

EPILEPSY

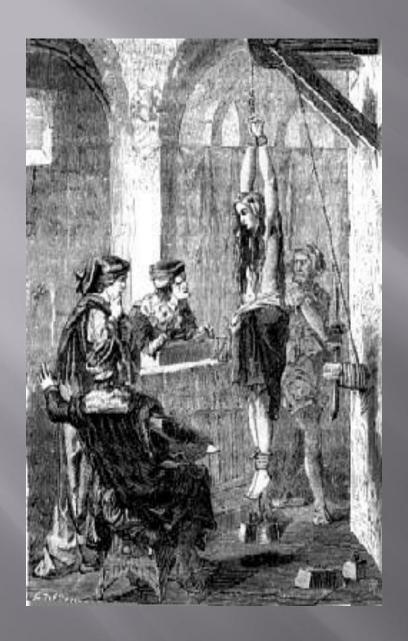
Dr. Bandar Aljafen, MD

Associate Professor Consultant Neurologist and Epileptologist

Objectivs

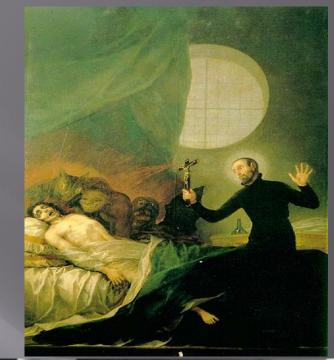
- By the end of this lecture you should be able to know:
 - Definition of epileptic seizure, provoked seizure and epilepsy.
 - Status epilepticus.
 - Frequent causes of seizure and risk factors.
 - Triggers of seizures in epileptic patient.
 - Epilepsy classification and seizure semiology.
 - DDX of SZ
 - Seizure vs syncope
 - Approach to seizure disorder (Hx, Ex, inx)
 - Medical and surgical management of epilepsy.
 - How to select antiepileptic medications.
 - When to stop antiepileptic medications.

History


- One of the earliest descriptions of a secondarily generalized tonic-clonic seizure was recorded over 3000 years ago in Mesopotamia.
- The seizure was attributed to the god of the moon.
- Epileptic seizures were described in ancient cultures, including those of China, Egypt, and India.

History

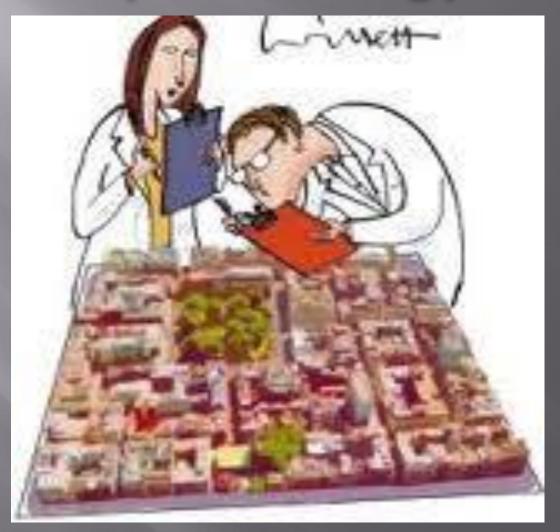
- Hippocrates wrote the first book about epilepsy almost 2500 years ago.
- Hippocrates in his book On Sacred Disease described the first neurosurgery procedure referring that craniotomy should be performed at the opposite side of the brain of the seizures, in order to spare patients from "phlegma" that caused the disease.



• In 18th and 19th century, medicine made important advances and research on epilepsy was emancipated from religious superstitions such as the fact that epilepsy was a divine punishment

What is epilepsy?

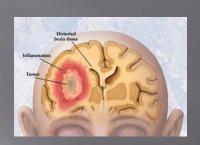
- Epileptic seizure: transient occurrence of signs and symptoms of sudden changes in neurological function due to abnormal excessive ,synchronous discharge of cortical neurons ..
- Provoked seizures: is occur in the setting of acute medical and neurological illnesses in people with no prior history of seizures
- Epilepsy: recurrent (two or more) unprovoked seizures.
- Seizure is a symptom of epilepsy.

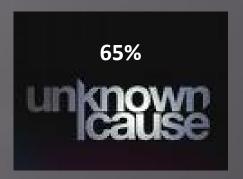


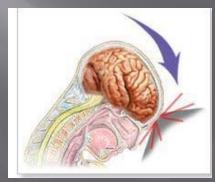
Status Epilepticus

- Status epilepticus (SE): defined as recurrent convulsions that last for more than 30 minutes (5 min in the last update) and are interrupted by only brief periods of partial relief.
- (SE): is a serious, potentially life-threatening.
- Any type of seizure can lead to SE, the most serious form of status epilepticus is the generalized tonicclonic type.

Epidemiology

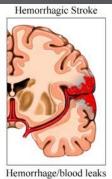

Epidemiology and course

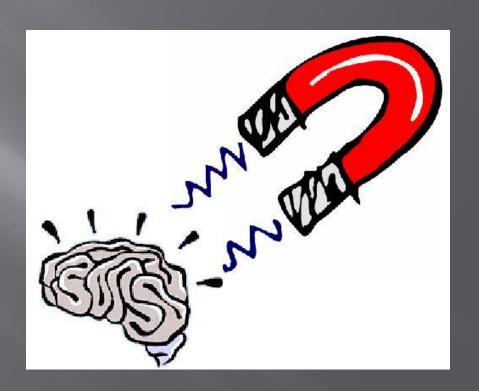

- 5% of the population suffer a single sz at some time
- 0.5-1% of the population have recurrent sz = EPILEPSY
- 70% = well controlled with drugs (prolonged remissions)
- 30% epilepsy at least resistant to drug treatments = INTRACTABL EPILEPSY.



Risk Factors for Epilepsy

- Febrile convulsion
- Perinatal insult
- CNS infection
- CNS mass lesion
- Family history of epilepsy
- Head injury
- Abnormal gestation or delivery
- Developmental delay
- Stroke (ischemic or hemorrhagic)





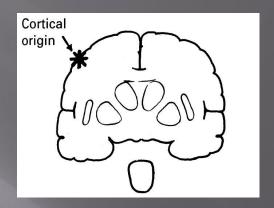
Ischemic Stroke

into brain tissue

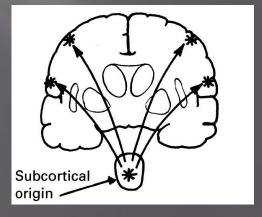
Triggers for seizure:

- Poor compliance
- Sleep deprevation
- Stress
- Alcohol
- Infection
- Menstrual cycle

DANGER



Seizure Classification



Epilepsy - Classification

- Focal seizures account for 80% of adult epilepsies
- Simple partial seizures
- Complex partial seizures
- Partial seizures secondarilly generalised

- Generalised seizures
- Unclassified seizures

INTERNATIONAL CLASSIFICATION OF SEIZURES 1981

- Partial Seizures (start in one place)
- Simple (no loss of consciousness of memory)
 - Sensory
 - Motor
 - Sensory-Motor
 - Psychic (abnormal thoughts or perceptions)
 - Autonomic (heat, nausea, flushing, etc.)
- Complex (consciousness or memory impaired)
 - With or without aura (warning)
 - With or without automatisms
- Secondarily generalized
- Generalized Seizures (apparent start over wide areas of brain)
 - Absence (petit mal)
 - Tonic-clonic (grand mal)
 - Atonic (drop seizures)
 - Myoclonic
 - Other Unclassifiable seizures

Updated INTERNATIONAL CLASSIFICATION OF SEIZURES

ILAE 2017 Classification of Seizure Types Expanded Version 1

Focal Onset

Aware

Impaired Awareness

Motor Onset

automatisms atonic ² clonic epileptic spasms ² hyperkinetic myoclonic tonic

Nonmotor Onset

autonomic behavior arrest cognitive emotional sensory

focal to bilateral tonic-clonic

Generalized Onset

Motor

tonic-clonic
clonic
tonic
myoclonic
myoclonic-tonic-clonic
myoclonic-atonic
atonic
epileptic spasms
Nonmotor (absence)

Monimotor (absence

typical atypical myoclonic eyelid myoclonia

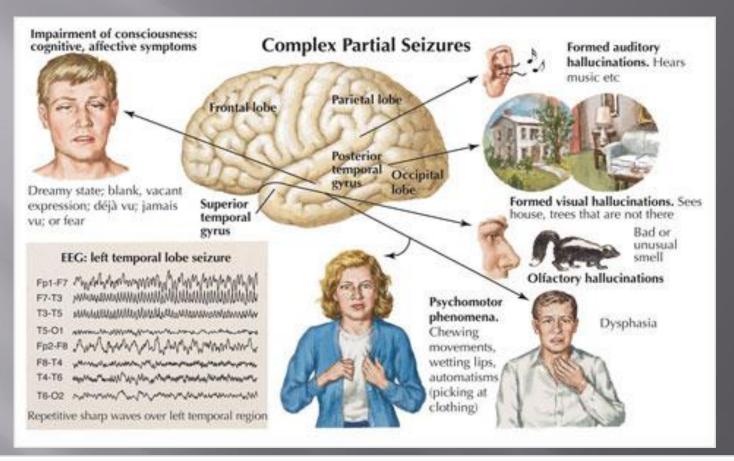
Unknown Onset

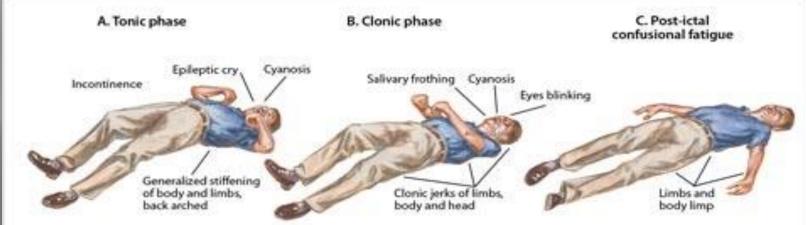
Motor

tonic-clonic epileptic spasms

Nonmotor

behavior arrest


Unclassified 3



Seizure Semiology

VEDIO

Summary of typical signs on video EEG

Typical EEG sign	Localizes to	
Oral automatisms	Temporal lobe	
Hypermotor automatisms	Frontal lobe	
Manual picking automatisms	Temporal lobe	
Visual hallucinations	Occipital lobe	
Auditory hallucinations	Temporal neocortex (Heschl's Gyrus)	
Olfactory hallucinations	Mesial temporal lobe	
Nystagmus, eye blinking, eye pulling sensation	Occipital lobe	
Ictal amaurosis	Occipital lobe	
Tonic arm elevation	Supplementary motor area	
Epigastric aura	Temporal lobe	
Throat tightening sensation	Insula	
Ictal pain	Parietal lobe	
Somatosensory sensations	Postcentral gyrus or supplementary motor area	
Clonic activity	Precentral gyrus	
De-ja vu or jamais vu aura	Mesial temporal lobe	
Fear	Most often temporal, but also frontal	

DDx for seizure attacks

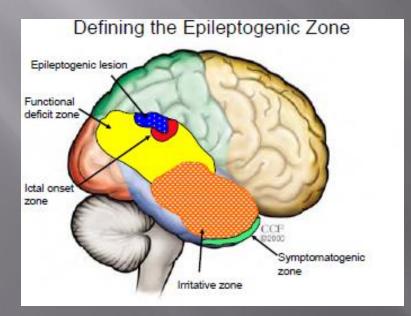
- TIA
- Syncope
- Migraine
- Movement disorders
- Panic attack
- Psychogenic seizure

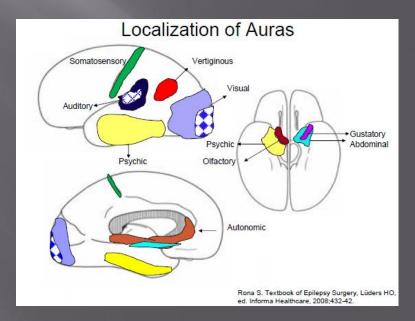
Seizure vs syncopy

Comparison of clinical features in cardiogenic syncope versus seizure disorders

Clinical features	Cardiogenic syncope	Seizure disorders
Loss of consciousness	Typical	Common
Episode duration	Seconds	Minutes
Involuntary movements	Common	Typical
Amnesia	Yes	Yes
Arrhythmia	Common	Rare*
Electroencephalogram	Slow waves Flattening	Focal or general spike activity
Responsive to AEDs	No	Often
Short term mortality†	High	Low

Seizure approch


- Non invasive tests
 - Clinical history
 - MRI
 - video EEG
 - neuropsychological evaluatic
 - nuclear medicine
- Invasive monitoring



Clinical history

Questions that help clarify the type of seizure include the following:

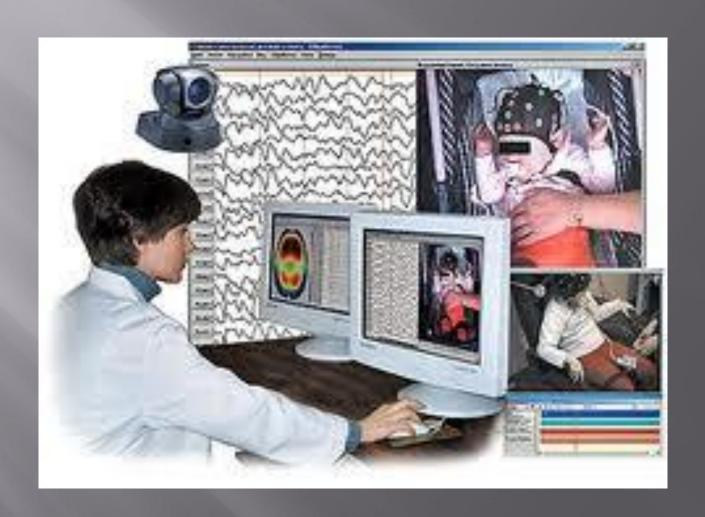
- Was any warning noted before the spell?
- What did the patient do during the spell?
- Was the patient able to relate to the environment during the spell?
- How did the patient feel after the spell? How long did it take for the patient to get back to baseline condition?
- How long did the spell last?
- How frequent do the spells occur?
- Are any precipitants associated with the spells?

Investigations

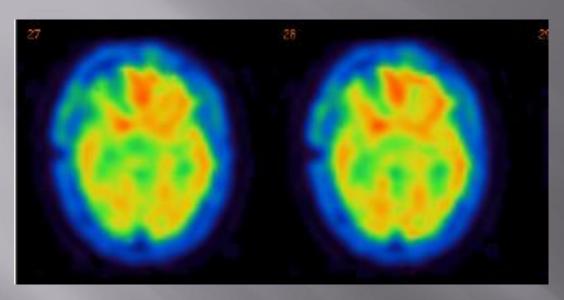
MRI

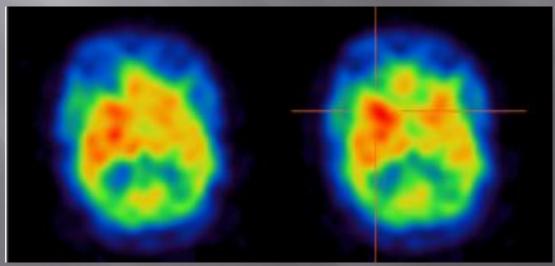
- Lesional
 - Tumor
 - Vascular
 - Trauma
 - Developmental
 - Mesial TemporalSclerosis

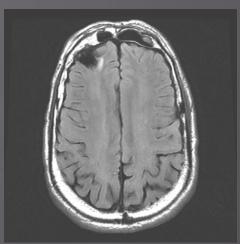
Non lesional

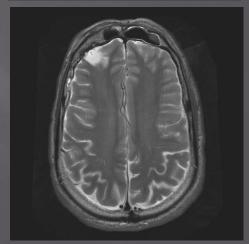


EEG www.www.




VEM





Nuclear Medicine

Cognitive Testing Neuropsychology

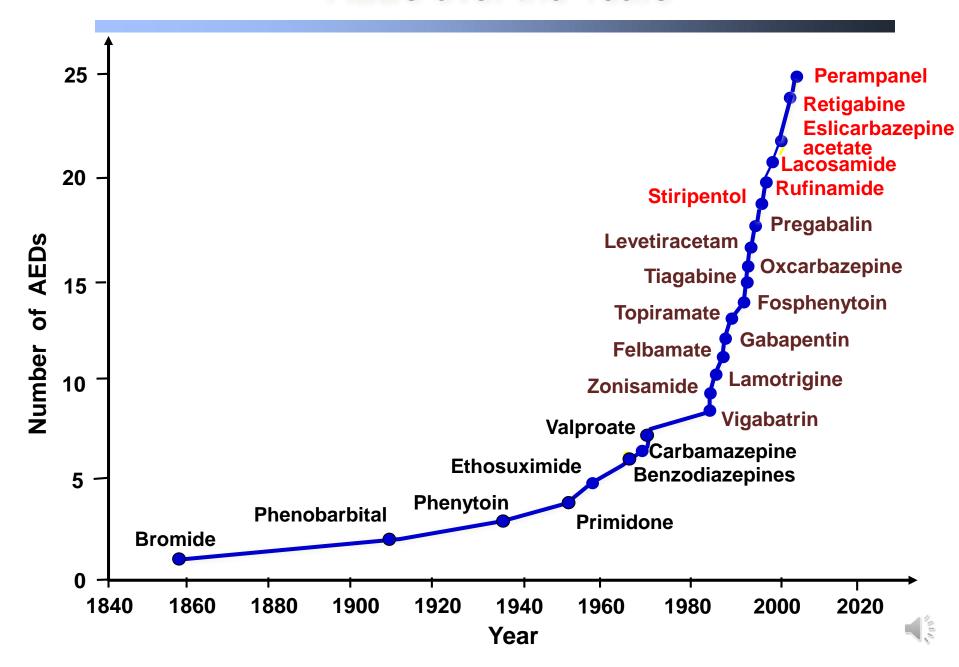
Intelligence

- Memory
 - Verbal
 - Visual

Language

Treatment

Medical



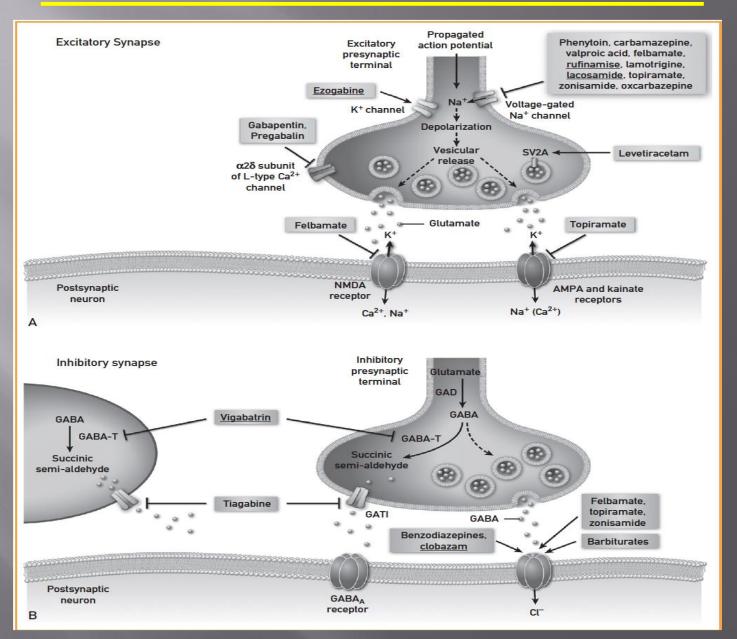
Surgical

AEDs over the Years

Mechanism of Action

Current antiepileptic drugs are thought to act mainly by two main mechanisms:

Mechanism of Action


- Reducing electrical excitability of cell membranes, possibly through inhibition of sodium channel.
- Enhancing GABA. This may be achieved by
 - inhibiting GABA-transaminase

Or

by drugs with direct GABA-agonist properties.

Mechanism of action of different AED

Clinical Uses of Antiepileptic Drugs

- Tonic-clonic (grand mal) seizures: phenytoin, valproate. Use of single drug is preferred when possible, because of risk of pharmacokinetic interactions.
- Partial (focal) seizures: carbamazepine, valproate; clonazepam or phenytoin are alternatives.
- *Absence seizures (petit mal)*: ethosuximide or valproate.
- Myoclonic seizures: valproate or clonazepam.

GENERALIZED- ONSET TONIC- CLONIC	FOCAL	TYPICAL ABSENCE	ATYPICAL ABSENCE, MYOCLONIC, ATONIC	
First-Line				
Valproic acid Lamotrigine Topiramate	Lamotrigine Carbamazepine Oxcarbazepine Phenytoin Levetiracetam		Valproic acid Lamotrigine Topiramate	
Alternatives				
Zonisamide ^a Phenytoin Carbamazepine Oxcarbazepine Phenobarbital Primidone Felbamate	Topiramate Zonisamide ^a Valproic acid Tiagabine ^a Gabapentin ^a Lacosamide ^a Phenobarbital Primidone Felbamate	Lamotrigine Clonazepam	Clonazepam Felbamate	
^a Δs adjunctive therapy				

^aAs adjunctive therapy.

Basic rules for drug treatment

- Drug treatment should be simple, preferably using one anticonvulsant (monotherapy). "Start low, increase slow".
- Add-on therapy is necessary in some patients...
- If patient is seizure-free for three years, withdrawal of pharmacotherapy should be considered.
- It should be performed very carefully and slowly! 20% of pts will suffer a further sz within 2 yrs.

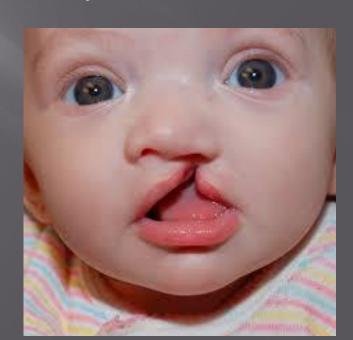
Seizure Freedom with AED use

- 1st drug ----- seizure free (47%)
- 2nd drug----- seizure free (14%)
- 3rd drug----- seizure free (3%)
- Medication resistant 36%

Drug resistant epilepsy

- Failure of at least TWO antiepileptic medications to completely control seizures
 - Appropriately chosen for seizure type
 - Taken as prescribed
 - Well tolerated (not failed due to side effects)

Epilepsy treatment and pregnancy


- The risk of <u>teratogenicity</u> is well known (~5%), especially with valproates, but withdrawing drug therapy in pregnancy is more risky than continuation.
- All antiepileptic medications are not safe, however lamotrigine is the safest.
- Epileptic females must be aware of this problem and thorough family planning should be recommended.
- Over 90% of pregnant women with epilepsy will deliver a normal child.

Antiepileptic medication adverse effect

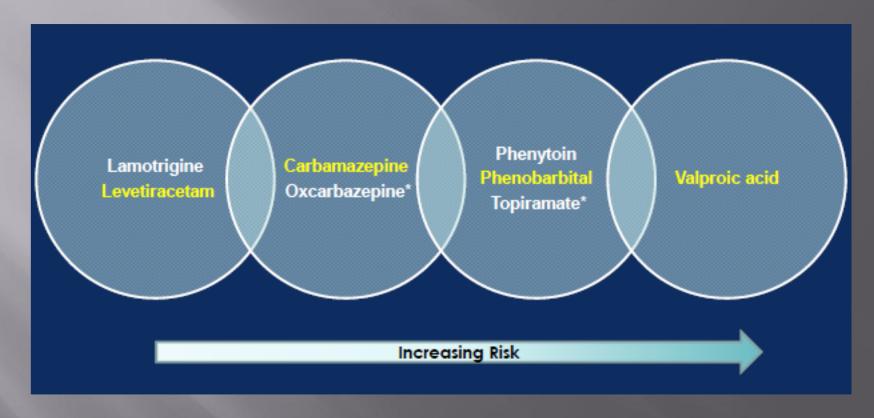
Risk of in utero AED exposure

- Major Congenital Malformations (MCM)
 - 1.6 2.1% in general population
 - Studies comparing to WWE on no AEDs
 - Increased w/ AEDs in 2 Class II studies (OR 3.9 (1.29-11.9))
 - No increased risk w/AEDs in 1 Class I study
- Minor anomalies
- Small for Gestational Age (SGA)
- Developmental Disability
- Microcephaly

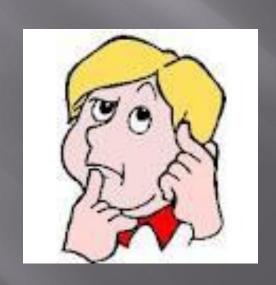
Spina bifida is a neural tube defect (NTD) involving incomplete formation of the spine

Stevens-Johnson syndrome

Gingival Hyperplasia Induced by Phenytoin


New Eng J Med. 2000:342:325.

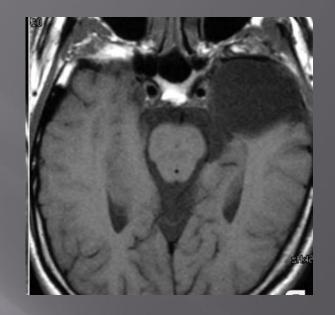
After Withdrawal of Phenytoin

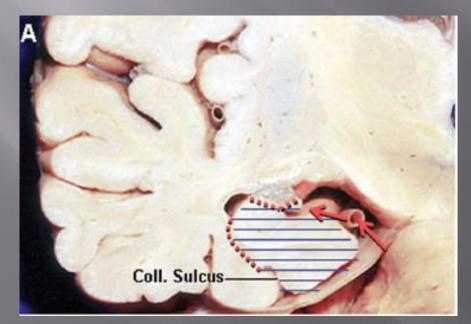


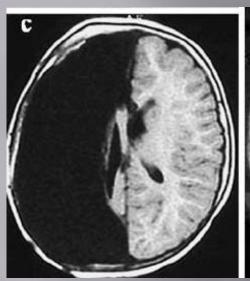
AED	Major or Potentially Life Threatening	Minor Side Effects	
Phenobarbital	Hepatotoxicity, Steven's-Johnson	Sedation, depression, behavioral effects,	
	Syndrome, connective tissue disorders	osteopenia	
Phenytoin (Dilantin)	Pancytopenia, hepatotoxicity, Steven's	Dizziness, ataxia, gum hyperplasia, hirsuitism,	
	Johnson Syndrome	neuropathy, osteopenia	
Carbamazepine (Tegretol)	Agranulocytosis*, aplastic anemia*, Dizziness, ataxia, hyponatremia, osteopeni hepatotoxicity, Steven's-Johnson Syndrome		
Valproate (Depakote)	Hepatoxicity*, thrombocytopenia, pancreatitis*	Weight gain, alopecia, tremor, GI upset, osteopenia	
Felbamate (Felbatol)	Aplastic anemia*, hepatotoxicity*	Anorexia, insomnia	
Gabapentin (Neurontin)	None	Sedation, weight gain	
Lamotrigine (Lamictal)	Stevens-Johnson Syndrome*	Dizziness, ataxia, insomnia	
Topiramate (Topamax)	Kidney stones, oligohidrosis, glaucoma	Parasthesias, cognitive impairment, weight loss	
Tiagabine (Gabatril)	Spike-wave stupor	Tremor, sedation, impaired concentration	
Levetiracetam (Keppra)	None	Sedation, behavioral changes	
Oxcarbazepine (Trileptal)	Steven's-Johnson Syndrome	Ataxia, diplopia, hyponatremia	
Zonisamide (Zonegran)	Kidney stones, oligohidrosis, rash	Parasthesias, weight loss	
Pregabalin (Lyrica)	None	Sedation, weight gain	
Lacosamide (Vimpat)	None	Dizziness, nausea, fatigue	
Rufinamide (Banzel)	None	Somnolence, dizziness, nausea	
Vigabatrin (Sabril)	Peripheral visual field defect	Anemia, neuropathy, weight gain	

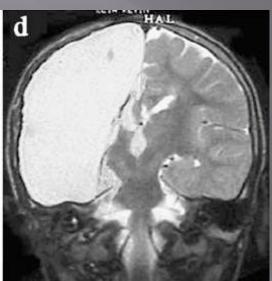
Teratogenic Risk Profiles of Antiepleptic Drugs

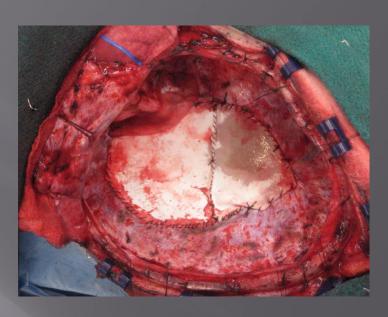

When to stop antiepileptic medications?

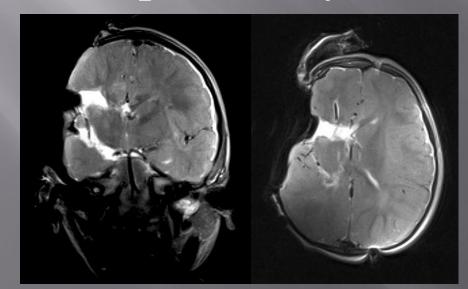

Surgery



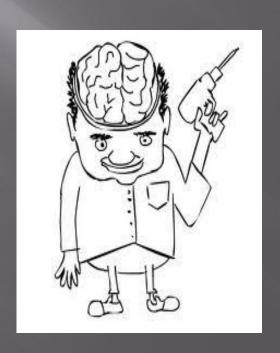




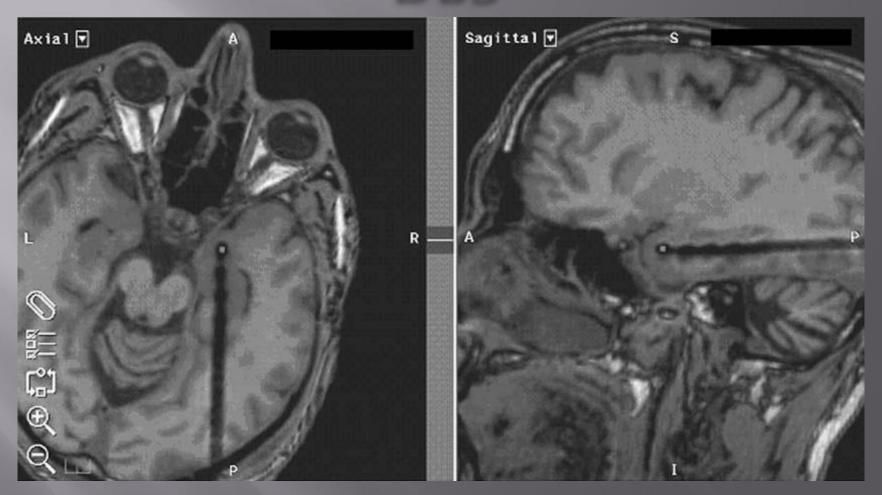



Hemispherectomy

Hemispherotomy



If my patient is not a good candidate for surgery?



VNS

DBS

