Statistical tests to observe the statistical significance of Categorical variables

## Dr.Shaikh Shaffi Ahamed Ph.D., Professor Dept. of Family & Community Medicine

# Learning Objectives:

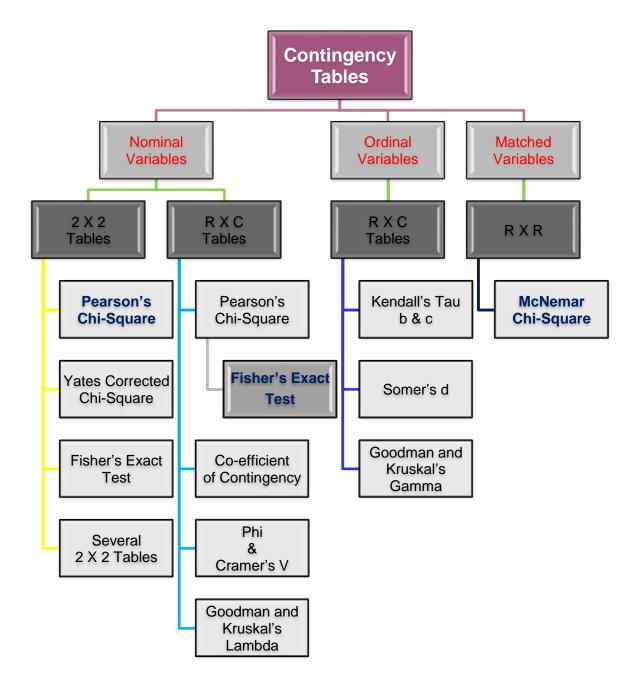
- (1) Able to understand the factors to apply for the choice of statistical tests in analyzing the data.
- (2) Able to apply appropriately Z-test, Chi-square test, Fisher's exact test & Macnemar's Chi-square test.
- (3) Able to interpret the findings of the analysis using these four tests.

Choosing the appropriate Statistical test

Based on the three aspects of the data
Types of variables
Number of groups being compared &
Sample size

# **Types of Categorical Data**

Qualitative/Categorical Data


**Nominal Categories** 

**Ordinal Categories** 

## Types of Analysis for Categorical Data

Type of Analysis

Descriptive Rate and Ratio Analytic Confidence Interval and Test of Significance



# **Statistical tests**

#### Chi-square test:

Study variable: Qualitative Outcome variable: Qualitative Comparison: two or more proportions Sample size: > 20 Expected frequency: > 5 Fisher's exact test:

Study variable: Qualitative Outcome variable: Qualitative Comparison: two proportions Sample size:< 20

#### Macnemar's test: (for paired samples)

Study variable: Qualitative Outcome variable: Qualitative Comparison: two proportions Sample size: Any

## Chi-square test Purpose

To find out whether the association between two categorical variables are statistically significant

## **Null Hypothesis**

There is no association between two variables

## **Chi-Square test**

# \<u>(0 - e)</u> **Figure for Each Cell**

- 1. The summation is over all cells of the contingency table consisting of r rows and c columns
- 2. O is the observed frequency
- 3. È is the expected frequency

$$\hat{E} = \frac{ \begin{pmatrix} \text{total of row in} \\ \text{which the cell lies} \end{pmatrix} \cdot \begin{pmatrix} \text{total of column in} \\ \text{which the cell lies} \end{pmatrix} }{ (\text{total of all cells}) }$$

reject 
$$H_0$$
 if  $\chi^2 > \chi^2_{.\alpha,df}$   
where df = (r-1)(c-1)  $\chi^2 = \sum \frac{(O-E)^2}{E}$ 

4. The degrees of freedom are df = (r-1)(c-1)

# Requirements

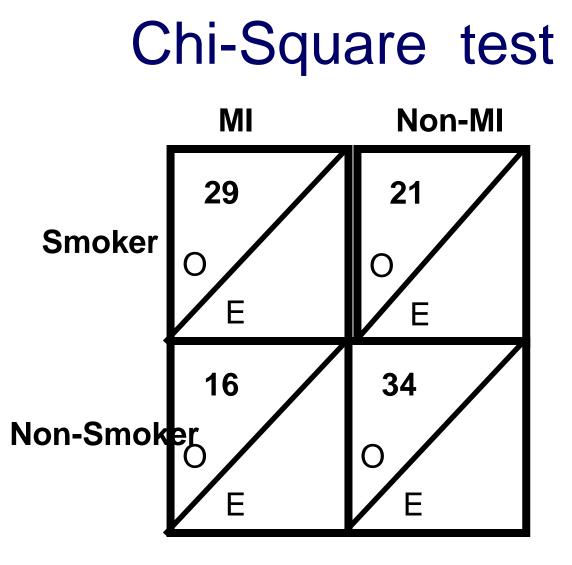
- Prior to using the chi square test, there are certain requirements that must be met.
  - The data must be in the form of frequencies counted in each of a set of categories. Percentages cannot be used.
  - The total number observed must exceed 20.

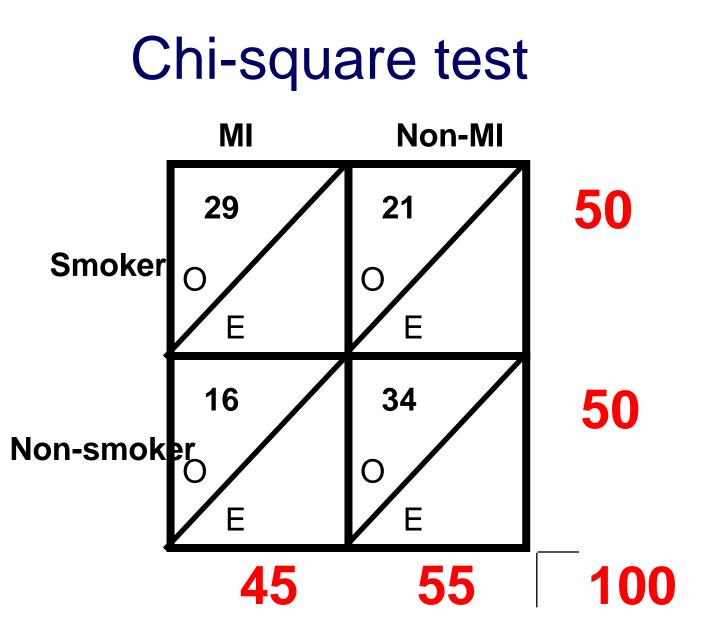
## Requirements

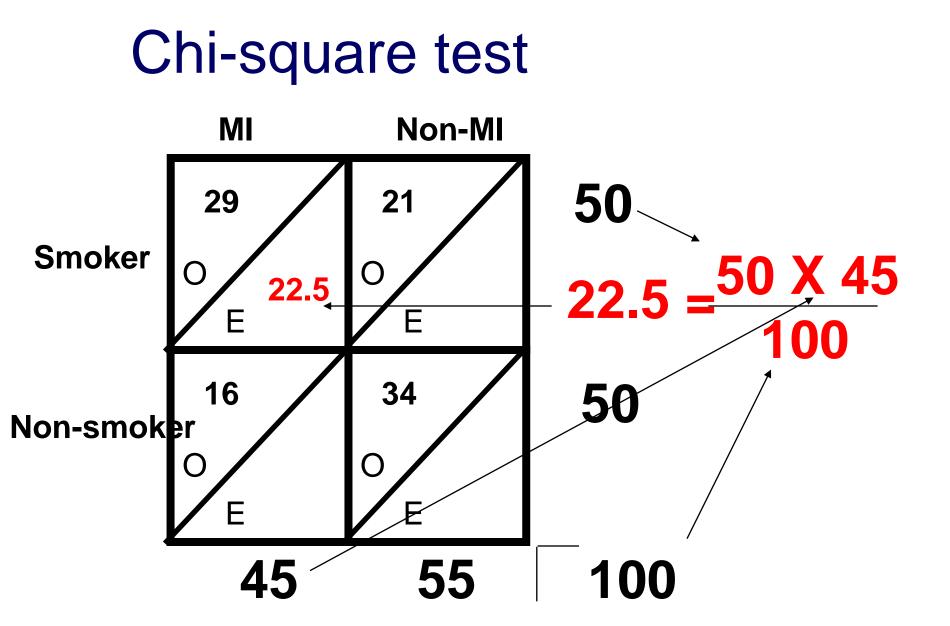
- The expected frequency under the H<sub>0</sub> hypothesis in any one fraction must not normally be less than 5.
- All the observations must be independent of each other. In other words, one observation must not have an influence upon another observation.

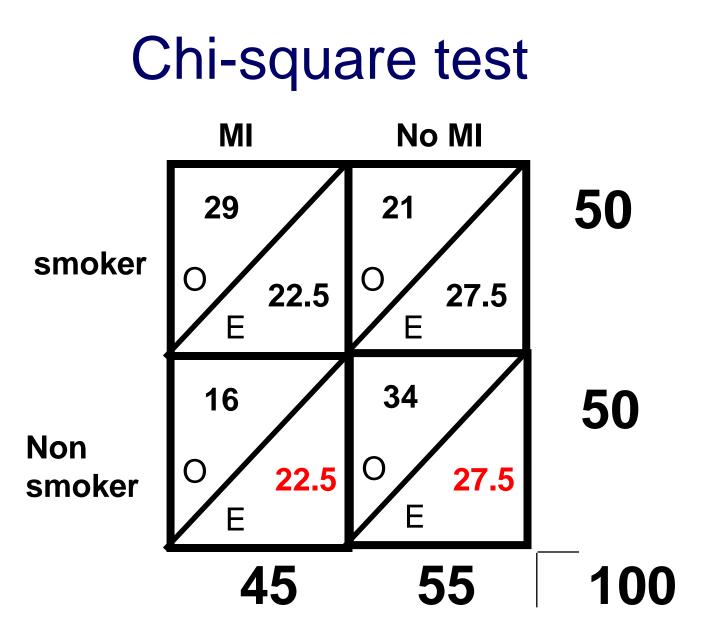
#### **APPLICATION OF CHI-SQUARE TEST**

# TESTING INDEPENDCNE (or ASSOCATION)


## TESTING FOR HOMOGENEITY


TESTING OF GOODNESS-OF-FIT


**Chi-square test** 


# Objective : Smoking is a risk factor for MI Null Hypothesis: Smoking does not cause MI

|             | D (MI) | No D( No MI) | Total |
|-------------|--------|--------------|-------|
| Smokers     | 29     | 21           | 50    |
| Non-smokers | 16     | 34           | 50    |
| Total       | 45     | 55           | 100   |









# **Chi-Square**

Degrees of Freedom df = (r-1) (c-1)= (2-1) (2-1) = 1

Critical Value (Table A.6) = 3.84

 $X^2 = 6.84$ 

Calculated value(6.84) is greater than critical (table) value (3.84) at 0.05 level with 1 d.f.f

Hence we reject our Ho and conclude that there is highly statistically significant association between smoking and MI.

Find out whether the gender is equally distributed among each age group

|        |         | Age     |         |       |
|--------|---------|---------|---------|-------|
| Gender | <30     | 30-45   | >45     | Total |
| Male   | 60 (60) | 20 (30) | 40 (30) | 120   |
| Female | 40 (40) | 30 (20) | 10 (20) | 80    |
| Total  | 100     | 50      | 50      | 200   |

## **Test for Homogeneity (Similarity)**

To test similarity between frequency distribution or group. It is used in assessing the similarity between nonresponders and responders in any survey

| Age (yrs) | Responders | Non-responders | Total |
|-----------|------------|----------------|-------|
| <20       | 76 (82)    | 20 (14)        | 96    |
| 20 - 29   | 288 (289)  | 50 (49)        | 338   |
| 30-39     | 312 (310)  | 51 (53)        | 363   |
| 40-49     | 187 (185)  | 30 (32)        | 217   |
| >50       | 77 (73)    | 9 (13)         | 86    |
| Total     | 940        | 160            | 1100  |

#### Background:

Contradictory opinions:

 1. A diabetic's risk of dying after a first heart attack is the same as that of someone without diabetes. There is no link between diabetes and heart disease.

VS.

- 2. Diabetes takes a heavy toll on the body and diabetes patients often suffer heart attacks and strokes or die from cardiovascular complications at a much younger age.
- So we use hypothesis test based on the latest data to see what's the right conclusion.
- There are a total of 5167 managed-care patients, among which <u>1131</u> patients are non-diabetics and <u>4036 are diabetics</u>. Among the non-diabetic patients, <u>42%</u> of them had their blood pressure properly controlled (therefore it's <u>475 of 1131</u>). While among the diabetic patients only <u>20%</u> of them had the blood pressure controlled (therefore it's <u>807 of 4036</u>).

#### Data

|              | Controlled | Uncontrolled | Total |
|--------------|------------|--------------|-------|
|              |            |              |       |
| Non-diabetes | 475        | 656          | 1131  |
| Diabetes     | 807        | 3229         | 4036  |
| Total        | 1282       | 3885         | 5167  |

Data: Diabetes: 1=Not have diabetes, 2=Have Diabetes Control: 1=Controlled, 2=Uncontrolled

**DIABETES \* CONTROL Crosstabulation** 

Count

|          |      | CONTROL |      |       |  |
|----------|------|---------|------|-------|--|
|          |      | 1.00    | 2.00 | Total |  |
| DIABETES | 1.00 | 475     | 656  | 1131  |  |
|          | 2.00 | 807     | 3229 | 4036  |  |
| Total    |      | 1282    | 3885 | 5167  |  |

|          |      |                   | CONTROL |        |        |
|----------|------|-------------------|---------|--------|--------|
|          |      |                   | 1.00    | 2.00   | Total  |
| DIABETES | 1.00 | Count             | 475     | 656    | 1131   |
|          |      | % within DIABETES | 42.0%   | 58.0%  | 100.0% |
|          |      | % within CONTROL  | 37.1%   | 16.9%  | 21.9%  |
|          |      | % of Total        | 9.2%    | 12.7%  | 21.9%  |
|          | 2.00 | Count             | 807     | 3229   | 4036   |
|          |      | % within DIABETES | 20.0%   | 80.0%  | 100.0% |
|          |      | % within CONTROL  | 62.9%   | 83.1%  | 78.1%  |
|          |      | % of Total        | 15.6%   | 62.5%  | 78.1%  |
| Total    |      | Count             | 1282    | 3885   | 5167   |
|          |      | % within DIABETES | 24.8%   | 75.2%  | 100.0% |
|          |      | % within CONTROL  | 100.0%  | 100.0% | 100.0% |
|          |      | % of Total        | 24.8%   | 75.2%  | 100.0% |

**DIABETES \* CONTROL Crosstabulation** 

Hypothesis test:

- 1) H<sub>0</sub>: There is no association between diabetes and heart disease. (There is no association between diabetes and heart disease. (or) Diabetes and heart disease are independent.)
- H<sub>A</sub>: There is a associaton between diabetes and heart disease. (There is an association between diabetes and heart disease. (or) Diabetes and heart disease are dependent.)
- 3) Assume a significance level of .05

#### SPSS Output

|                                 | Value                | df | Asymp. Sig.<br>(2-sided) | Exact Sig.<br>(2-sided) | Exact Sig.<br>(1-sided) |
|---------------------------------|----------------------|----|--------------------------|-------------------------|-------------------------|
| Pearson Chi-Square              | 229.268 <sup>b</sup> | 1  | .000                     |                         |                         |
| Continuity Correction           | 228.091              | 1  | .000                     |                         |                         |
| Likelihood Ratio                | 212.149              | 1  | .000                     |                         |                         |
| Fisher's Exact Test             |                      |    |                          | .000                    | .000                    |
| Linear-by-Linear<br>Association | 229.224              | 1  | .000                     |                         |                         |
| N of Valid Cases                | 5167                 |    |                          |                         |                         |

#### **Chi-Square Tests**

- a. Computed only for a 2x2 table
- b. 0 cells (.0%) have expected count less than 5. The minimum expected count is 280.62.

- 4) The computer gives us a Chi-Square Statistic of 229.268
- 5) The computer gives us a p-value of .000 i.e., (<0.0001).
- 6) Because our p-value is less than alpha (0.05), we would reject the null hypothesis.
- There is sufficient evidence to conclude that there is an association between diabetes and heart disease.

# Example

The following data relate to suicidal feelings in samples of psychotic and neurotic patients:

|                      | Psychotics | Neurotics | Total |
|----------------------|------------|-----------|-------|
| Suicidal feelings    | 2          | 6         | 8     |
| No suicidal feelings | 18         | 14        | 32    |
| Total                | 20         | 20        | 40    |

# Example

# The following data compare malocclusion of teeth with method of feeding infants.

|            | Normal teeth | Malocclusion |
|------------|--------------|--------------|
| Breast fed | 4            | 16           |
| Bottle fed | 1            | 21           |

# Fisher's Exact Test:

The method of Yates's correction was useful when manual calculations were done. Now different types of statistical packages are available. Therefore, it is better to use Fisher's exact test rather than Yates's correction as it gives exact result.

Fisher's Exact Test = 
$$\frac{R_1!R_2!C_1!C_2!}{n!a!b!c!d!}$$

# What to do when we have a paired samples and both the exposure and outcome variables are qualitative variables (Binary).

## Problem

- A researcher has done a matched casecontrol study of endometrial cancer (cases) and exposure to conjugated estrogens (exposed).
- In the study cases were individually matched 1:1 to a non-cancer hospitalbased control, based on age, race, date of admission, and hospital.

## **McNemar's test**

Situation:

- Two paired binary variables that form a particular type of 2 x 2 table
- + e.g. matched case-control study or cross-over trial

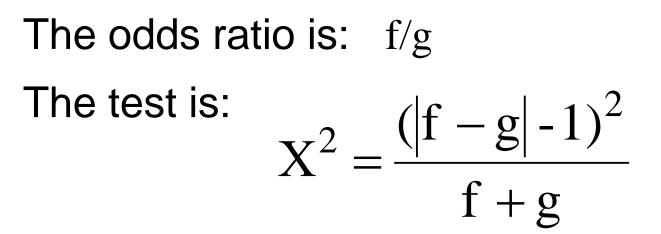


|             | Cases | Controls | Total |
|-------------|-------|----------|-------|
| Exposed     | 55    | 19       | 74    |
| Not exposed | 128   | 164      | 292   |
| Total       | 183   | 183      | 366   |

• can't use a chi-squared test - observations are not independent - they're paired.  $\odot$  we must present the 2 x 2 table differently • each cell should contain a count of the number of pairs with certain criteria, with the columns and rows respectively referring to each of the subjects in the matched pair

 the information in the standard 2 x 2 table used for unmatched studies is insufficient because it doesn't say who is in which pair

- ignoring the matching




|             | Co      |             |       |
|-------------|---------|-------------|-------|
| Cases       | Exposed | Not exposed | Total |
| Exposed     | 12      | 43          | 55    |
| Not exposed | 7       | 121         | 128   |
| Total       | 19      | 164         | 183   |

#### We construct a matched 2 x 2 table:

|             | Co      |             |       |
|-------------|---------|-------------|-------|
| Cases       | Exposed | Not exposed | Total |
| Exposed     | е       | f           | e+f   |
| Not exposed | g       | h           | g+h   |
| Total       | e+g     | f+h         | n     |

## Formula

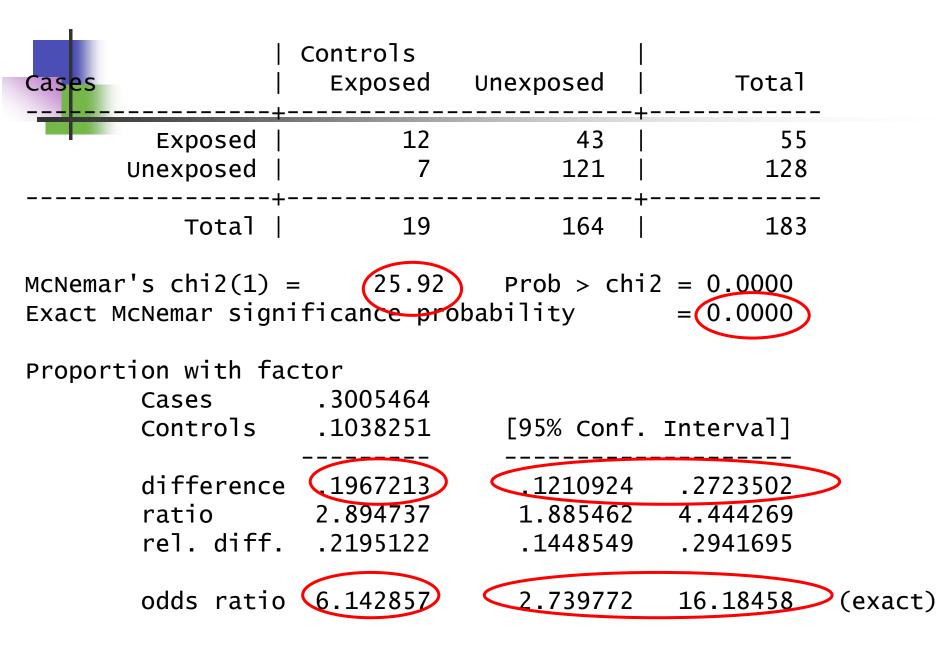


Compare this to the  $\chi^2$  distribution on 1 df

$$X^{2} = \frac{(|43-7|-1)^{2}}{43+7} = \frac{1225}{50} = 24.5$$

P <0.001, Odds Ratio = 43/7 = 6.1  $p_1 - p_2 = (55/183) - (19/183) = 0.197$  (20%) s.e. $(p_1 - p_2) = 0.036$ 95% CI: 0.12 to 0.27 (or 12% to 27%)

Critical Value (Table A.6) = 3.84


• 
$$X^2 = 25.92$$

- Calculated value(25.92) is greater than critical (table) value (3.84) at 0.05 level with 1 d.f.f
- Hence we reject our Ho and conclude that there is highly statistically significant association between Endometrial cancer and Estrogens.

#### Two-tailed critical ratios of $\chi^2$

| Degrees<br>of<br>freedom<br>df | . 10   | .05    | .02    | .01    |
|--------------------------------|--------|--------|--------|--------|
| 1                              | 2.706  | 3.841  | 5.412  | 6,635  |
| 2                              | 4.605  | 5.991  | 7.824  | 9,210  |
| 3                              | 6.251  | 7.815  | 9.837  | 11,341 |
| 4                              | 7.779  | 9.488  | 11.668 | 13,277 |
| 5                              | 9.236  | 11.070 | 13.388 | 15,086 |
| 6                              | 10,645 | 12.592 | 15.033 | 16.812 |
| 7                              | 12,017 | 14.067 | 16.622 | 18.475 |
| 8                              | 13,362 | 15.507 | 18.168 | 20.090 |
| 9                              | 14,684 | 16.919 | 19.679 | 21.666 |
| 10                             | 15,987 | 18.307 | 21.161 | 23.209 |
| 11                             | 17.275 | 19.675 | 22.618 | 24.725 |
| 12                             | 18.549 | 21.026 | 24.054 | 26.217 |
| 13                             | 19.812 | 22.362 | 25.472 | 27.688 |
| 14                             | 21.064 | 23.685 | 26.873 | 29.141 |

# Stata Output



# **Statistical Tests**

Z-test: Study variable: Qualitative

Outcome variable: Qualitative

Comparison: Sample proportion with population proportion; two sample proportions

Sample size: larger in each group(>30)

# Test for sample proportion with population proportion

Problem

In an otological examination of school children, out of 146 children examined 21 were found to have some type of otological abnormalities. Does it confirm with the statement that 20% of the school children have otological abnormalities?

#### a . Question to be answered:

Is the sample taken from a population of children with 20% otological abnormality

**b. Null hypothesis :** The sample has come from a population with 20% otological abnormal children

#### Test for sample prop. with population prop.

#### c. Test statistics

$$z = \frac{p - P}{\sqrt{\frac{pq}{n}}} = \frac{14.4 - 20.0}{\sqrt{\frac{14.4 + 85.6}{146}}} = 1.69$$

- **P**-Population. Prop.
- p- sample prop.
- n- number of samples

#### d.Comparison with theoritical value

The prob. of observing a value equal to or greater than 1.69 by chance is more than 5%. We therefore do not reject the Null Hypothesis

#### e. Inference

There is a evidence to show that the sample is taken from a population of children with 20% abnormalities



Researchers wished to know if urban and rural adult residents of a developing country differ with respect to prevalence of a certain eye disease. A survey revealed the following information

| Residence | Eye disease |     | Totol |
|-----------|-------------|-----|-------|
|           | Yes         | No  | Total |
| Rural     | 24          | 276 | 300   |
| Urban     | 15          | 485 | 500   |

Test at 5% level of significance, the difference in the prevalence of eye disease in the 2 groups

# Z-test for (two independent sample proportions)

$$Z = \frac{P_1 - P_2}{\sqrt{\frac{P_1 (1 - P_1)}{n_1 + \frac{P_2 (1 - P_2)}{n_2}}}}$$

P1= proportion in the first group

- P2= proportion in the second group
- n1= first sample size

n2= second sample size

### Critical z =

# 1.96 at 5% level of significance 2.58 at 1% level of significance



P1 = 24/300 = 0.08 p2 = 15/500 = 0.03  

$$Z = \frac{0.08 - 0.03}{\sqrt{\frac{0.08(1 - 0.08)}{300} + \frac{0.03(1 - 0.03)}{500}}} = 2.87$$
2.87 > 1.96 (from Z-table at α=0.05)  
Hence we can conclude that,  
the difference of prevalence of eye disease  
between the two groups is statistically significant

# In Conclusion !

- When both the study variables and outcome variables are categorical (Qualitative):
- Apply
- (i) Chi square test (for two and more than two groups)
- (ii) Fisher's exact test (Small samples)
- (iii) Mac Nemar's test (for paired samples)
- (iv) Z-test for single sample(comparing sample proportion with population proportion) and two samples(two sample proportions)