP or cardiopulmonary bypass
- Treatment is largely supportive care. With IVF

Atheroembolic ARF

- Associated with emboli of fragments of atherosclerotic plaque from aorta and other large arteries
- Diagnose by history, physical findings (evidence of other embolic phenomena--CVA, ischemic digits, "blue toe" syndrome, etc), low serum C3 and C4, peripheral eosinophilia, eosinophiluria, rarely WBC casts
- Commonly occur after intravascular procedures or cannulation (cardiac cath, CABG, AAA repair, etc.)


Renal failure

Differentiation between acute and chronic renal failure

	Acute	Chronic
History	Short (days- week)	Long (month-years)
Haemoglobin concentration	Normal	Low
Renal size	Normal	Reduced
Serum Creatinine concentration	Acute reversible increase	Chronic irreversible

Conclusion

Hilton, R. BMJ 2006;333:786-790