MED439

Hypertension

C

$\star \quad$ To be able to recognize the definition of hypertension.
\star To be able to identify the stages of hypertension (ACC/AHA -European society of cardiology/European society of hypertension (ESC/ESH).
\star To find out the complication of hypertension.
$\star \quad$ To learn how to measure blood pressure.
\star To acquire knowledge on how to treat hypertension.

Dr: What I want you to know :

- How to measure BP in a good setting?

Color index

- How to diagnose HTN? and when to diagnose "numbers"?
- When to start treating high BP?
- How to treat? and what is the target of treatment?
- Common complications of the medications
- Common complications of HTN

Females slides
Males slides
Doctor's notes ${ }^{438}$
Doctor's notes ${ }^{439}$
Text book
Important
Golden notes

Dr: "Prevalence is not something for you to remember"

- The global prevalence of hypertension was estimated to be 1.13 billion in 2015
- The 4th most common cause of death worldwide.
- 20% of deaths worldwide are related to hypertension.
- The overall prevalence of hypertension in adults is around $30-45 \%$.
- The onset of primary hypertension ranges between 25 to 55 years, mainly in 40 to $\mathbf{5 0}$. ${ }^{1}$.
- The overall prevalence of hypertension in Saudi is 25.5-31.4\%.
- More common with advancing age.
- Prevalence of $>60 \%$ in people aged >60 years.
- Only $\mathbf{7 2 \%}$ are aware of their disease ${ }^{2}$.
- 55% of participants on medication for hypertension had their blood pressure uncontrolled ${ }^{3}$.

〔 Mechanism of Blood Pressure:

Recall from cardio physiology: BP= CO (SV x HR) x SVR. So increasing CO or SVR will increase BP. What are the determinants of SVR?

1. Loss of Elasticity: Vessels in old ppl are stiff and rigid due to loss of elasticity so it doesn't Vasodilate $\rightarrow \uparrow B P$
2. Sympathetic activation: e.g. Anxiety and stress $\rightarrow \uparrow B P$
3. Parasympathetic activation: When baroreceptors in carotid are stimulated \rightarrow Activate Beta-receptors \rightarrow vasodilation $\rightarrow \downarrow \mathrm{BP}$
4. Hormones: Think of adrenal gland hormone and angiotensin II. Angiotensin II is the most important hormone and has the strongest effect.
5. Endothelial factors: Release endothelin-1 (vasoconstrictor) in response to damage of blood vessels to limit the bleeding. It also releases NO (Vasodilator)

1: if patient is younger than 40 year old, HTN is usually secondary.
2: Because HTN is a silent killer, mostly asymptomatic
3: Either due to noncompliance because of the side effects of the drugs, or the fact that they need more than one drug to control it .

A. Primary (Essential) Hypertension (90-95\%):

- No cause can be found.

Risk Factors

Modifiable

- Obesity-metabolic syndrome
- Unhealthy diet:
- Excessive salt intake ${ }^{1}$
- low potassium intake ${ }^{2}$
- Excessive alcohol intake
- Polycythemia \rightarrow High blood volume ((TSV)
- Lack of exercise ${ }^{3}$
- Non-steroid anti-inflammatory drugs ${ }^{4}$

Non-Modifiable

- Family history of essential HTN
- Aging
- Race (African american)* \& genetic
*They may carry genes that increase sensitivity to salt, which also increases the risk of high blood pressure.

Caffeine and smoking (both will increase epinephrine) which increase the BP acutely ${ }^{5}$ but are not risk factors for the development of chronic essential HTN. Hence why you shouldn't drink coffee or smoke for at least half an hour before measuring $B P$ ($B c$ it will temporarily raise $B P$)

B. Secondary Hypertension (5-10\%):

Primary renal disease
e.g. Chronic kidney disease (CKD), Glomerulonephritis,
Polycystic kidney disease (PCKD) \rightarrow "enlarged kidneys" $\rightarrow \uparrow$ renin $\rightarrow \uparrow$ angiotensin $\| \rightarrow$ vasoconstriction $\rightarrow \uparrow$ BP

Sleep apnea syndrome
 \hbar

Highly recommend you read about this topic!! Click here

Breathing-related sleep disorder and is typically associated with obesity. Have an increased risk of hypertension, heart failure, myocardial infarction and stroke.

Pheochromocytoma

Increase production of adrenaline from adrenal gland
Signs \& Symptoms: Episodic Sudden attack, anxiety, tachycardia, headache, pale, sweating and hypertensive

Renovascular disease

The most common cause of 2 ry HTN. Lead to renal ischemia $\rightarrow \uparrow$ RAAS $\rightarrow \uparrow$ Angiotensin || \rightarrow vasoconstriction. e.g. Renal artery stenosis (RAS). In RAS you will hear abdominal bruits on auscultation.

Primary hyperaldosteronism

AKA Conn's syndrome. Excess of aldosterone due to adrenal hyperplasia or adrenal adenoma. Aldosterone causes Na -water retention and hypokalemia. often asymptomatic and found to have hypertension at routine health checks.

Coarctation of the aorta

Narrowing of aorta.
Signs and Symptoms: Difference in
radio-radial artery, BP in leg will be lower than the arm (Normally leg has higher pressure), Radio-femoral delay, Usually young and present with claudication

Oral Contraceptives ${ }^{6}$

As they \uparrow salt and water retention, \uparrow weight and $\uparrow p r o d u c t i o n ~ o f ~$ angiotensinogen.
Other drugs: corticosteroids, sympathomimetic agents, NSAIDs and Carbenoxolone

Cortisol has mineralocorticoid activity \rightarrow $\mathrm{Na}+$ and H 2 O retention. Typical clinical features include central obesity, easily bruisable skin, abdominal striae, 2ry hypertension, hyperglycemia, and proximal muscle weakness.

Other endocrine

e.g. Hyperparathyroidism,

Thyrotoxicosis, Acromegaly, primary hypothyroidism, congenital adrenal hyperplasia (CAH) due to
11-B-hydroxylase or
17-a-hydroxylase deficiency

3: Actually even those who don't lose weight but exercise may have normal BP.
4: causes salt and water retention.

EXTRA Secondary HTN: Clinical and diagnosis

Common causes

Renal parenchymal disease	History of UTI or obstruction, hematuria, analgesic abuse, family history of polycystic kidney disease	Abdominal mass (polycystic kidney disease)	Protein, erythrocytes or leukocytes in urine, decreased GFR	Renal ultrasound	Detailed work-up for kidney disease
Renal artery stenosis	Fibromuscular dysplasia: Early-onset hypertension (especially in women). Atherosclerotic plaque: Abrupt-onset hypertension, worsening or difficult to treat; flash pulmonary edema	Abdominal bruit	Difference of $>1.5 \mathrm{~cm}$ in length between the two kidneys (Renal ultrasound), rapid deterioration in renal function (spontaneous or in response to RAA blockers)	Renal duplex doppler ultrasonography	Renal arteriogram: Catheter angiography (intra-arterial digital subtraction angiography) "GOLD STANDARD" MRI angiography, spiral CT,
Primary aldosteronism	Muscle weakness; family history of early-onset hypertension and cerebrovascular events age <40 years	Arrhythmias (if severe hypokalemia)	hypokalemia (spontaneous or diuretic induced); incidental discovery of adrenal masses	Aldosterone:renin ratio under standardized conditions (correction of hypokalemia and withdrawal of drugs affecting RAA system)	Confirmatory test (oral sodium loading, saline infusion, fludrocortisone suppression, or captopril test); adrenal CT scan; adrenal vein sampling

Uncommon causes

Pheochromocyt

oma

paroxysmal HTN;

headache, swelling, sweating, palpitations, pallor; positive family history

Skin stigmata of neurofibromatosis (cafe au lait spots, neurofibromatosis)

Incidental discovery of adrenal masses (some cases are extra-adrenal)

Measurement of urinary fractionated metanephrines or plasma-free metanephrines

CT or MRI of abdomen and pelvis;
${ }^{123}$-labelled meta-iodo benzyl-guidance scanning; genetic screening for pathogenic mutations

Cushing's
syndrome
weight gain, polyuria, polydipsia, psychological disturbances

Typical body habitus (Central obesity, moon face, buffalo hump, red stria, hirsutism)

Hyperglycemia
Hyperlipidemia

24h urinary
 cortisol excretion

Dexamethasone suppression test

Pathophysiology of Hypertension

4 Renin-Angiotensin-Aldosterone system:

The RAAS is a hormone system that regulates BP and fluid balance, this system is controlled by the renal blood flow, when BP drops and/or plasma volume gets depleted the renal perfusion will decrease, this will stimulate the juxtaglomerular apparatus to release Renin into the circulation, Renin then cleaves Angiotensinogen -another protein from the liver- into Angiotensin I which will continue in the circulation to go to the Lungs and be converted to Angiotensin II by an enzyme called angiotensin converting enzyme (ACE),
Angiotensin II then will cause:

- Sympathetic activation
- $\mathrm{Na}-\mathrm{Cl}$ and water retention
- Arteriole vasoconstriction
- ADH secretion which will cause water reabsorption All these effects are to compensate the Low BP and Low blood volume.
RAAS is inhibited when body volume and BP are normal or high.

〔Classification of Blood Pressure Level

American heart association classification

BP category	Systolic BP	and/or	Diastolic BP
Normal	$<120 \mathrm{mmHg}$	and	$<80 \mathrm{mmHg}$
Elevated	120-129 mmHg	and	$<80 \mathrm{mmHg}$
Hypertension			
Stage 1	130-139 mmHg	or	80-89 mmHg
Stage 2	$\geq 140 \mathrm{mmHg}$	or	$\geq 90 \mathrm{mmHg}$

Notes:

- Individuals with SBP and DBP in 2 categories should be designated to the higher BP category.
- Blood pressure should be based on an average of ≥ 2 careful readings obtained on ≥ 2 occasions.

European Society of Nephrology Classification of Blood Pressure Level (Not used anymore)

Category	Systolic BP (mmHg)	Diastolic BP (mmHg)
Optimal blood pressure	<120	<80
Normal blood pressure	<130	<85
High-normal blood pressure	$130-139$	$85-89$
Grade $\mathbf{1}$ hypertension (mild)	$\mathbf{1 4 0 - 1 5 9}$	$\mathbf{9 0 - 9 9}$
Grade 2 hypertension (moderate)	$160-179$	$100-109$
Grade 3 hypertension (severe)	≥ 180	≥ 110
Isolated systolic hypertension	>140	<90

Blood Pressure Measurement

Prior to measure : make sure that the patient didn't drink alcohol, smoked or exercised.

Types of Devices		Definition of HTN	
		SBP	DBP
Non-automated device [non-AOBP]	Mercury Type Not used anymore	$\begin{gathered} \geq 140 \\ (\geq 130 \mathrm{ACC} / \mathrm{AHA}) \end{gathered}$	$\begin{gathered} \geq 90 \\ (\geq 80 \mathrm{ACC} / \mathrm{AHA}) \end{gathered}$
	Aneroid Type		
Half automated device	e		
Automated Device	Digital Type		
Ambulatory $\mathbf{B P}^{\mathbf{1 , 2 , 3}}$	Day-time (awake)	≥ 135	≥ 85
	Night-time (sleep)	≥ 120	≥ 70
	24h	≥ 130	≥ 80
Home BP Monitoring (HBPM)	Arm, Wrist, Finger (Finger and/or wrist BP measuring devices are not recommended) Not accurate, used in emergency only if others are not available or in obese patients	≥ 135	≥ 85
AOBP (Automated office blood pressure) The best and most accurate device	Recommended method. (is the preferred method of performing in-office BP measurement)	≥ 135	>85

Blood Pressure Measurement

Observe the following to obtain an accurate BP reading:

- Apply to adults on no antihypertensive medications and who are not acutely ill.
- If there is a disparity in category between the systolic and diastolic pressures, the higher value determines the severity of the hypertension. ALWAYS one abnormal reading (either systolic or diastolic) is enough to say pt has HTN e.g. If systolic is 120 (Normal) and and diastolic is 90 (High), then the pt is said to have HTN because diastolic is high. Another example: if systolic is 150 (High) and diastolic is 70(Normal) the pt is considered to have HTN
- Measure blood pressure to arm the high reading. Same goes for arms e.g. if $B P$ is normal in left arm but high in right, we go with the right arm reading.

Tips for Office blood pressure measurement:

Allow the patients to sit for 3-5 minutes before beginning BP measurements, Back straight and arm supported at heart level. Not smoking or taking caffeine for 30 mins

Take at least two BP measurements, spaced 1-2 min apart, and additional measurements if the first two are quite different. Consider the average $B P$ if deemed appropriate.
use a standard bladder (12-13 cm wide and 35 cm long) A larger bladder for larger arm (circumference $>32 \mathrm{~cm}$). The bladder of the pressure cuff should encircle at least 80% of the upper arm^{1}

Steps in measuring BP:

> Measure BP in sitting and standing position in elderly subjects and diabetic patients² Use phase I and V (disappearance) Korotkoff
> sounds to identify systolic and diastolic BP, respectively.

Place the cuff at the heart
level, whatever the position of the patient.
Measure BP in both arms at first visit to detect possible differences. In this instance, take the arm with the higher value as the reference.

[^0]1: If it's too small it may cause false positive high $\mathbf{B P}$, and if it is too big it may cause false negative low BP.

Hypertensive
crisis

Hypertensive
Urgency
"White Coat"
Hypertension
(Pseudo-HTN)

Hypertensive Emergency

- Severe hypertension (SBP >180-220 mm Hg or DBP above $\mathbf{1 2 0} \mathbf{~ m m H g}$) WITH end organ damage (MI, STROKE, AKI, CHF) "troponin, creatinine increases"
- If the pt left untreated he may present with stroke, sudden MI, Arrhythmia, sudden death. Admit to ICU and treat with IV antihypertensive medication.

Malignant (Accelerated) Hypertension ${ }^{\mathbf{1}}$ (New name)

- Systolic BP >180-220 mm Hg or diastolic BP above 110-120 mmHg with encephalopathy, retinal hemorrhages, exudates, or papilledema.
- Severe hypertension (systolic BP $>180-220 \mathrm{~mm} \mathrm{Hg}$ or diastolic blood pressure above $110-120 \mathrm{mmHg}$) in asymptomatic patients with no evidence of target organ damage.
- There is no proven benefit from rapid reduction in BP in asymptomatic patients who have no evidence of acute end-organ and are little short-term risk.
- The goal of therapy is with these cases is to reduce BP within 24 hours.
- Could be because the patient skipped a dose or emotional factors (e.g. Stress) or certain food
- Treatment is oral antihypertensive. No admission needed
- A phenomenon in which patients exhibit a blood pressure level above the normal range, in a clinical setting, though they do not exhibit it in other settings
- Approximately 20 to 25% of patients with mild office hypertension
- More common in elderly.
- If clinic BP measurements show borderline levels of BP or if white coat hypertension is suspected, then ambulatory measurement or home-based measurements may be of value in confirming the diagnosis.
- Hypertensive Crises necessitate immediate therapy to decrease BP within minutes to hours. usually admitted to an intensive care unit for continuous cardiac monitoring.
- However, it is unwise to reduce the BP too rapidly, since this may compromise tissue perfusion due to altered autoregulation and can lead to cerebral damage including occipital blindness, renal and retinal ischaemia or MI, Even in the presence of cardiac failure or hypertensive encephalopathy, a controlled reduction to a level of about $\mathbf{1 5 0 / 9 0} \mathbf{~ m m H g}$ over a period of 24-48 hours is ideal.
- In most cases, the aim is to reduce the diastolic BP to $100-110 \mathrm{mmHg}$ over $24-48$ hours. This is usually achieved with oral medication, such as amlodipine. The BP can then be normalized over the next 2-3 days.
- What is the best first line treatment for hypertensive crisis? IV labetalol is usually the best medication
- Equally acceptable forms of therapy for acute hypertensive crises are:
- Enalapril
- CCBs: diltiazem, verapamil
- Esmolol
- Hydralazine
- Peripheral dopamine receptor antagonist: fenoldopam

Diagnosis

Clinical presentation

- Most common presentation : asymptomatic but may also present with headache, epistaxis, chest discomfort ${ }^{1}$, Symptoms of complication (e.g. Stroke AF).
- We don't diagnose HTN based on history or symptoms, the diagnosis is made at a routine physical examination or when a complication arises. Reflecting this fact, a BP check is advisable every 5 years in adults over 40 years of age to pick up occult hypertension.

Physical examination

1) Confirm the diagnosis of HTN, by obtaining accurate, representative BP measurements
2) Detect causes of secondary HTN.
3) Assess other risk factors and quantify cardiovascular risk using the calculator (explained in page 11).
4) Organ damage.
5) identify comorbidity that may influence the choice of antihypertensive therapy e.g. DM, Dyslipidemia.

Diagnosis

Screening

A. Every one year for persons with systolic and diastolic pressures below $<120 \mathrm{mmHg}$ and 80 mmHg .
B. Every 3-6 months for persons with systolic and diastolic pressures higher $>120 \mathrm{mmHg}$ and 80 mmHg .
C. For patients above 40 years of age, If they present to the clinic with mild to moderate elevation of BP, we can not diagnose them with hypertension directly. Mild to moderate elevation needs at least 3 visits and each visit 2 readings of BP. While if the patient present with severe elevation of BP, mostly they're hypertensive.

Laboratory tests

Optional Tests

(e.g. If you suspect CKD or pt has chronic HTN)

- ECG (to see if there's left ventricular hypertrophy):
A. V1,2,3: Deep S wave
B. V4,5,6: Tall R wave
C. Lead I,II: LAD
- Urinalysis: Proteinuria or hematuria. To check whether HTN causes renal dysfunction or not.
Electrolytes: Serum sodium, serum potassium, creatinine, or the corresponding estimated GFR, and calcium.
- Blood glucose, and hematocrit (Polycythemia)
- Lipid profile, after 9- to 12 -hour fast, that includes high density and low-density lipoprotein cholesterol, and triglycerides.
- Measurement of urinary albumin excretion or albumin/creatinine ratio.
- Chest X-ray: to detect cardiomegaly, HF, coarctation of the aorta.
- Ambulatory BP recording: To assess borderline or 'White coat' hypertension.
- Echocardiogram: to detect or quantify LVH
- Renal ultrasound: To detect possible renal disease.
- Renal angiography: To detect or confirm presence of renal artery stenosis
- Urinary catecholamines: To detect possible pheochromocytoma.
- Urinary cortisol \& dexamethasone suppression test: to detect possible cushing syndrome
- Plasma renin activity and aldosterone: to detect possible primary aldosteronism
- More extensive testing for identifiable causes is not generally indicated unless BP control is not achieved.

Management

When to treat? \star

- This is all after confirming the diagnosis (after making sure that this is the average BP reading in different settings or at home measurement)

BP (mmHg)	CVD risk			
$\mathbf{< 1 2 0 / 8 0}$	No	Lifestyle modifications	Drug therapy	

Cardiovascular risk :

- It is the risk of having CVD based on Heart Risk Calculator which depends on many factors such as: age, race, lipid profile, presence of DM, smoking.
- \quad So when the patient has BP of more than $130 / 80$ but less than $\mathbf{1 4 0 / 9 0}$, we calculate his risk of having CVD, if the percentage was less than $\mathbf{1 0 \%}$ we go for lifestyle modifications "non-pharmacological treatment" for the next 3-6 months, then we monitor BP again, if there was an improvement, lifestyle modifications should continue without drugs BUT if the BP still high we go for drug therapy.

- So , When to treat?
$\rightarrow \quad$ BP exceeding 130/80 WITH a CVD risk $\geq 10 \%$? YES (treat)
$\rightarrow \quad$ BP exceeding 130/80 and less that 140/90 but CVD risk < 10\%? (+/-)
$\rightarrow \quad$ Patients with BP $\geq 140 / 90$? YES "regardless of their CVD risk"

Antihypertensive drug treatment:
For essential HTN with no comorbidities
Initial choice of medication

Key notes:

- $A=A C E$ inhibitors.
- $B=$ angiotensin II receptor blocker (ARB).
- $\quad \mathrm{C}=$ Calcium channel blocker (CCB).
- $\mathrm{D}=$ Thiazide-like diuretic.

Aged under 55 years and caucasian

(A)- ACE Inhibitors

or
(B)- Angiotensin receptor blockers

Aged over 55 years or black
person of africa

(C)- Calcium Channel Blockers

or
(D)- Thiazide

BP target of less than $130 / 80 \mathrm{mmHg}$ is recommended "To reduce risks of complications".

- If $B P>\mathbf{2 0 / 1 0} \mathbf{~ m m H g}$ above goal (140/90), may start with 2 BP lowering medications $\rightarrow \mathbf{A}(B)+C$ or $\mathbf{A}(\mathbf{B})+\mathbf{D}$ (ONE PILL DUAL COMBINATION)
- DO NOT start with B-Blockers (Used as last option) Unless indicated by co-morbid condition
- DO NOT use ACEI and ARBs together

$\rightarrow \quad$ STEP 1: A(or B) or C (or D)

First-line therapy for patients under 55 years is an ACE inhibitor, such as enalapril, or a low-cost ARB, such as candesartan if ACEI is not tolerated (e.g. pt develops cough). In angina or young women of childbearing potential, treatment with beta-blockers may be preferred.
First line therapy for patients aged 55 years and above, and black African or Caribbean patients, is a calcium-channel blocker, such as amlodipine (a thiazide-like diuretic should be used in patients with heart failure or those who develop troublesome ankle oedema). If diuretic treatment is to be initiated or changed, offer a thiazide-like diuretic, such as chlorthalidone ($12.5-25.0 \mathrm{mg}$ once daily) or indapamide (1.5 mg modified-release once daily or 2.5 mg once daily) in preference to a conventional thiazide diuretic such as bendroflumethiazide or hydrochlorothiazide. For people who are already having treatment with bendroflumethiazide or hydrochlorothiazide and whose blood pressure is stable and well controlled, continue treatment with the bendroflumethiazide or hydrochlorothiazide.
$\rightarrow \quad$ STEP 2: A(or B) + C (or D)
If BP control is inadequate, then the combination of an ACE-inhibitor or ARB with a calcium-channel blocker is recommended (or a thiazide-like diuretic as above).
For black people of African or Caribbean family origin, consider an ARB in preference to an ACE inhibitor, in combination with a CCB.
$\rightarrow \quad$ STEP 3: A(or B) + C + D
Before considering step 3 treatment, review medication to ensure step 2 treatment is at optimal or best tolerated doses. At this point, Triple therapy of an ACE inhibitor or ARB with a calcium-channel blocker and a thiazide-like diuretic is recommended.
\rightarrow STEP 4: Same as step 3 + more diuretic or alpha- or beta-blocker.
If BP remains $>140 / 90 \mathrm{mmHg}$ on three agents, then the patient should be referred for specialist advice. In those with preserved renal function and resistant hypertension, spironolactone 25 mg daily can be added if the serum potassium is $\sim 4.5 \mathrm{mmol} / \mathrm{L}$. If the potassium is $>4.5 \mathrm{mmol} / \mathrm{L}$, an increased dose of thiazide-like diuretic can be used with monitoring of electrolytes (sodium and potassium) within 1 month and repeat as required thereafter. Alpha- or beta- blockers can be used if these measures are not effective.

Management

4 High Risk Group Therapy (Special Cases):

Condition
Preferred therapy

Congestive heart failure	Thiazide, ACEI, Aldosterone antagonist, BB
Post Myocardial Infarction	BB, ACEi
Diabetes mellitus with proteinuria	ACEi, ARBs, NO ACEIs are the first line management of diabetic hypertensive patients.
Diabetes mellitus without Proteinuria	Thiazide, CCB, ARBs, ACEi
Chronic kidney disease	ACEi, ARBs, Thiazide
Stroke	CCB+ACEi
Benign prostatic hyperplasia	a antagonists e.g. prazosin, terazosin, doxazosin
Pregnancy	Hydralazine (vasodilator), nifedipine (CCB), Aldomet (methyldopa), labetalol Oral labetalol is first-line therapy during pregnancy. Second Line agents are methyldopa and nifedipine. In breastfeeding, ACE inhibitors, beta-blockers and nifedipine are safe. Methyldopa should be avoided because of the risk of depression.
Mnemonic: Moms Love Healthy Newborn (Methyldopa, Labetalol, Hydralazine, nifedipine)	Mer

A Antihypertensive drug complications: rouhave otelltheot taboutthem

DRUG	Contraindication	ADR
Thiazide Diuretics	Gout	Hypokalemia
Beta-Adrenergic blockers	Asthma or COPD	Bradycardia
ACEI	Pregnancy, Renovascular disease	Hyperkalemia, Cough, Angioedema
Angiotensin II Receptor Blocker	Pregnancy	Hyperkalemia
Calcium Channel Blockers	AV-block, HF	Edema, Tachycardia, Bradycardia, Constipation, flushing, palpitations and fluid retention
Alpha-Adrenoceptor Antagonist	Urinary incontinence	1st dose postural hypotension,
Drugs with Central Sympatholytic Action	-	Drowsiness
Arteriolar Dilators	Tachycardia, Edema	

What is lifestyle modification?

lifestyle modification intervention	reduction in BP (mmHg)
Weight loss	$1 \mathrm{mmHg} /$ 1kg loss
Dash-type diet	11 mmHg
Reduce dietary sodium (1500 mg)	$5-6 \mathrm{mmHg}$
Increase dietary potassium (3500 mg)	$4-5 \mathrm{mmHg}$
Aerobic exercise $90-150$ min/week	$5-8 \mathrm{mmHg}$
Reduce/ stop alcohol intake	4 mmHg

- Weight loss: BMI $25 \mathrm{~kg} / \mathrm{m}$.
- DASS Diet: high consumption of vegetables and fruits, low-fat dairy.
- Limit alcohol intake
- Vit D replacement
- Regular physical exercise: 30 min of moderate-intensity aerobic exercise 5-7 days/week.
- Smoking cessation.
- Lifestyle modification can be really effective lowering BP down to 20 mmHg returning it to normal.

Super important:
NaCl (Salt restriction): $3000 \mathrm{mg} /$ day
READ (Sodium restriction): $1500 \mathrm{mg} / \mathrm{day}$
"SALT" OR "SODIUM" RESTRICTION.

4 Other treatment options:

- Hypertension renal denervation:

- A controlled trial of renal denervation for resistant hypertension. this blinded trial did not show a significant reduction of systolic blood pressure in patients with resistant hypertension 6 months after renal-artery denervation as compared with a sham control.
- RDN had significantly greater BP reductions vs sham control in both 24 -hour systolic ABPM ($4.0 \mathrm{mmHg}, \mathrm{p}<0.001$), and office systolic BP (6.6 $\mathrm{mmHg}, \mathrm{p}<0.001$).

Barostim

- An implanted device designed to activate baroreceptors to reduce blood pressure does not appear to reduce blood pressure.

Benefits of Lowering BP:

Dr: "You don't need to know the numbers"

- 2 mmHg decrease in mean systolic BP will lead to:
- 7% reduction in risk of ischemic heart disease mortality
- 10% reduction in risk of stroke mortality.
- Reduce the risk of cardiovascular events up to 10%
- Follow up and monitoring
- Patients should return for follow-up after 2-4 weeks and adjustment of medications monthly until the BP goal is reached
- More frequent visits for stage 2 HTN or with complication comorbid conditions
- Serum potassium and Cr monitored 1-2 times per year

Disease	Incidence reduction
Stroke	$35-40 \%$
Myocardial infarction	$20-25 \%$
Heart failure	50%
Renal failure	$35-50 \%$

Complications of Hypertension

Complications

1
Cardiac ${ }^{1}$
CAD, Arrhythmia (Atrial fibrilation), CHF, LVH, Sudden death

2
Cerebral
Ischemic/ Hemorrhagic Stroke, Alzheimer's disease, Cognitive imbalance

Renal disease

Vascular ${ }^{1}$
Aortic Dissection, Peripheral vascular disease, Hypertensive crisis urgency/ emergency

Hypertensive retinopathy: ${ }^{2}$

Grade	Description	
I	- Minimal narrowing and thickening of retinal arteries and increased reflectiveness ("Silver Wiring")	
II	- Arteriovenous nipping (yellow arrow): Narrowing of retinal arteries in conjunction with regions of focal narrowing. Produced when thickened retinal arteries pass over the retinal veins	
III	- Abnormalities seen in Grade III, plus flame-shaped retinal hemorrhages, hard exudates and cotton wool spots, as well as copper wiring of blood vessels. - Cotton wool exudates are associated with retinal ischemia or infarction.	
IV	- Abnormalities encountered in Grade I through III, as well as swelling of the optic nerve head and macular star. - There is blurring of the borders of the optic disk with hemorrhages (yellow arrows) and exudates. - papilledema from malignant hypertension - The lipid-rich component of the exudate is able to penetrate into the outer plexiform layer, creating what is clinically seen as a macular star pattern.	

Case 1 (From Dr slides):

* Case: A 47 years old man came to the clinic with headache for 3 weeks. The nurse measure his blood pressure and was found to be $150 / 95 \mathrm{mmHg}$.

1. Does he have hypertension? We can't tell by one measurements because according to AHA, HTN is defined as a systolic blood pressure $\geq 130 \mathrm{~mm} \mathrm{Hg}$ or a diastolic blood pressure ≥ 80 mm Hg on at least two measurements in three visits.
2. What is the stage of hypertension? We can't tell.
3. What investigation should you perform? ECG, Urinalysis, Electrolytes, lipid profile, blood glucose.
4. What could be your management in his case?
5. Is there any possible prevention to his disease and its complication? Lifestyle modification and reassess multiple times.

Case 2 (EXTRA):

* Case: A 35-year-old black man with no significant past medical history presents to the outpatient clinic for a follow-up examination 4 weeks after he was noted to have a blood pressure of 150/80 mm Hg on a routine health maintenance examination. He has no complaints, takes no medications, and does not smoke or use alcohol or other drugs. His family history is significant for a father with high blood pressure and a maternal grandmother who died of breast cancer. His blood pressure on this visit is $150 / 90 \mathrm{~mm} \mathrm{Hg}$.

1. What's the most likely diagnosis?

Primary (essential) hypertension. Hypertension is defined as a systolic blood pressure \geq 130 mm Hg or a diastolic blood pressure $\geq 80 \mathrm{~mm} \mathrm{Hg}$ on three separate measurements at least 2 weeks apart. Although this patient has only had two measurements, it is likely that he will have a third that satisfies the criteria for diagnosing hypertension. Although primary hypertension is technically idiopathic, and therefore a diagnosis of exclusion, it represents 95% of all cases of hypertension. Thus, it is reasonable for physicians to begin therapy for primary hypertension without undertaking a full workup for causes of secondary hypertension, especially if there is a family history of hypertension.
2. What are the risk factors for this condition?

Family history of hypertension or heart disease, High-sodium diet, Obesity, Older age, Race (blacks > whites), Smoking
3. What are the common complications associated with this condition?

Because hypertension is asymptomatic until complications develop, patients who do not receive regular medical care may develop the sequelae of untreated hypertension. Specifically, untreated hypertension leads to end-organ damage: Heart (hypertrophy, myocardial infarction, CHF), Brain (stroke, TIA), Kidney (chronic kidney disease, renal failure), Vasculature (peripheral vascular disease) and Eye (retinopathy)

Summary

HYPERTENSION

Definition

Etiology

presentation

Diagnostic Tests

Management

Pregnancy

- Systolic pressure $\mathbf{\geq 1 3 0} \mathbf{~ m m ~ H g}$
- Diastolic pressure $\mathbf{\geq 0 0} \mathbf{~ m m ~ H g}$

95 percent of hypertension has no clear etiology and can be called
"essential hypertension"

Secondary hypertension causes:

- Renal artery stenosis
- Glomerulonephritis
- Coarctation of the aorta
- Obstructive sleep apnea
- Pheochromocytoma
- Hyperaldosteronism
- Cushing syndrome

The vast majority of cases are found on routine screening of asymptomatic patients. Complications:

- Coronary artery disease
- Cerebrovascular disease
- CHF
- Visual disturbance
- Renal insufficiency
- Peripheral artery disease

The diagnosis of hypertension should not be made until the blood pressure has been measured on at least two times in three visits.
Those with hypertension are also tested with:

- EKG
- Urinalysis
- Glucose measurements to exclude concomitant diabetes
- Electrolytes
- Lipid profile
- Threshold of treatment start $130 / 80 \mathrm{~mm} \mathrm{Hg}$ if there is CVS risk. If not, it is just lifestyle modification \& reassess in 3-6 months
- Blood pressure goal is $<130 / 80 \mathrm{~mm} \mathrm{Hg}$
- \quad Age $<55 \rightarrow$ ACE or ARB
- Age >55 or Black \rightarrow CCB or thiazide diuretics
- If blood pressure is very high on presentation (>140/90 mm Hg), 2 medications should be used at the outset.

Oral labetalol is first-line therapy during pregnancy. Second Line agents are methyldopa and nifedipine.
In breastfeeding, ACE inhibitors, beta-blockers and nifedipine are safe. Methyldopa should be avoided because of the risk of depression.

Lecture Quiz

Q1: A 48-year-old woman has been diagnosed with essential hypertension and was commenced on treatment three months ago. She presents to you with a dry cough which has not been getting better despite taking cough linctus and antibiotics. You assess the patient's medication history. Which of the following antihypertensive medications is responsible for the patient's symptoms?
A- Amlodipine
B- Lisinopril
C- Bendroflumethiazide
D- Furosemide
E - Atenolol
Q2: A 57 -year-old male is admitted complaining of headaches and blurring of vision. His blood pressure is found to be $240 / 150 \mathrm{mmHg}$ and he has bilateral papilloedema, but is fully orientated and coherent. He had been known to be hypertensive for about five years and his blood pressure control had been good on three drugs. However, he had decided to stop all medication two months before this event. Which of the following would be your preferred parenteral medication at this point?
A- Glyceryl Trinitrate
B- Hydralazine
C- Labetalol
D- Sodium nitroprusside
Q3:A 44-year-old woman presents with episodes of headaches, associated with anxiety, sweating and a slow pulse rate. At the time of her initial consultation, her blood pressure was $150 / 95 \mathrm{mmHg}$ seated, but 24 hour ambulatory monitoring shows a peak of $215 / 130 \mathrm{mmHg}$, associated with the symptoms described above. Which of the following would be your initial diagnostic procedure??
A- Magnetic resonance imaging (MRI) scans of the abdomen and pelvis
B- Measurement of random plasma catecholamines
C- Measurement of urinary metanephrines over several 24 hour periods
D- Glucose tolerance test
Q4: A 57-year-old man is reviewed in a hypertension clinic, where it is found that his blood pressure is $165 / 105 \mathrm{mmHg}$ despite standard doses of amlodipine, perindopril, doxazosin and bendroflumethiazide. Electrolytes and physical examination have been, and remain, normal. Which of the following would be your next stage in his management?
A- Arrange for his medication to be given under direct observation
B- Add spironolactone to his medication
C- Arrange urinary catecholamine assays
D- Request an adrenal CT scan
Q5: A 41-year-old woman with type 2 diabetes attends a hypertension clinic. She has been doing well on metformin and has maintained good glycaemic control alongside dietary changes and regular physical exercise. She has been meeting her HbA1c targets consistently. However, her blood pressure has been poorly controlled despite lifestyle changes and is currently $157 / 97 \mathrm{mmHg}$. The most appropriate first- line therapy is?
A- Diuretics
B- Angiotensin II receptor blocker
C- Calcium channel blocker
D- β-blocker
E - Angiotensin-converting enzyme (ACE) inhibitor

GOOD IUCK!

438 Medicine team:

439 Medicine team:

[^0]: Inflate the cuff till the heard sound disappears then deflate it slowly to catch the first encountered sound which is the systolic BP "korotkoff phase I". As you continue deflating, the sound will disappear again giving you the diastolic BP "korotkoff phase V"

