

CMED 305

Cross-Sectional Studies

Kholood Altassan, MBBS, PhD Assistant Professor - Community Medicine Unit, Family & Community Medicine Department Learning Objectives: By end of this session students will be able to:

1. Describe types of cross-sectional studies

2. Identify steps for conducting cross-sectional studies

3. Identify issues in the design of cross-sectional studies

4. Describe the strengths and weaknesses of cross-sectional studies

A cross-sectional study is a study that quantifies an outcome of interest **AND/OR** examines the relationship between disease (or other health related state) and other variables of interest as they exist in a defined population <u>at a single point in time</u>.

Types of Cross-Sectional Studies

Descriptive

Analytical

Study **prevalence** of health related events at a point in time/snapshot

(e.g. diseases, risk factors, interventions, health service utilization, knowledge, attitudes and practice) Assess <u>association</u> between exposure and outcome.

Exposure and disease status are assessed <u>simultaneously</u> among individuals at the same point in time

Compare prevalence of

disease in persons with and without the exposure of interest

When to Conduct a Cross- Sectional Study

- To estimate <u>prevalence</u> of a <u>health condition</u> or prevalence of a behavior or <u>risk factor</u>
- To learn about <u>characteristics</u> such as knowledge, attitude and practices of individuals in a population

 To <u>monitor trends over time</u> with serial crosssectional studies (e.g. in the US the National Health and Nutrition Surveys (NHANES)).

1- Define a **population** of interest (reference or source population)

Steps in conducting a cross-sectional study 2- Recruit a representative **sample** (adequate size, random selection)

3- Measure the **variables** of interest (exposure/outcome) at the same point in time

4- Analyze the data

The participants in a cross-sectional study are selected based on <u>the</u> <u>inclusion and</u> <u>exclusion criteria</u> set for the study.

Collect data on exposure and outcome (e.g. disease)

Exposed and have a disease Not Exposed and have a disease Exposed, and Do not have a disease Not Exposed, and Do not have a disease Measure disease and exposure status simultaneously among individuals in a well-defined population at a point in time. (Snapshot of the health status of populations at a certain point in time)

Measurement & Analysis in Cross-Sectional studies

Calculating measures of disease prevalence and measures of associations

Vaping and Advertisement

You identify a random sample of young adults aged 18 – 25 in city of Riyadh.

Exposure: Ads about vaping

Outcome: Vaping

	Vaping	Not Vaping	Total
Ads	50	200	250
No Ads	50	700	750
Total	100	900	1000

		Vaping	Not Vaping	Total
	Ads	50	200	250
	No Ads	50	700	750
\leq	Total	100	900	1000

Descriptive Cross-Sectional:

What is the prevalence of vaping?

Number of people who vape/ Total population X 100

- = 100 /1000 X 100
- = 10%

	Vaping	Not Vaping	Total
Ads	50 <mark>a</mark>	200 b	250
No Ads	50 c	700 d	750
Total	100	900	1000

Analytical Cross-Sectional:

Does the prevalence of vaping vary by the status of exposure to advertisement? i.e. What are the odds of vaping given exposure to advertisement?

POR = <u>odds an exposed person develop the outcome (a/b)</u> odds an unexposed person develop the outcome (c/d)

- = ad / bc
- = (50X700) / (200X50) = 3.5

What does a POR of 3.5 mean?

The odds of vaping is 3.5 times higher among those who have seen a vaping advertisement compared to those who haven't.

Study sample

- 1. should be representative of the population.
- 2. should be large enough to estimate prevalence of the conditions of interest with adequate precision

Bias may be defined as any <u>systematic</u> <u>difference</u> between groups in an epidemiological study that results in an incorrect estimate of the true effect of an exposure on the outcome of interest.

1. <u>Selection Bias (sampling bias)</u>

2. <u>Recall bias</u>

Confounding

Occurs when an observed association is in fact distorted because the exposure (x) is correlated with another risk factor(y) which is also associated with the outcome (o).

Confounding

- 1. Associated with exposure
- 2. Causing the outcome
- 3. Does not lie in the causal pathway

Confounding

- 1. Associated with both exposure
- 2. Causing the outcome
- 3. Should not lie in the causal pathway

Strengths

- Relatively quick and easy to conduct
- Multiple outcomes and exposures can be studied.
- Data on all variables is only collected once
- Able to measure prevalence for all factors under investigation
- Good for describing and for generating hypotheses.

Weakness

- Difficult to determine temporality between exposure and outcome
- Associations identified may be difficult to interpret.
- Susceptible to bias due to low response and misclassification due to recall bias.

Thank you!

Office Hours (by appointment via email): k.k.altassan@gmail.com

References:

- Celentano, David D., and Scd Mhs. Gordis Epidemiology. Elsevier, 2018.
- Hulley, Stephen B., ed. Designing clinical research. Lippincott Williams & Wilkins, 2007.
- Haynes, R. Brian. Clinical epidemiology: how to do clinical practice research. Lippincott williams & wilkins, 2012.
- Carlson, Melissa DA, and R. Sean Morrison. "Study design, precision, and validity in observational studies." Journal of palliative medicine 12.1 (2009): 77-82.
- The Centre for Evidence-Based Medicine develops, promotes and disseminates better evidence for healthcare. Study Design. NA. Accessed September 13, 2019: https://www.cebm.net/2014/04/studydesigns/