

Diabetic Complications

MED341

Mohammed Al-Sofiani, MD, MSc

Assistant Professor Endocrinology Unit - Internal Medicine Department King Saud University & KSUMC

Objectives

$\bullet \bullet \bullet \bullet \bullet$

Acute Diabetic Complications

- Diabetic Ketoacidosis
- Hyperglycemic Hyperosmolar State
- Hypoglycemia

Chronic Diabetic Complications

- Diabetic Retinopathy
- Diabetic Nephropathy
- Diabetic Neuropathy
- Cardiovascular Disease

How to Screen and Prevent Diabetes Complications

Acute Diabetic Complications

Diabetic KetoAcidosis (DKA)

- Status of <u>metabolic acidosis</u> due to absolute (or relative) insulin deficiency in association with increased levels of glucagon and other counter-regulatory hormones resulting in <u>increased ketone</u> production
- \succ **1** hepatic glucose production

> 1 activity of the *hormone-sensitive lipase* in AT Triglycerides \rightarrow \rightarrow glycerol and free fatty acid

 \succ In the liver: Free fatty acids $\rightarrow \rightarrow$ ketones

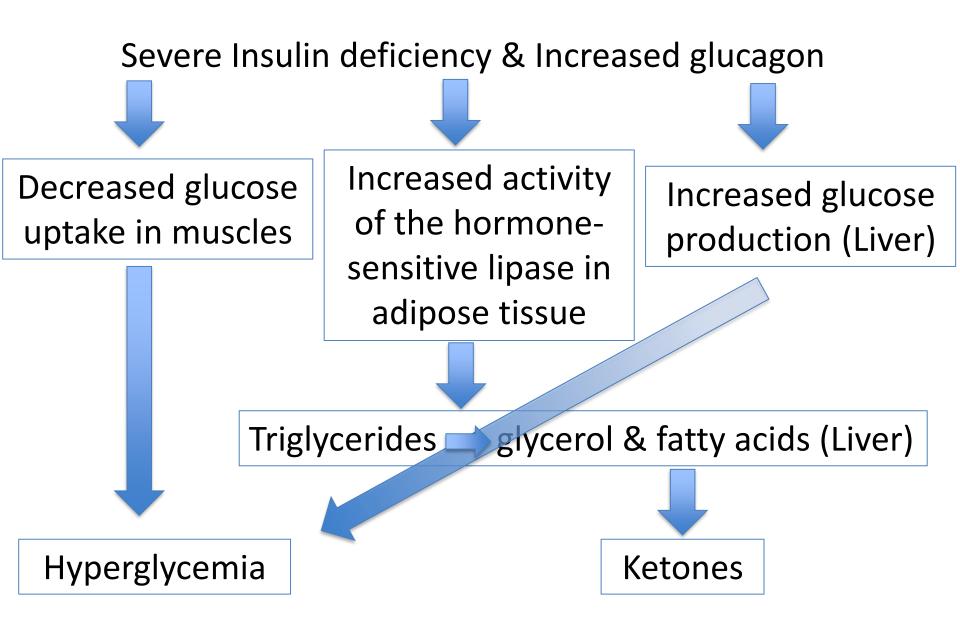
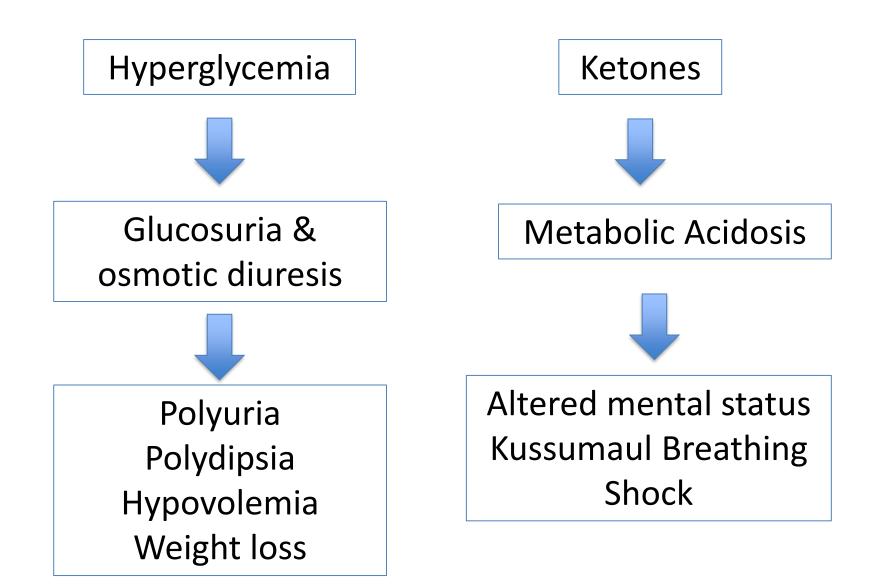
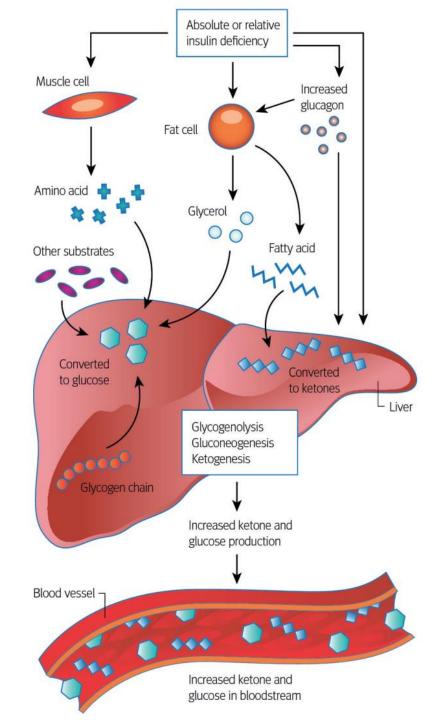

Precipitating Causes of DKA

Table 1 Precipitating causes of diabetic ketoacidosis										
Precipitating cause	Australia ¹¹⁵	Brazil ¹¹⁶	China ¹¹⁷	Indonesia ¹¹⁸	Korea ¹¹⁹	Nigeria ¹²⁰	Spain ¹²¹	Syria ¹²²	Taiwan ¹²³	USA ^{15,23}
New diagnosis of diabetes mellitus, %	5.7	12.2	NR	3.3	NR	NR	12.8	NR	18.2	17.2–23.8
Infection, %	28.6	25.0	39.2	58.3	25.3	32.5	33.2	47.8	31.7	14.0–16.0
Poor adherence to treatment, %	40.0	39.0	24.0	13.3	32.7	27.5	30.7	23.5	27.7	41.0–59.6
Other, %	25.7	15.0	10.9	17.1	11.2	4.8	23.3	7.8	6.2	9.7–18.0
Unknown, %	NA	8.8	25.9	8.0	30.8	34.6	NA	20.9	16.2	3.0-4.2


NA, not applicable; NR, not reported.


Drugs: Corticosteroids, sympathomimetics, atypical anti-psychotics, SGLT-2 inhibitors

Pathophysiology of DKA

Pathophysiology of DKA

Misra et al., BMJ. 2015

Clinical Features of DKA

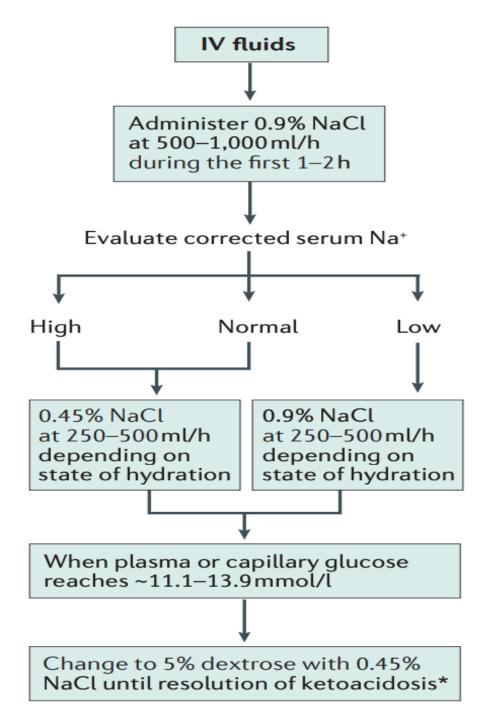
- Polyuria, polydipsia, & weight loss
- Nausea & vomiting
- Abdominal pain
- Change in mental status
- Dehydration
- > Hypothermia
- > Deep labored breathing (Kussmaul respiration)

Laboratory Findings in DKA

Hyperglycemia + Hyperketonemia + metabolic acidosis

Measure	DKA					
	Mild	Moderate	Severe			
Plasma glucose level, mmol/l	13.9	13.9	13.9			
Arterial or venous pH	7.25–7.30	7.00–7.24	<7.00			
Bicarbonate level, mmol/l	15–18	10–14	<10			
Urine or blood acetoacetate (nitroprusside reaction)	Positive	Positive	Positive			
Urine or blood β -hydroxybutyrate, mmol/l	>3	>3	>3			
Effective serum osmolality, mmol/kg*	Variable	Variable	Variable			
Anion gap, mmol/l	>10	>12	>12			
Alteration in sensorium	Alert	Alert or drowsy	Stupor or coma			

Aggressive rehydration + Lowering glucose + Cessation of ketogenesis + Correcting electrolyte imbalances

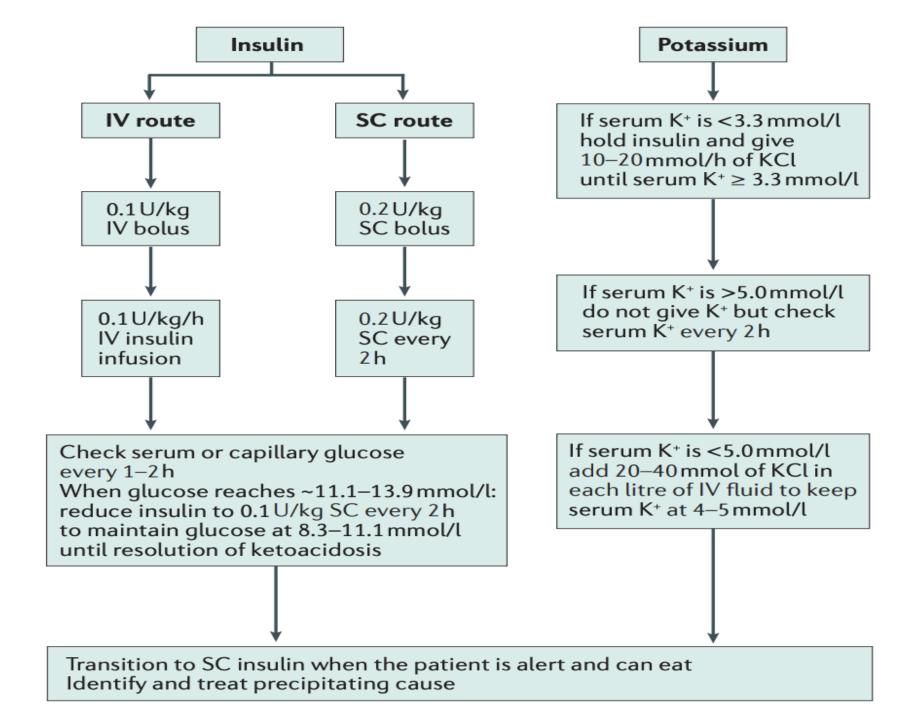

Most patients with DKA are treated in ICU

DKA is associated with increased mortality

Rehydration

- > IVF is the most critical step
- > Water deficit is ~ 100ml/kg of body weight
- Isotonic saline @ 500-1000 ml/hr during the 1st 2-4 h
- Followed by: isotonic saline 250—500 ml/h

Once the plasma glucose is ~250 mg/dl, switch IVF to D5% IVF



<u>Insulin</u>

- Insulin is the next step after IVF
- Reduces serum glucose and suppresses ketogenesis
- Most of the time: we use IV insulin infusion but mild DKA can be treated with subcutaneous insulin
- > Most protocols: IV insulin bolus \rightarrow 0.1 unit/kg
- \succ Followed by: IV insulin infusion \rightarrow 0.1 unit/kg/h

Electrolytes

- > DKA is associated with total-body K+ deficit
- Serum K⁺ is often normal or high (do not get fooled!)
- K⁺ Shift from intracellular to extracellular compartment with acidosis
- Insulin therapy moves K⁺ back into the cells (watch for a drop in K⁺)
- ➤ K⁺ replacement starts early (when K⁺ is normal)
- Rate of K infusion depends on K⁺ level and eGFR
- Consider bicarbonate infusion if pH <7</p>
- Phosphate replacement is almost never required

Hyperglycemic Hyperosmolar State (HHS)

- Status of <u>severe hyperglycemia</u> due to insulin resistance & relative insulin deficiency resulting in <u>increased serum</u> <u>osmolality</u>
- ~ 10 times higher mortality than DKA
- Develops slower than DKA (over several days)
- > No ketosis
- Serum glucose level is higher than seen in DKA
- More sever dehydration & higher plasma osmolality than DKA

Gradual worsening of polydipsia, polyuria, & weight loss
Impaired consciousness is more common than DKA

Pathophysiology of HHS

- Results from relative insulin deficiency (there is some detectable insulin)
- Less activation of the hormone-sensitive lipase in adipose tissues & less free fatty acid production compared to DKA
- No ketones production but higher serum glucose than in those with DKA
- Sever dehydration and plasma hyperosmolality impaired consciousness

Laboratory Findings in HHS

Measure	DKA	HSS		
	Mild	Moderate	Severe	
Plasma glucose level, mmol/l	13.9	13.9	13.9	33.3
Arterial or venous pH	7.25–7.30	7.00–7.24	<7.00	>7.30
Bicarbonate level, mmol/l	15–18	10–14	<10	>15
Urine or blood acetoacetate (nitroprusside reaction)	Positive	Positive	Positive	Negative or low positive
Urine or blood β -hydroxybutyrate, mmol/l	>3	>3	>3	<3
Effective serum osmolality, mmol/kg*	Variable	Variable	Variable	>320
Anion gap, mmol/l	>10	>12	>12	<12
Alteration in sensorium	Alert	Alert or drowsy	Stupor or coma	Stupor or coma

Management of HHS is similar to that of DKA

Hypoglycemia

- Plasma glucose <3.9 mmol/L (<70 mg/dl)</p>
- Severe hypoglycemia: need for assistance from another person to correct glucose
- Most frequent & serious adverse effect of glucoselowering therapies
- Hypoglycemia in a patient with diabetes is almost always due to glucose-lowering therapies
- Major barrier to achieving desirable glucose control
- Occurs in 30-40% of patients with T1DM
- Occurs in 10-30% of patients with insulin-treated T2D
- Insulin & sulfonylureas are the most frequent causes

Box 2 | Factors contributing to hypoglycaemia

- Insufficient patient education
- Medications (insulin, sulfonylureas, glinides, quinolones)
- Aggressive treatment protocols targeting normoglycaemia
- Poor coordination of insulin administration and food delivery
- Abrupt changes in nutritional intake
- Abrupt discontinuation of parenteral or enteral nutrition among insulin-treated patients
- Decline in renal or hepatic function
- Severe illness
- Tapering of steroid doses without appropriate reductions in insulin
- Inappropriate insulin dosing
- Counter-regulatory hormone deficiencies
- Impaired awareness of hypoglycaemia
- Dementia
- Age >65 years
- Sepsis

Hypoglycemia

- **Treatment:** (Rule of 15)
- Give 15 grams of carbohydrates
 - 4 glucose tablets
 - ½ cup of fruit juice or regular soda
 - 1 tablespoon of sugar or honey
- Wait 15 minutes and re-check glucose
- Repeat the same if glucose is still less than 70 mg/dl
 - If glucose is above 70 mg/dl, have the patient eat a regular meal or a snack that contains protein (e.g. nuts, cheese, chicken, meat, etc)
- Remember, the patient should not be driving with hypoglycemia or (within 1 hour after treating hypoglycemia)

Objectives

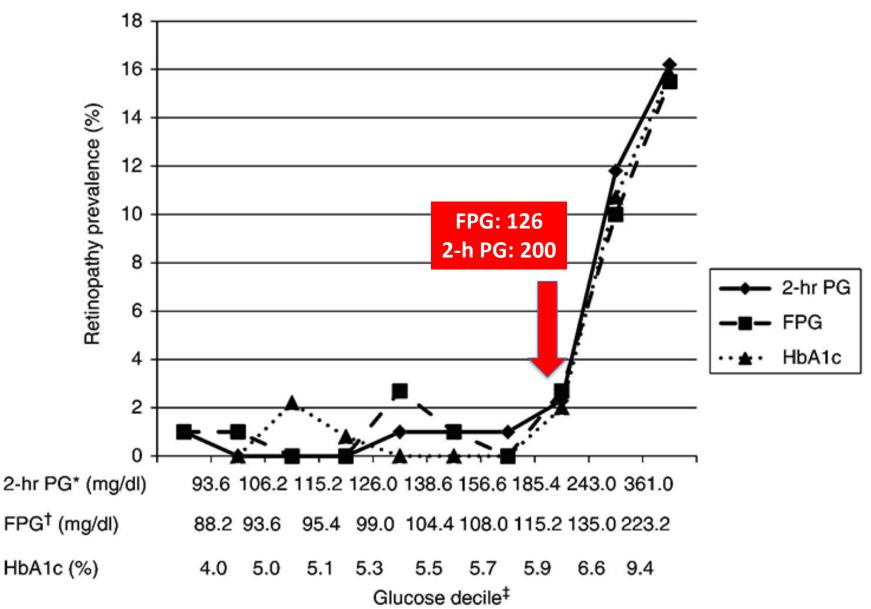
$\bullet \bullet \bullet \bullet \bullet$

Acute Diabetic Complications

- Diabetic Ketoacidosis
- Hyperglycemic Hyperosmolar State
- Hypoglycemia

Chronic Diabetic Complications

- Diabetic Retinopathy
- Diabetic Nephropathy
- Diabetic Neuropathy
- Cardiovascular Disease


Micro- and Macrovascular Complications

✓ Micro-: Retinopathy, Neuropathy, and Nephropathy

 ✓ Macro-: Ischemic Heart Disease, Cerebrovascular events, PAD

✓ Mortality

The definition of Diabetes is based on risk of Retinopathy

Complications of Type 2 Diabetes

> Diabetes is the leading cause of:

- Blindness
- Renal failure
- \odot Non-traumatic lower extremity amputation
- The presence of DM complication tremendously increases medical care cost
- > Usually present after long period of hyperglycemia
- Fortunately, they can be delayed/prevented by early DM detection and better glucose control

Diabetic Retinopathy

- Non-proliferative: usually appears in the 1st decade of the disease or early 2nd decade.
 - Characterized by retinal vascular microaneurysms, blot hemorrhage, and cotton-wool spots
- Proliferative: hypoxemia & neovascularization leading to virtuous hemorrhage, fibrosis, and retinal detachment
- Macular edema: can occur in non proliferative or proliferative stage

Treatment of Retinopathy

- Prevention (most effective treatment)
- ➢ Glycemic & BP control will slow the progression
- ► Laser Photocoagulation
- Ocular injection (Anti-VEGF therapy for macular edema)

> Yearly Screening (Dilated Eye Exam)

Diabetic Nephropathy

- Albuminuria (Albumin: Cr >30 mg/g)
- Always think about the other risk factors e.g HTN
- Patients with diabetic nephropathy, almost always, have evidence of diabetic retinopathy
- If your patient with diabetes has nephropathy but no retinopathy; it is very likely that the nephropathy is *NOT* due to diabetes

Treatment of Diabetic Nephropathy

- □ Prevention is the most effective therapy
- Aim is to slow the disease progression (or reverse it)
- Glucose & BP control is key
- ACE I (or ARBs) are recommended to treat nephropathy
- □ SGLT-2 inhibitors can be used
- Remember to change doses (or stop) medications that are renally cleared if eGFR is low

□ Screen with Urinary Albumin: Creatinine & eGFR

Diabetic Neuropathy

Polyneuropathy

- Most common form is distal symmetric polyneuropathy
- Tingling, numbness, loss of sensation
- Loss of fine touch, proprioception, and vibration. Loss of ankle deep reflex

Mononeuropathy

- Dysfunction of cranial or peripheral nerves
- less common

How To Prevent These Complications?

UKPDS: Type 2 diabetes complications

 ✓ A study done in multiple centers in UK from 1977 – 1997

Does intensive glucose control reduce risk of vascular complications?

(Is there going to be a difference in the *incidence of diabetes complications* if we lower A1C down to 7% *versus* if we keep it at 8%?)

What did we learn from this study?

Intensive glucose therapy (lowering A1C to 7%) lowered risk of:

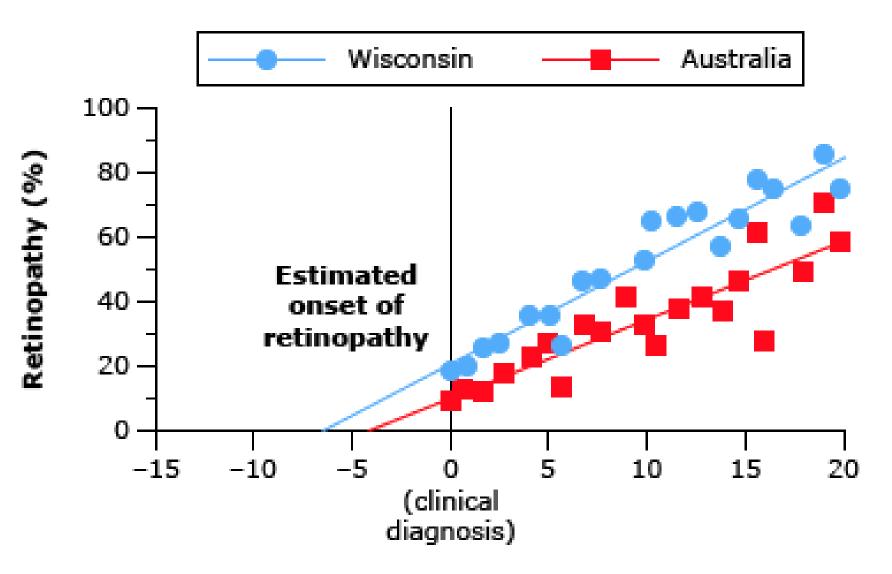
microvascualr complications by 25% (after 15 years)
Microalbuminuria by 33% after 12 years
Any diabetes-related endpoint by 12%

There was a direct relationship between the glucose level and risk of vascular complications

Intensive glucose control is essential in lowering the risk of diabetes complications

What did we learn from this study?

• Tight Blood Pressure control (144/82 mmHg) in patients with type 2 diabetes lowered the risk of:

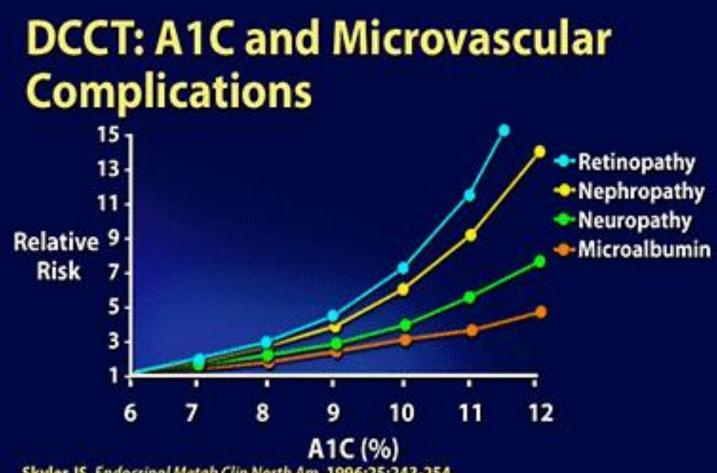

► Death by 32%

Stroke by 44%

- microvascualr complications by 37%
- ➢ Heart Failure by 56%
- ► Retinopathy progression by 34%
- ➢Any diabetes-related endpoint by 24%

When & how to screen for the diabetes complications?

- T2D: Start screening for complications at time of diagnosis:
 - \circ Yearly Dilated Eye Exam
 - Yearly Albumin:Cr ratio & Serum Creatinine
 - Yearly foot exam (ask the patient to examine feet, routinely)
 - \circ Other screening tests if clinically indicated
- T1D: The same but start screening 5 years after the time of diagnosis


Years of type 2 diabetes

DCCT: Type 1 Diabetes & Complications

□ Similar to UKPDS but in patients with T1D

"Would glucose control ameliorate the long-term complications of diabetes?

Chronic Complications of Diabetes (T1D)

Skyler JS. Endocrinol Metab Clin North Am. 1996;25:243-254.

Other Complications of Diabetes

- Gastroparesis
- Recurrent Infections
- Dental diseases
- Hearing loss
- □ Fatty Liver Disease
- Osteoporosis
- Psychological disorders

How to Reduce the Risk of Diabetes Complications

Early Diagnosis & Routine Screening Tests

- □ Maintain a good glucose control (A1C around 7%)
- □ Maintain a good BP control (ACE or ARB) (< 140/90)
- □ Maintain a good control of lipid (statin)
- □ Smoking cessation
- Aspirin (only in patient with high CVD risk)
- Physical activity

Thank you

Moh.alsofiani@gmail.com

