Research Summary

اللي ينتظرون الملخص

The red (important for sure) but the highlighted red more important it's from the gifts ****** For the last 2 lectures for more examples give the lectures a look but according to the doctor (I'll give you a scenario and you have to choose the appropriate test, no calculations) وصلنا الى نهاية الفلم شكرا لمتابعتكم

Editing file

L16 Sampling Techniques to select study subjects

What is Sampling	Sampling is the proc	ess or technique of selecting a stud	dy sample of appropriate characteristics and of adequate size.						
Why to use Sampling in Research ?	[•] Unable to study all members of a population [•] Reduce selection bias [•] Save time and money [•] Measurements may be better in sample than in entire population [•] Feasibility								
Definitions	 Population – group of things (people) having one or more common characteristics "a set which includes all measurements of interest to the researcher (The collection of all responses, measurements, or counts that are of interest)" Sample – representative subgroup of the larger population 'Used to estimate something about a population (generalize) and 'Must be similar to population on characteristic being investigated								
Sampling Frame	This is the complete Completeness and a	list of sampling units in the target ccuracy of this list is essential for t	population to be subjected to the sampling procedure. the success of the study.						
Sampling Units	These are the individ	dual units / entities that make up th	he frame just as elements are entities that make up the population.						
Sampling Error	This arises out of rat	This arises out of random sampling and is the discrepancies between sample values and the population value.							
Sampling Variation	 Due to infinite variations among individuals and their surrounding conditions. Produce differences among samples from the population and is due to chance. 								
Example:	In a clinical trail of 200 patients we find that the efficacy of a particular drug is 75% If we repeat the study using the same drug in another group of similar 200 patients we will not get the same efficacy of 75%. It could be 78% or 71%. "Different results from different trails though all of them conducted under the same conditions"								
Representative	sentativeness (validity)A sample should accurately reflect distribution of relevant variable in population (Person e.g. age, sex - Place e.g. urban vs. rural - Time) Representativeness essential to generalise Ensure representativeness before starting, Confirm once completed								
	Valid	ity of a Study Two components (of validity: Internal validity and External validity						
Internal validity : A study is said to have internal validity when there have been proper selection of study group and a lack of error in measurement. For example, it is Concerned with the appropriate measurement of exposure, outcome, and association between exposure and disease									
How to sample ?	In general, 2 requirements 1. Sampling frame must be available, otherwise develop a sampling frame. 2. Choose an appropriate sampling method to draw a sample from the sampling frame.								
The Sampling I	Design Process								
Define the Popu Process	lation then Determine	the Sampling Frame —> Select S	ampling Technique(s) —> Determine the Sample Size —> Execute the Sampling						
Types of Sampl	ing Methods								
	Probability S	ampling	Non- probability Sampling						
Simple Random Systematic Rand Sampling	Sampling (SRS) , Str lom Sampling , Cluste	atified Random Sampling , er Sampling,Multistage	Deliberate (Quota) Sampling , Convenience Sampling , Purposive Sampling , Snowball Sampling , Consecutive Sampling						

L16 Sampling Techniques to select study subjects

Simple Random Sampling Numbering all subjects as a list and using random numbers to select required subjects from that list.	Equal probability Techniques : Lottery method Table of random numbers Advantage Most representative group Disadvantage Difficult to identify every member of a population Another example: Simple random sampling (Estimate hemoglobin levels in patients with sickle cell anemia in a host table of random numbers to select units from the sampling frame - 5. Measure hemoglobin levels in patients with above the moglobin levels in patients with table of random numbers to select units from the sampling frame - 5. Measure hemoglobin levels above the moglobin levels in patients with table of random numbers to select units from the sampling frame - 5. Measure hemoglobin levels above the moglobin levels above the moglobin levels in patients with above the moglobin levels above the	 How to select a simple random sample 1. Define the population 2. Determine the desired sample size 3. List all members of the population or the potential subjects For example: 4th grade boys who have demonstrated problem behaviors, lets select 10 boys from the list th sickle cell anemia) spital or clinic - 3. Patient is the sampling unit - 4. Use a bin in all patients - 6. Estimate the levels (normal &
Systematic random Sampling	 Technique: Select a random starting point and then select every kth subject in the population Use "system" to select sample (e.g., every 5th item in alphabetized list, every 10th name in phone book) Advantage Quick, efficient, saves time and energy Disadvantage Not entirely bias free; each item does not have equal chance to be selected System for selecting subjects may introduce systematic error Cannot generalize beyond population actually sampled 	Example If a systematic sample of 500 students were to be carried out in a university with an enrolled population of 10,000, the sampling interval would be: I = N/n = 10,000/500 = 20 All students would be assigned sequential numbers. The starting point would be chosen by selecting a random number between 1 and 20. If this number was 9, then the 9th student on the list of students would be selected along with every following 20th student. The sample of students would be those corresponding to student numbers 9, 29, 49, 69, 9929, 9949, 9969 and 9989.
Stratified Random Sampling	 Divide the population into at least two different groups with common characteristic(s), then draw subjects randomly from each group (group is called strata or stratum) Technique Divide population into various strata (ex. divide population by age/sex)(Stratification variable) Randomly sample within each strata Sample from each strata should be proportional Advantage Difficult to pick appropriate strata Difficult to Identify every member in population Good sampling method to represent various segments of non-homogenous target population 	Sampling in Epidemiology Stratified random sample "Assess dietary intake in adolescents 1. Define three age groups: 11-13, 14-16, 17-19 2. Stratify age groups by sex 3. Obtain list of children in this age range from schools 4. Randomly select children from each of the 6 strata until sample size is obtained 5. Measure dietary intake
Cluster (Area) random sampling	 Randomly select groups (cluster) – all members of groups are subjects Advantage More practical, less costly Conclusions should be stated in terms of cluster (sample unit – school) Sample size is number of clusters Example: Randomly selecting <u>multiple schools</u> then sampling <u>all the students</u> in them	 Appropriate when you can't obtain a list of the members of the population have little knowledge of population characteristics Population is scattered over large geographic area
Multistage random sampling	Stage 1 randomly sample clusters (schools) Stage 2 randomly sample class rooms from the schools selected Stage 3 random sample of students from class rooms (if its cluster sampling, all students weight)	ill be part of the sample)

Random Selection/Sample vs. Random Assignment/Allocation

Random Selection = Every member of the population has an equal chance of being selected for the sample.(Choosing which potential subjects

will actually participate in the study)

Random Assignment =

Every member of the sample (however chosen) has an equal chance of being placed in the experimental group or the control group.(Random assignment allows for individual differences among test participants to be averaged out.)"Deciding which group or condition each subject will be part of"

L16 Sampling Techniques to select study subjects

	Deliberate (Quota) Sampling	2-Convenience Sampling							
	 Similar to stratified random sampling Technique Quotas set using some characteristic of the population thought to be relevant Subjects selected non-randomly to meet quotas (usu. convenience sampling) Disadvantage selection bias Cannot set quotas for all characteristics important to study 	Technique"Take them where you find them" (non-random sampling)Dr: it is where the sample is taken from a group of people easy to contact or to reach like posting your questionnaire on social mediaIts very unfavorable and reduces the power of a research paper.Intact classes, volunteers, survey respondents (low return), a typic group, a typical personDisadvantage: - Selection bias							
Non- probability	3- Purposive Sampling	4- Snowball Sampling							
Sampling	 Purposive sampling (criterion-based sampling) "Establish criteria necessary for being included in study and find sample to meet criteria. Solution: Screening Obtain a sample of larger population and then those subjects that are not members of the desired population are screened or filtered out. EX: want to study smokers but can't identify all smokers 	 In snowball sampling, an initial group of respondents is selected. After being interviewed, these respondents are asked to identify others who belong to the target population of interest. (ask the responders to identify other responders) Subsequent respondents are selected based on the referrals 							
	5- Consecut	tive sampling							
	- Outcome of 1000 consecutive patients presenting to the emergency room with chest pain								

- Natural history of all 125 patients with HIV-associated TB during 5 year period

- Explicit efforts must be made to identify and recruit ALL persons with the condition of interest

Choosing probability vs. non-probability sampling method **Prof. Shaffi: Very important table**

Probability sampling	Evaluation Criteria	Non-probability sampling			
Conclusive	Nature of research	Exploratory			
Larger sampling errors	Relative magnitude sampling vs non-sampling error	Larger non-sampling error			
High [Heterogeneous]	Population variability	Low [Homogeneous]			
Favorable	Statistical Considerations (all statistical analysis are based on the assumption that the sample is random - use proper random sample technique -)	Unfavorable			
High	Sophistication Needed	Low			
Relatively Longer	Time	Relatively shorter			
High	Budget Needed	Low			

L16 Practical Session: How to apply Sampling Techniques?

	How to apply sampling techniques?
Q1	What do you mean by 'sample' and population? Explain with a simple example.
	A small portion/group of subjects selected from a wider group of subjects is called a sample. This wider group is called population.
A1	Example: In particular hospital 1000 deliveries occurred in particular year and out of these we take 100 deliveries for our research study. These 1000 deliveries is our population and these 100 deliveries is our sample.
Q2	Why do you study only a sample of patients? Write down points only.
A2	 To save money and time To facilitate data collection that we use for research analysis particularly when the population being studied is larger. Sampling permits you to draw conclusions about complex situations. To obtain enough data to answer the research questions without having to query the entire population
Q3	What do you call that sample where subjects are selected without any bias?
A3	Random sample (favorable) Do not confuse random sample with randomization Random sample: process of choosing a sample randomly from a population. Randomization: assigning patients randomly to groups that receive different treatments.
Q4	What do you call that sample where subjects are selected as you wish?
A4	Convenience sample (non-random sample) (prone to a lot of bias, selection bias)
Q5	Give names of some of the random sampling techniques you know.
A5	 Simple random sampling - Cannot be performed without having a list Stratified random sampling Systematic random sampling - sample is selected according to a random starting point but with a fixed, periodic interval. Cluster random sampling - sample represents a population not an individual, ex. you will compare all individuals in a school to all individuals who go to another school. Multistage random sampling
Study No. 1	In a big hospital, every year 500 cases of MI (myocardial infarction) are reported. We want to study their physiological profile-their BP, cholesterol level, lipoprotein level, BMI, etc. Resources permit us to do investigations only for 50 cases. How do you select a simple random sample (SRS) of 50 cases out of these 500 cases? Explain the crude way as well as easy way to select this sample.
study ivo. i	We will write ID numbers of these 500 cases in 500 similar looking slips and roll them and put in a bowl and shuffle well and then take 50 slips one by one. The patients whose ID numbers are picked up is our sample. This method of sampling is called simple random sampling . This is the crude way and difficult to do. Easy way is take 50 random numbers within 1 to 500 from the computer or form the random number tables and the patients whose ID numbers are selected, will be our sample.
Study No. 2	A researcher wants to take a random sample of 100 cases from 1000 deliveries that occurred in maternity hospital in the last year. He has taken one random number out of 1 and 10 say, 5. Then he took a case having ID No.5. Then he took cases having ID numbers 15, 25, 35, 45995 as his sample. What method of sampling the researcher adopted here?
	The research has adopted systematic sampling. Why? There is a fixed and periodic interval
	Consider one more hospital where 1000 MI cases were reported last year. He wants to do a study one these cases. As these number of cases is large, he wants to take a sample of 100 cases. And also, as the physiological parameters of these cases would be different in overweight and less weight cases, the researcher wants to divide these 500 MI cases into two groups one with overweight/obese(that is $BMI>=25$) cases and the other less weight($BMI<25$) cases and that both these groups to represent in his sample of 100 cases. Then he took a sample of 50 patients at random from each of these two groups.
Study No. 3	 What are these two groups called in sampling? These groups are called strata in sampling. What is the sampling method adopted here to select a sample of 100 cases? This method of sampling is called stratified sampling. Why did the researcher adopt this sampling method? He adopted this sampling method because that both strata that is, overweight and of less weight cases to be represented in the sample
	It was decided to estimate prevalence of diabetes in KSA. He had limited resources. So, he divided entire KSA into 5 regions as north, south, east, west and central. Then he made 10 contiguous geographical areas in each of these five regions. Then he selected one area at random from each region. He collected data from <u>all the eligible individuals from each selected area</u> and he found 5000 individuals from these five selected areas. Then he collected relevant data from <u>all these individuals</u> .
Study No. 4	 What type of sampling method he used here? Cluster sampling (key words: all the eligible individuals from each selected area, all individuals) Why did he adopt this method? He used cluster sampling because he had limited resources and he does not need sampling frame that is list of all the individuals of entire KSA, which is difficult to get. It's enough if he has list of clusters, and he could collect the data from all individuals of the selected clusters only. In this way, he saves lot of resources by not traveling widely to take a simple randomness sample.
	Health authorities asked an epidemiologist to find out the prevalence of anemia in high school children of standard VI to X in a district of an African country. There are 60 schools in this district. And each school has standard VI to X classes. He wanted to use multistage sampling method to estimate the prevalence of anemia in high school children of standard VI to X in that district. How he would have done multistage sampling method in this situation?
Study No. 5	First, he needs only the list of these 60 schools. In the first stage he can select 5 schools among 60 schools at random, and form each of the selected school, out of five standards VI to X, select two standards at random. This is second stage of selection. So our sample consists of 200 students (5x2x20). This is his sample of students from whom he has to collect data to estimate the prevalence of anemia of high school children of that district. 1st stage - randomly select from list of 60 schools 2nd stage - randomly select from VI - X classes 3rd stage - randomly select from students list

L17 How many study subjects are required ? (Estimation of Sample size)

How to calculate sample size?	Most Important: sample size calculation is an educated guess It is more appropriate for studies involving hypothesis testing There is no magic involved; only statistical and mathematical logic and some algebra Researchers need to know something about what they are measuring and how it varies in the population of interest									
SAMPLE SIZE:	How many subjects are needed to assure a given probability of detecting a statistically significant effect of a given magnitude if one truly exists?	POWER احتمالية وجود significant في عدد صغير	If a limited pool of subjects is available, what is the likelihood of finding a statistically significant effect of a given magnitude if one truly exists?							
Before We Can I 1. What is the p 2. What is the m outcome? 3. How will the 4. How small a 5. How much va 6. What is the d 7. What is the an	Determine Sample Size We Need To Answer The Following: rimary objective of the study? hain outcome measure?Is it a continuous or dichotomous data be analyzed to detect a group difference? difference is clinically important to detect? ariability is in our target population? esired a (alpha)and b(beta)? nticipated drop out and non-response %?	Where do we get this knowledge?	Previous published studies Pilot studies If information is lacking, there is no good way to calculate the sample size							
Type I error:	Rejecting H0 when H0 is true • α: The type I error rate. Disease status Present Absent • test result +ve True +ve False +ve (sensitivity) • ve False -ve (specificity) • test result +ve True +ve (specificity)	Type II error:	 Failing to reject H0 when H0 is false β: The type II error rate Power (1 - β): Probability of detecting group difference given the size of the effect (Δ) and the sample size of the trial (N) Accepting the null hypothesis when it is false 							
Estimation of Sample Size by Three ways:	By using (1) Formulae (manual calculations) (2) Sample size tables or Nomogram (3) Softwares									
SAMPLE SIZE	FOR ADEQUATE PRECISION									
SAMPLE SIZE In a descriptive s • Summary stati • Reliability (or • By giving "cor • Wider the C.I. • estimate of the tr	study, stics (mean, proportion) c) precision nfidence interval" – sample statistic is not reliable and it may not give an accurate rue value of the population parameter	Sample size form For single mean : For a single prop Where , $Z\alpha = 1.9$ $Z\alpha = 2.58$ for 9	sulae for reporting precision $n = Z2\alpha S^2 / d^2$ where S=sd (s) ortion : $n = Z2\alpha P(1-P)/d2$ 6 for 95% confidence level 09%							
SAMPLE SIZE In a descriptive s • Summary stati • Reliability (or • By giving "con • Wider the C.I - estimate of the tr Problem 1 (Single mean)	FOR ADEQUATE PRECISION study, stics (mean, proportion) c) precision infidence interval" – sample statistic is not reliable and it may not give an accurate rue value of the population parameter A study is to be performed to determine a certain parameter(E a sample error of up to 4 is to be accepted. How many subjects	Sample size form For single mean : For a single prope Where , $Z\alpha = 1.9$ $Z\alpha = 2.58$ for 9 BMI) in a commu should be included	ulae for reporting precision $n = Z2\alpha S^2 / d^2$ where S=sd (s) ortion : $n = Z2\alpha P(1-P)/d2$ 6 for 95% confidence level 09% nity. From a previous study a sd of 46 was obtained. If d in this study at 99% level of confidence?							
SAMPLE SIZE In a descriptive s • Summary stati • Reliability (or • By giving "cor • Wider the C.I - estimate of the tr Problem 1 (Single mean) Answer	E FOR ADEQUATE PRECISION study, stics (mean, proportion) :) precision infidence interval" - sample statistic is not reliable and it may not give an accurate rue value of the population parameter A study is to be performed to determine a certain parameter(H a sample error of up to 4 is to be accepted. How many subjects $n = (Z\alpha/2)2 \sigma 2 / d2$ σ : standard deviation = 46 d: the accuracy of estimate (how close to the true mean)= given $Z\alpha/2$: A Normal deviate reflects the type I error. For 99% the crit 2.58 ² . 46 ² / 4 ² = 880.3 ~~ 881	Sample size form For single mean : For a single prope Where, $Z\alpha = 1.9$, $Z\alpha = 2.58$ for 9 BMI) in a commu should be included sample error =4 itical value =2.58	ulae for reporting precision $n = Z2\alpha S^2/d^2$ where S=sd (s) ortion : $n = Z2\alpha P(1 - P)/d2$ 6 for 95% confidence level 09% nity. From a previous study a sd of 46 was obtained. If d in this study at 99% level of confidence?							
SAMPLE SIZE In a descriptive s • Summary stati • Reliability (or • By giving "cor • Wider the C.I • estimate of the tr Problem 1 (Single mean) Answer	FOR ADEQUATE PRECISION study, stics (mean, proportion) r) precision infidence interval" – sample statistic is not reliable and it may not give an accurate rue value of the population parameter A study is to be performed to determine a certain parameter(H a sample error of up to 4 is to be accepted. How many subjects $n = (Z\alpha/2)2 \sigma 2 / d2$ σ : standard deviation = 46 d: the accuracy of estimate (how close to the true mean)= given $Z\alpha/2$: A Normal deviate reflects the type I error. For 99% the cri 2.58 ² . 46 ² / 4 ² = 880.3 ~~ 881 It was desired to estimate proportion of anemic children in a cer school. In a similar study at another school a proportion of 30 % confidence limit of 95% and accepting a difference of up to 4%	Sample size form For single mean : For a single prope Where , $Z\alpha = 1.9$ $Z\alpha = 2.58$ for 9 3MI) in a commu should be included sample error =4 itical value =2.58 tain preparatory 6 was detected. Con of the true populat	ulae for reporting precision $n = Z2\alpha S^2/d^2$ where S=sd (s) ortion : $n = Z2\alpha P(1 - P)/d2$ 6 for 95% confidence level 99% nity. From a previous study a sd of 46 was obtained. If d in this study at 99% level of confidence? mpute the minimal sample size required at a ion.							

L17 How many study subjects are required ? (Estimation of Sample size)

SAMPLE SIZE FOR ADEQUATE power

Three bits of information Type I & II errors Clinical effect Variation Researcher fixes probabilit Prob (type I error) = Prob Smaller error \Rightarrow greater pro- larger sample size Prob (type II error) = Pro- Power =1- β More power \Rightarrow smaller error	in required to determine the sample size ies of type I and II errors ρ (reject H0 when H0 is true) = α ecision \Rightarrow need more information \Rightarrow need to (don't reject H0 when H0 is false) = β for \Rightarrow need larger sample size	 Quantities related to the research question (defined by the researche : α = Probability of rejecting H0 when H0 is true which's called significance level of the test β = Probability of not rejecting H0 when H0 is false, is called statistical power of the test Size of the measure of interest to be detected Difference between two or more means Difference between two or more proportions Odds ratio, Relative risk, Correlation, Regression coefficients Change in R2, etc The magnitude of these values depend on the research question and objective of the study (for example, clinical relevance) 							
Clinical Effect Size	 What is a meaningful difference between the It is truly an estimate and often the most cha Large difference – small sample siz Small differences – large sample siz Cost/benefit 	e groups Illenging aspect of sampl ze ze	le size p						
All statistical tests are based	on the following ratio:	Test Statistic = Difference between par As $n \uparrow v/\sqrt{n} \downarrow$ Test stati	rameters / v / √n istic ↑ (where's v=Variation)						
Sample size formulae for comparing two means	n =2 S2 (Z α + Z β)2 /d2 where S=sd; d= difference two proportions : Z α = 1.96 for 95% confidence level Z α = 2.58 for 99% confidence level ; Z β = 0.842 for 80% power Z β = 1.282 for 90% power $n = \frac{(Z_{\alpha} + Z_{\beta})^{2} ((p_{1}q_{1}) + (p_{2}q_{2}))}{(p_{1} - p_{2})^{2}}, \text{ where } q_{1} = (1 - p_{1}), q_{2} = (1 - p_{2})$								
Example 1:	Does the consumption of large doses of vitamin A in tablet form prevent breast cancer? Suppose we know from our tumor- registry data that incidence rate of breast cancer over a 1-year period for women aged 45 – 49 is 150 cases per 100,000. Women randomized to Vitamin A vs. placebo Group 1: Control group given placebo pills. Expected to have same disease rate as registry (150 cases per 100,000) Group 2: Intervention group given vitamin A tablets. Expected to have 20% reduction in risk (120 cases per 100,000) Want to compare incidence of breast cancer over 1 year Planned statistical analysis: Chi-square test to compare two proportions from independent samples . H0: p1 = p2 vs. HA: p1 p2								
Answer	Test H0: $p1 = p2$ vs. HA $p1 \neq p2$ • Assume 2-sided test with α =0.05 and 80% power • $p1 = 150$ per 100,000 = .0015 • $p2 = 120$ per 100,000 = .0012 (20% rate reductions • $\Delta = p1 - p2 = .0003$ • $z1-\alpha/2 = 1.96 z1-\beta = .84$ • n per group = 234,882 (Too many to recruit in	er ion) n one year!)	$n = \frac{(Z_{s} + Z_{p})^{2} ((p_{1}q_{1}) + (p_{2}q_{2}))}{(p_{1} - p_{2})^{2}}, where q_{1} = (1 - p_{1})^{2}$	$(-p_1), q_2 = (1-p_2)$					
Example 2:	Does a special diet help to reduce cholesterol leve Suppose an investigator wishes to determine sam - Subjects with baseline total cholesterol Group 1: A six week diet intervention - Group 2: Investigator wants to compare total cholesterol at Planned statistical analysis: two sample t-test (for	els? ple size to detect a 10 mg/d of at least 300 mg/dl rando No changes in diet t the end of the six week stu r independent samples)(con	ll difference in cholesterol level in a diet interve omized udy nparison of two means) H0:μ1 =μ2 vs. HA:μ1 ≠	ntion group compared to a control (no diet) group					
Answer	Sample Size Formula To Compare Two Means From Independent Samples: H0: $\mu 1 = \mu 2$ 1. α level 2. β level (1 – power) 3. Expected population standard deviation ($\sigma 1$, $\sigma 2$) Continuous Outcome (2 Independent Samples) • Test H0: $\mu 1 = \mu 2$ vs. HA: $\mu 1 \neq \mu 2$ • Two-sided alternative • Assume outcome normally distributed with: S= standard deviation; $d=difference$ between two means ; $Z\alpha = 1.96$ for 95% confidence level; $Z\beta = 1.28$ for 90% power Test H0: $\mu 1 = \mu 2$ vs. HA: $\mu 1 \neq \mu 2$ • Assume 2-sided test with $\alpha = 0.05$ and 90% power • $d = \mu 1 - \mu 2 = 10$ mg/dl • $\sigma 1 = \sigma^2 = (50 \text{ mg/d})$ • $z\alpha = 1.96$ $z\beta = 1.28$ • n per group = 525 • Sumeone 10% lose to follow up expected adjust $n = 525 / 0.0 = 524$ are group.								
Problem (comparison of two means)	• Suppose 10% loss to follow-up expected, adjust $n = 525 / 0.9 = 584$ per group A study is to be done to determine effect of 2 drugs (A and B) on blood glucose levels . From previous studies using those drugs, Sd of BGL of 8 and 12 g/dl were obtained respectively. - A significant level of 95% and a power of 90% is required to detect a mean difference between the two groups of 3g/dl. How many subjects should be includein each group? A study is to be done to determine effect of 2 drugs (A and B) on blood glucose levels . From previous studies using those drugs, Sd of BGL of 8 and 12 g/dl were obtained respectively. - A significant level of 95% and a power of 90% is required to detect a mean difference between the two groups of 3g/dl. How many subjects should be includein each group? A sumptions or specifications: Type-I error (β) = 0.20 i.e., Power(1- β) = 0.80 Clinically significant difference (Δ) = 0.5 cm., Measure of variation (SD.) = 2.0 cm., (from literature or "Guesstimate") A sumptions or specifications: Type -I error (β) = 0.20 cm., (from literature or "Guesstimate")								

L17 Practical Session: How to calculate Sample Size?

We want to estimate the mean hemoglobin of Saudi females. The standard deviation is around 5 grams/deciliter and we wish to estimate the true mean to within 2 grams/deciliter with 95% confidence. What is the required sample size?

Study No. 1	1. Outcome variable = mean hemoglobin (continuous) 2. Type of study = descriptive According to the outcome variable and study type we will use single mean formula Findings: $Z\alpha = 1.96$ for 95% confidence interval, $S = 5$, $d = 2$ $n = Z\alpha 2 S2 / d2$ $n = 1.962 x 52 / 22 = 24.01 \sim 24$ $n = 24 + 20\%$ non-response rate = $24 + 4.8 = 28.8 \sim 29$
	A researcher wanted to estimate average/mean number of cigarettes smoked per week by undergraduate students studying in a certain city. How many students are to be selected in to the sample such that the estimate of mean number of cigarettes smoked is to be within 2 of the true average with 95% confidence? (Based on a pilot study, it was found that the Sd. of number of cigarettes smoked is 30
Study No. 2	1. Outcome variable = mean number of cigarettes (continuous) 2. Type of study = descriptive According to the outcome variable and study type we will use single mean formula Findings: $Z\alpha = 1.96$ for 95% confidence interval, $S = 30$, $d = 2$ $n = Z\alpha 2 S2 / d2 n = 1.962 x 302 / 22 = 864.36 ~ 864$ n = 864 + 20% non-response rate = $864 + 172.8 = 1036.8 ~ 1037$
	We wish to estimate the proportion of Saudi males who smoke. What sample size do we require to achieve a 95% confidence interval of width \pm 5% (that is to be within 5% of the true value)? A study some years ago found approximately 30% were smokers?
Study No. 3	1. Outcome variable = proportion of Saudi males who smoke (categorical) 2. Type of study = descriptive According to the outcome variable and study type we will use single proportion formula Findings: $Z\alpha = 1.96$ for 95% confidence interval, P = 0.3, d = 0.05 $n = Z\alpha 2P(1-P) / d2 n = 1.962 x 0.3 x (1-0.3) / 0.052 = 322.6944 \sim 323$ $n = 323 + 20\%$ non-response rate = $323 + 64.6 = 387.6 \sim 388$
	An epidemiologist was asked to estimate the Knowledge level (%) towards Covid-19 in a particular community. How many subjects he should select, if the resulting estimate is to fall within 10% (width of confidence interval) of the true proportion with 95% confidence? What will happen to sample size if width of confidence interval is 5%. (As no literature is available researcher assumes that only 30% of subjects had good knowledge level)
Study No. 4	1. Outcome variable = knowledge level (categorical) 2. Type of study = descriptive According to the outcome variable and study type we will use single proportion formula Findings: $Z\alpha = 1.96$ for 95% confidence interval, P = 0.3, d = 0.1 $n = Z\alpha 2P(1-P) / d2$ $n = 1.962 \ge 0.3 \ge (1-0.3) / 0.12 = 80.6736 \sim 81$ $n = 81 + 20\%$ non-response rate = $81 + 16.2 = 97.2 \sim 97$ What will happen to sample size if width of confidence interval is 5%? Findings: $Z\alpha = 1.96$ for 95% confidence interval, P = 0.3, d = 0.05 $n = Z\alpha 2P(1-P) / d2$ $n = 1.962 \ge 0.3 \ge (1-0.3) / 0.052 = 322.6944 \sim 323$ $n = 323 + 20\%$ non-response rate = $323 + 64.6 = 387.6 \sim 388$

L17 Practical Session: How to calculate Sample Size?

An epidemiologist wants to test whether an iron supplement for pregnant women will increase their Hb level. One group of women will receive new supplement and the other group the usual supplement. From a pilot study the sd of Hb is 4 g/dl and is assumed to be same for both groups. what is the sample size required to test the hypothesis of no difference in mean Hb level at 99% level of confidence and 90% power of detecting an increase of 2 g/dl.

Study No. 1

2. Type of study = analytical According to the outcome variable and study type we will use two means formula

Findings: $Z\alpha = 2.58$ for 99% confidence interval, $Z\beta = 1.282$ for 99% power, S = 4, d = 2n = 2S2 ($Z\alpha + Z\beta$)2 / d2, per arm n = 2 x 42 x (2.58 + 1.282)2 / 22 = 119.320 ~ 119 n = 119 + 20% non-response rate = 119 + 23.8 = 142.8 ~ 143, per group Total sample size = 143 x 2 = 286

Suppose it has been estimated that the rate of caries is 800 per 1000 school children in one district and 600 per 1000 in another district. What is the sample size required from each district to determine whether the difference is significant at the 95% level if we wish to have an 90% of chance of detecting the difference if it is real?

1. Outcome variable = rate of caries (categorical)

1. Outcome variable = hemoglobin level (continuous)

2. Type of study = analytical

According to the outcome variable and study type we will use two proportions formula

Study No. 2

Findings: $Z\alpha = 1.96$ for 95% confidence interval, $Z\beta = 1.282$ for 99% power, p1 = 800/1000 = 0.8, p = 600/1000 = 0.6, q1 = 1-0.8 = 0.2, q2 = 1-0.6 = 0.4, difference = p1 - p2 = 0.8 - 0.6 = 0.2

n = $(Z\alpha+Z\beta)2((p1q1)+(p2q2)) / (p1-p2)2$, per arm, where q1= (1-p1), q2 = (1-q2) n = $(1.96+1.282)2 \times ((0.8\times0.2) + (0.6\times0.4)) / 0.22 = 105.106 \sim 105$ n = 105 + 20% non-response rate = 105 + 21 = 126, per group Total sample size = 126 x 2 = 252

	Table 2/	•			314	WIFLE 34	E3 101	two me	ans ior	various	values o	i u anu	su						
	Za for 9	9% level	=2.58																
	Zb for 9	0% pow	er = 1.21	8			d											_	
Sd	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16 1	7 18	19	20
1	30	7	3	2	1	1	1	0	0	0	0	0	0	0	0	0 0	0	0	0
2	119	30	13	7	5	3	2	2	1	1	1	1	1	1	1	0 0	0	0	0
3	268	67	30	17	11	7	5	4	3	3	2	2	2	1	1	1 1	1	1	1
4	477	119	53	30	19	13	10	7	6	5	4	3	3	2	2	2 2	1	1	1
5	745	186	83	4/	30	21	15	12	9	/	6	5	4	4	3	3 3	2	2	2
5	1073	208	119	6/	43	30	22	17	13	11	9	10	0	5	5	4 4	3	3	3
7	1460	365	162	91	58	41	30	23	18	15	12	10	9	/	6	0 5	5	4	4
8	1907	4//	212	119	76	53	39	30	24	19	10	13	11	10	8	/ /	0	5	5
9	2414	745	268	151	97	87	49	38	30	24	20	1/	14	12	12	9 8	0 0	/	0
10	2980	745	401	100	119	0.0	24	4/	37	30	20	21	10	10	15	14 1	2 11	0	1
12	4291	1073	401	225	172	110	99	67	40	43	30	30	21	22	10	17 1	5 13	10	11
12	5026	1250	560	215	201	140	102	70	62	50	42	25	20	26	22	20 1	7 16	14	12
14	5841	1460	649	365	201	162	119	91	72	58	42	41	35	30	26	23 2	0 18	14	15
15	6705	1676	745	419	268	186	137	105	83	67	55	47	40	34	30	26 2	3 21	19	17
16	7629	1907	848	477	305	212	156	119	94	76	63	53	45	39	34	30 2	6 24	21	19
17	8612	2153	957	538	344	239	176	135	106	86	71	60	51	44	38	34 3	0 27	24	22
18	9655	2414	1073	603	386	268	197	151	119	97	80	67	57	49	43	38 3	3 30	27	24
19	10758	2689	1195	672	430	299	220	168	133	108	89	75	64	55	48	42 3	7 33	30	27
20	11920	2980	1324	745	477	331	243	186	147	119	99	83	71	61	53	47 4	1 37	33	30
21	13141	3285	1460	821	526	365	268	205	162	131	109	91	78	67	58	51 4	5 41	36	33
22	14423	3606	1603	901	577	401	294	225	178	144	119	100	85	74	64	56 5	0 45	40	36
23	15764	3941	1752	985	631	438	322	246	195	158	130	109	93	80	70	62 5	5 49	44	39
				107															
24	17164	4291	1907	3	687	477	350	268	212	172	142	119	102	88	76	67 5	9 53	48	43
				116															
25	18625	4656	2069	4	745	517	380	291	230	186	154	129	110	95	83	73 6	4 57	52	47
																			7.000.000
Table	2B Sa	ample si	zes for 9	5% Con	fidence	level, (Zo	x=1.96) a	and for	90% Pov	wer{ Zβ=	1.282)	Here P1	is Larger	propor	tion an	d P2 is	Smaller	proport	tion
										P1									
	-															1			
PZ	10%	15%	20%	25%	30%	35%	40%	45%	50%	55%	60%	65%	70%	75%	80%	85%	90%	95%	100%
10%	-	914	263	130	79	53	39	29	22	18	14	11	9	7	5	4	3	2	1
15%	; ·		1209	331	158	93	62	44	32	25	19	15	12	9	7	5	4	3	2
20%	6			1461	389	181	105	69	48	35	26	20	16	12	9	7	5	4	3
25%					1671	436	200	114	74	51	37	27	21	16	12	9	7	5	4
30%		\vdash		_		1839	473	214	121	77	53	38	28	21	16	12	9	6	5
25%		\vdash				1000	1065	400	222	125	70	53	29	27	20	15	11		6
40%							1505	2050	515	229	176	70	50	27	26	10	14	10	7
40%	_		_					2030	313	£20	220	135	33	57	20	19	19	10	,
437									2092	520	228	125		51	35	25	10	12	9
50%	,									2092	515	223	121	74	48	32	22	15	11
55%	5										2050	499	214	114	69	44	29	19	13
60%	;											1965	473	200	105	62	39	25	16
65%	;												1839	436	181	93	53	32	20
70%	6													1671	389	158	79	43	25
75%															1461	331	130	62	32
	-														1401	331	1.50		
80%	;														1401	1209	263	97	42
80% 85%															1401	1209	263 914	97 184	42
80% 85% 90%																1209	263 914	97 184 578	42 60 95
80% 85% 90%															1401	1209	263 914	97 184 578	42 60 95 200

TABLE 1B	3 SAMPLE SIZES FOR A SINGLE PROPORTION FOR VARIOUS P and d for 95% level, Za=1.96																			
р																				
0.01	16	4	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0.02	31	8	4	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0.03	45	12	5	3	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0.04	60	15	7	4	3	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1
0.05	73	19	9	5	3	3	2	2	1	1	1	1	1	1	1	1	1	1	1	1
0.06	101	22	10	5	4	3	2	2	2	2	1	1	1	1	1	1	1	1	1	1
0.08	114	29	13	8	5	4	3	2	2	2	1	1	1	1	1	1	1	1	1	1
0.09	126	32	14	8	6	4	3	2	2	2	2	1	1	1	1	1	1	1	1	1
0.1	139	35	16	9	6	4	3	3	2	2	2	1	1	1	1	1	1	1	1	1
0.11	151	38	17	10	7	5	4	3	2	2	2	2	1	1	1	1	1	1	1	1
0.12	163	41	19	11	7	5	4	3	3	2	2	2	1	1	1	1	1	1	1	1
0.13	1/4	44	20	11	/	5	4	3	3	2	2	2	2	1	1	1	1	1	1	1
0.14	196	47	21	12	8	6	4	4	3	2	2	2	2	1	1	1	1	1	1	1
0.16	207	52	23	13	9	6	5	4	3	3	2	2	2	2	1	1	1	1	1	1
0.17	217	55	25	14	9	7	5	4	3	3	2	2	2	2	1	1	1	1	1	1
0.18	227	57	26	15	10	7	5	4	3	3	2	2	2	2	2	1	1	1	1	1
0.19	237	60	27	15	10	7	5	4	3	3	2	2	2	2	2	1	1	1	1	1
0.2	246	62	28	16	10	7	6	4	4	3	3	2	2	2	2	1	1	1	1	1
0.21	255	64	29	16	11	8	6	4	4	3	3	2	2	2	2	1	1	1	1	1
0.22	264	60	30	1/	11	8	6	5	4	3	3	2	2	2	2	2	1	1	1	1
0.23	2/3	71	32	18	12	8	6	5	4	3	3	2	2	2	2	2	1	1	1	1
0.25	289	73	33	19	12	9	6	5	4	3	3	3	2	2	2	2	1	1	1	1
0.26	296	74	33	19	12	9	7	5	4	3	3	3	2	2	2	2	2	1	1	1
0.27	303	76	34	19	13	9	7	5	4	4	3	3	2	2	2	2	2	1	1	1
0.28	310	78	35	20	13	9	7	5	4	4	3	3	2	2	2	2	2	1	1	1
0.29	317	80	36	20	13	9	7	5	4	4	3	3	2	2	2	2	2	1	1	1
0.3	323	81	36	21	13	9	7	6	4	4	3	3	2	2	2	2	2	1	1	1
0.31	225	83	20	21	14	10	7	6	5	4	3	3	2	2	2	2	2	2	1	1
0.32	340	85	38	22	14	10	7	6	5	4	3	3	3	2	2	2	2	2	1	1
0.34	345	87	39	22	14	10	8	6	5	4	3	3	3	2	2	2	2	2	1	1
0.35	350	88	39	22	14	10	8	6	5	4	3	3	3	2	2	2	2	2	1	1
0.36	355	89	40	23	15	10	8	6	5	4	3	3	3	2	2	2	2	2	1	1
0.37	359	90	40	23	15	10	8	6	5	4	3	3	3	2	2	2	2	2	1	1
0.38	363	91	41	23	15	11	8	6	5	4	3	3	3	2	2	2	2	2	2	1
0.39	369	92	41	23	15	11	8	6	5	4	4	3	3	2	2	2	2	2	2	1
You pro you give e.g.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																			

L21 Basic concepts and terminology in Biostatistics

Statistics	 Statistics is the science of conducting studies to collect, organize, summarized Date: any value that have been collected. Singular: Datum (Set of values of collecting), Characterizing, Presenting of statistics are used in many fields such as Public Health & Medicine Epidemice Dataset: Data for a set of variables collection in group of persons. Data Table: A dataset organized into a table, with one column for each variable 	e, analyse, present, interpret and draw conclusions from data. one or more variables recorded on one or more observational units) of data and interpreting results for Decision- Making ology, Pharmacology, Genetics and Business , Environment and government. le and one row for each person.							
Biostatistics	 Biostatistics: is the science that helps in managing medical uncertainties medicine, biology and public health for planning, conducting and analyzing of Examples of biostatistics: Medical Statistics: Deals with application of statistical methods to the study vaccine, etc Health Statistics : Deals with application of statistical methods to varied info Vital Statistics :Is the ongoing collection of government agencies of data rel health authorities. 	and variability of data (methods used in dealing with statistics in the fields of data which arise in investigations of these branches.) of diseases (risk factors, prognostic factors, etc), efficacy of new treatments or ormation of public health importance. ating to vital event such as births and deaths which are deemed reportable by local							
Variables	are unit of data collection whose value can vary and are defined into types accord	ling to the level of mathematical scaling which can be carried out on the data.							
Variables	1- Nominal scale variables(ex:measuring the "presence or absence" of a symptom?)	2- Ordinal scale variables							
	 A type of categorical data in which objects fall into unordered categories. Studies measuring nominal data must ensure that each category is mutually exclusive (no overlap like Male / Female) and the system of measurement needs to be exhaustive. dichotomies (Binary data) A type of categorical data that have only two responses i.e. Yes or no (categorical data in which there are only two categories.But it can be more than two categories such as "blood groups" or Smoking status- smoker, non-smoker, past smoker) Nominal scale is Least complex, simple measure of whether objects are the same or different. 	 Ordinal data is data that comprises(consists) of categories which can be ranked in ordered. Similarly with nominal data the distance between each category cannot be calculated but the categories can be ranked above or below each other. (Low stress - Moderate stress – Severe Stress) Same as nominal but adds a measure of order to what is being observed. Nominal and ordinal data are used for Categorical data (Qualitative data) Example:cancer stages (I, II, III & IV) 							
	3- Interval scale variables	4- Ratio scale variables							
	 Interval scale variables: Fahrenheit temperature scale: (zero is arbitrary) -40 degrees is not twice as hot as 20 degrees. You can't compare since no zero reference (there is negative). IQ tests: one who has 120 IQ is not twice as much as 60 IQ Question:Can we assume that attitudinal data represents real quantifiable measured categories? (i.e., That 'very happy' is twice as happy as plain 'happy' or that 'very unhappy' means no happiness at all). "Statisticians not in agreement on this". NO! You can't quantify it; why ? negative values are included. builds on ordinal by adding more information on the range between each observation by allowing us to measure the distance between objects. 	 The distance between any two adjacent units of measurement (intervals) is the same and there is a meaningful zero point. (Includes absolute zero) Income: someone earning SAR20,000 earns twice as much as someone who earns SAR10,000. Negative values are not included but we can be compare values (best scale for comparison) Ex: Height , Weight , Age , BMI 							
Categories of data	Primary data	Secondary data							
	- What principal investigator collect (new data) through observation, questionnaire, record form, interviews, survey	- Collected from other source ,which data already is collected ex: census, medical record, registry and routinely kept records							
Clinimetrics	 Clinometric : A science called clinometries in which qualities are converted t into quantitative data) Examples: (1) Apgar score based on appearance, pulse, grimace, activity and respiration (2) Smoking index: no. of cigarettes, duration, filter or not, whether pipe, cig (3) APACHE (Acute Physiology and Chronic Health Evaluation) score: to qualitative and the provide the second score in the second score is a score in the second score is a score in the second score in the second score in the second score is a score in the second score in the second score in the second score is a score in the second score in the second score in the second score in the second score is a score in the second score in the second score in the second score in the second score is a score in the second score in the second score is a score in the second score in th	o meaningful quantities by using the scoring system. (Categorical data converted n is used for neonatal prognosis. ar etc., uantify the severity of condition of a patient							
	Why do we need to know what type of data? The data type influences the type of statistical analysis techniques								

L21 Basic concepts and terminology in Biostatistics

Categorical (Qualitative) Data	 The objects being studied are grouped into categories based on some qualitative trait. The resulting data are merely labels or categories. Nominal and Ordinal scales will be used for categorical data or qualitative data. 								
Quantitative data	 The objects being studied are 'measured' based on some quantitative trait. The resulting data are set of numbers. Interval and Ratio scales will be used to measure quantitative data. CONTINUOUS DATA can be converted into QUALITATIVE DATA Ex :Wt. (In kg.) : Under wt, normal & over wt. Ht. (In cm.): Short, medium & tall 								
Types of	1- Discrete	2- Continuous:							
quantitative data:	Only certain values are possible (There are gaps between the possible values). Implies counting. A whole number (Ex: Number of Children)	Continuous: Theoretically, with a fine enough measuring device. Implies measuring. (There is a decimal .) (Ex: Haemoglobin levels,2.5)Age (in years),Height(in cms.), Weight (in Kgs.), Sys.BP, Hb., Etc							

Practical session: Scales of measurement and type of variables

	Q1) N	ame typ	oe of measure	ement sca	le for the follow	wing							
		Measurement scale							Туре				
		Education status (Literate / Illiterate)							Nominal scale				
		Outo	come of a newbor	n baby (Boy /	Girl)		Nominal scale						
Question 1	Body mass Index (weight(kg)/Height ² (m))								Ratio scale				
	Blood sugar level (Quantitative variable)								Ratio scale				
		Chol	esterol level (Qua	ntitative varia	ble)	Ratio scale							
		Imm	unization status c	of the child (Ye	es / No)	Nominal scale							
		Grac	les of Exam Resul	t (A+,A,B+,B,	etc.,)		Ordinal scale						
	Q2) A	sample	e data of a stu	ıdy is give	n below. Name	e the	type of	variable:					
		Pt ID	Age (years)	sex	Marital status	Edu	ıcation	BMI	CD4 cell count	Viral load	ESR at 1 hour		
		1	34	1	1		1	20.1	351	728000	35		
		2	30	2	1		1	17.8	33	11300	25		

O	U	e	S	ti	0	n	2
Y	u	5	9		U	ш	-

Q

Sex (1=Male, 2=Female); Marital status (1=single, 2=married); Education(1=illiterate, 2=literate)

25.1

17.6

18.1

17.3

16.9

17.3

22.5

17.5

Age (years)	Sex	Marital status	Education	ВМІ	CD4 cell count	Viral load	ESR at 1 h
QNV (Discrete)	QLV (Nominal)	QLV (Nominal)	QLV (Nominal)	QNV (Continuous)	QNV (Discrete)	QNV (Discrete)	QNV (Discrete)
		QLV =Quali	tative variable.	QNV= Quar	titative variable		
Q3) Classify the f	ollowing variab	les as: - Quantitati	ve (discrete or co	ontinuous).	- Qualitative (ordinal or nomi	nal).

	Variable	Туре	Variable	Туре	
uestion 3	White blood cells per deciliter of whole blood	Quantitative variable (continuous)	Satisfaction : 1=very satisfied, 2= satisfied, 3= neutral, 4= unsatisfied, 5= other	Qualitative variable (ordinal)	
	Leukemia rates in geographic regions (cases per 100,000 people)	Quantitative variable (continuous ¹)	Treatment group : 1 = active treatment, 2 = placebo	Qualitative variable (nominal)	
	Presence of type II diabetes mellitus (yes or no)	Qualitative variable (nominal)	The number of road accidents in KSA during Ramadan month.	Quantitative variable (discrete)	
	Body weight (kilograms)	Quantitative variable (continuous)	The number of boys in a family	Quantitative variable (discrete)	
-	Low-density lipoprotein level (mg/dl)	Quantitative variable (continuous)	The length of time that a cancer patient and survives after diagnosis.	Quantitative variable (either discrete or continuous ²)	
	Grade in course coded : A, B, C, D or F	Qualitative variable (ordinal)	The number of previous miscarriages an	Quantitative variable (discrete)	
	Course credit (pass or fail)	Qualitative variable (nominal)	expectant mother had.		

It is continuous since there is "per 100,000" meaning it will be a fraction not a whole number. E.g. rate of leukemia in Riyadh is 5.5 per 100,000. It depend on how data is presented. E.g. continuous: 1.5 months, discrete: 45 days. 1. 2.

L23 Description of Data (Using Summary & Variability measures)

	-							
Data collection	 Data Presentation: Tabulation, Diagrams and Graphs Descriptive statistics: measures of location, measures of Inferential Statistics: estimation, hypothesis testing, poi Inferential statistics: univariate analysis, multivariate and 	 Data Presentation: Tabulation, Diagrams and Graphs Descriptive statistics: measures of location, measures of dispersion, measures of skewness & kurtosis Inferential Statistics: estimation, hypothesis testing, point estimate, interval estimate Inferential statistics: univariate analysis, multivariate analysis 						
Describing Data Numerically	 central tendency: arithmetic mean, median, mode, geometric mean(used in labs like measure AB levels), harmonic mean(like when you measure velocity from Riyadh to Jeddah start by car then train then a walk) Quartiles Variation: range, interquartile range, variance and standard deviation Shape: skewness 							
Measures of Central Tendency	A statistical measure that identifies a single score as representative for an entire distribution. The goal of central tendency is to find the single score hat is most typical or most representative of the entire group , There are 3 common measures of central tendency: - the mean. 2- the median. 3- the mode							
Mean	It's called Arithmetic mean as well, The most common me	it's called Arithmetic mean as well, The most common measure of central tendency, Affected by extreme values (outliers),						
Example	Calculate the mean of the following data: 1 5 4 3 2 1-Sum the scores (ΣX): 1 + 5 + 4 + 3 + 2 = 15 2-Divide the sum (ΣX) = 15) by the number of scores (N =	Calculate the mean of the following data: 1 5 4 3 2 1-Sum the scores (ΣX): 1 + 5 + 4 + 3 + 2 = 15 2-Divide the sum (ΣX) = 15) by the number of scores (N = 5): 15 / 5 = 3 3- Mean = x = 3						
Median alternative term used for "median"Is Q2	 The median is simply another name for the 50th percentile It is the score in the middle or center; half of the scores are larger than the median and half of the scores are smaller than the median Not affected by extreme values (unlike the mean) In an ordered array, the median is the "middle" number If n or N is odd, the median is the middle number. If n or N is even, the median is the average of the two middle numbers 							
Example	What is the median of the following scores: 24 18 19 42 16 12 1. Sort the scores from highest to lowest : 42 24 19 18 16 12 2. Determine the middle score: middle = $(N + 1)/2 = (6 + 1)/2 = 3.5$ 3. Median = average of 3rd and 4th scores: $(19 + 18)/2 = 18.5$							
Central tendency (النزعة المركزية)	Mean is the most frequently used but is sensitive to extreme scores • e.g. 1 2 3 4 5 6 7 8 9 10 Mean = 5.5 (median = 5.5) • 1 2 3 4 5 6 7 8 9 20 Mean = 6.5 (median = 5.5) • e.g. 1 2 3 4 5 6 7 8 9 100 Mean = 14.5 (median = 5.5)							
Mode	Value that occurs most often , Not affected by extreme val - Used for either numerical or categorical(nominal)	Value that occurs most often , Not affected by extreme values (Ex: 20 student got 90 out of 100) - Used for either numerical or categorical(nominal)data - There may be no mode or there may be several modes						
Shape of Distributions	Distributions can be either symmetrical or skewed (becon of the distribution than the other.	ning narrow on one side), depending on whether there are more frequencies at one end						
	Symmetrical distribution	Skewed distribution Understand the diagrams well						
A distribution is symm distribution are identic image of the other. ★ In a symmetrical of median, and mode a Bell-Shaped (also known)	Few extreme values on one side of the distribution or on the other Positively skewed distributions: distributions which have few extremely high values (Mean>Median>mode) - positively (skewed to the right) , it tails off toward larger values - Negatively skewed distributions: distributions which have few extremely low values(Mean <median)< p=""> - negatively (skewed to the left) – it tails off toward smaller values</median)<>							
Choosing a Measure of Central tendency Prof: it's important	 IF variable is Nominal> Mode, Ex: number of people who smoke IF variable is Ordinal> Mode or Median (or both) IF variable is Interval-Ratio and distribution is Symmetrical> Mode, Median or Mean IF variable is Interval-Ratio and distribution is Skewed> Mode or Median 7,8,9,10,11 n=5, x=45, X=45/5=9 S.D.=1.58, 1.58 -> Less variability 3,4,9,12,15 n=5, x=45, X=45/5=9 S.D.==4.74, 4.74 -> There is variability 1,5,9,13,17 n=5, x=45, X=45/5=9 S.D.==6.32, 6.32 -> High variability Variability will be low when: 1-Accurate measurements. 2-Good sample size 							
Dispersion(التشتت) (Variability)	Measures of dispersion summarize differences in the data,	how the numbers differ from one another.						
Example	 Series I : 70 70 70 70 70 70 70 70 70 70 70 70. (no variation / dispersion) Series II : 66 67 68 69 70 70 71 72 73 74. (low variation / dispersion) Series III : 1 19 50 60 70 80 90 100 110 120. (high variation/ dispersion) 							

L23 Description of Data (Using Summary & Variability measures)

Quartiles	divides ranked scores 4 fou	livides ranked scores 4 four equal parts $\begin{array}{c} 25\% & 25\% & 25\% & 25\% \\ (minimum) & Q_1 & Q_2 & Q_3 \\ (median) \end{array}$ (minimum)							
Q1 = <mark>equiva</mark> (lower quartile)	lent to 25th (first quartile)	Q2 (median) (middle quartile) (second quartile)	Q3 = equivalent to 75th (upper quartile) (third quartile)						
$Q_{1} = \frac{n+1}{4}$	1 th	$Q_{2} = \frac{2(n+1)}{4} = \frac{n+1}{2}$ th	$Q_{3} = \frac{3(n + 1)}{4}$ th						
Example	Calculate the quartiles from 1- rank the score (data): 1, 3 2- n is the number of observ $Q1 = \frac{(7) + (1)}{4} =$ Q1 = (second observation) = 1, 3, 4, 4, 6, 7, 9	Calculate the quartiles from this score (data): 6, 3, 1,7,4, 9, 4 1- rank the score (data): 1, 3, 4, 4, 6, 7, 9 2- n is the number of observation x1, x2xn, in this case it equals 7 $Q1 = \frac{(7) + (1)}{4} = 2$ $Q2 = \frac{[2][(7) + (1)]}{4} = 4$ $Q3 = \frac{[3][(7) + (1)]}{4} = 6$ $Q1 = (\text{second observation}) = 3$ $Q2 = (\text{fourth observation}) = 4$ $Q3 = (\text{sixth observation}) = 7$							
IQR (interquartile range) الانحر اف الربيعي	The interquartile range is Q3-Q1, Range of the middle half of scores. 50% of the observations in the distribution are in the interquartile range. The following figure shows the interaction between the quartiles, the median and the interquartile range								
Range	Difference between the smallest and largest observations Ex: marks of student: 52, 76, 100 , 36, 86, 96, 20, 15 , 57, 64, 64, 80, 82, 83, 30, 31, 31, 31, 32, 37, 38, 38, 40, 40, 41, 42, 47, 48, 63, 63, 72, 79, 70, 71, 89 Range: 100-15 = 85, take the difference It doesn't consider the other data								
Percentile & Quartiles	 Maximum is 100th percentile: 100% of values lie at or below the maximum Median is 50th percentile: 50% of values lie at or below the median Any percentile can be calculated. But the most common are 25th (1st Quartile) and 75th (3rd Quartile). 								
Variance	Deviations of each observations of each observations of each observation.	ion from the mean, then averaging the sum of squares of these	deviations.or we can say it's Mean of all squared deviations from the						
Standard deviation	 * ROOT- MEANS-SQUAR To "undo" the squares Return to original Measures the var Rough measure of 	E-DEVIATIONS" best measurement to calculate variability aring of difference scores, take the square root of the variance. units rather than squared units. iation of a variable in the sample Technically the average amount by which observations deviate from Th	when data is following normal distribution $s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2}$ The mean						
Example	- Data: $X = \frac{1}{N} = \frac{5}{N} = \frac{42}{6} = 7$ • Mean= $s^2 = \frac{\Sigma(\overline{X} - X)^2}{N} = \frac{28}{6} = 4.67$ • Variance= $s = \sqrt{s^2} = \sqrt{4.67} = 2.16$ • Standard Deviation= Interpretation: All 6 values on average are deviating by 2.16. On average each student is different from other by 2.16. 42 0 28								
WHICH MEASURE TO USE ? Prof: it's important	Distribution of datDistribution of dat	a is Symmetric? use: mean and Standard Deviation , ex: (n a is skewed? use: Median and Quartiles	nonthly income of study subjects)						
		Exploring data VERY IMPORTANT							
Graphical i	lustrations	Descrir	otive statistics						

 Categorical data-qualitative-: Bar chart Clustered bar charts (two categorical variables) Pie charts Continuous data-quantitative-: Histogram (can be plotted against a categorical variable) Box & Whisker plot (can be plotted against a categorical variable) Stem and Leaf plot Scatter plot (2 continuous variables	 1- categorical data : Frequency Percentage (row, column or total) 2- Continuous data (Measure of location) : Mean Median 3- Continuous data (Measure of variation) : Standard deviation Range (Min,Max) Interquartile range (LQ, UQ)

L24 Practical Session: Normal distribution

L24 Practical Session: Normal distribution

a) Find the Proportion of persons whose height exceeds 68"

Answer: Normal deviate = Z = (X-mean)/sd = (68-65)/2 = 1.5The z table gives areas from 0 to z. But, now we want the area from z to infinity. This gives us proportion of persons whose height exceeds 68'. We know the area from 0 to infinity is 0.5. so, if we subtract area of 0 to 1.5 from 0.5, we get the area from z to infinity. Area

a from 1.5 to infinity =
$$(0 \text{ to infinity}) - (0 \text{ to } 1.5)$$

= 0.5 - 0.4332

Question 4

If the

distribution of

heights of

persons in a

city has mean

height 65"

= 0.0668 = 6.68% That is, there are nearly 7% of persons whose height exceeds 68"

Proportion = percentage , probability = number

b) Find the proportion of persons whose height is less than 60"

Answer: compute Normal deviate = Z = (X-mean)/sd = (60-65)/2 = -2.5

We want the area from $-\infty$ to -2.5 because we want the proportion of persons whose height is less than 60". The z tables give areas from 0 to z .We know the area from 0 to infinity is 0.5. So, if we subtract value of 0 to 2.5 from 0.5, we get the area from z to infinity. Area from 2.5 to infinity = (0 to infinity) - (0 to 2.5) = 0.5 - 0.4938 = 0.0062 = 0.6% There are nearly 0.6% of persons whose height is <60"

c) Proportion of persons whose height is in between 64" & 67"

Answer: First, find Normal deviate for 64° Z1 = (64 - 65)/2 = -0.5 Next, find Normal deviate for 67° Z2 = (67 - 65)/2 = 1 We want the area from -0.5 to 1 Z table gives area from 0 to z. We know area from -0.5 to 0 is same as area from 0 to 0.5 Hence, answer to the problem is to add the areas Area from 0 to 0.5 and from 0 to , Area from 0 to 0.5 = 0.1915 Area from 0 to 1 = 0.3413 Area from -0.5 to 1 = 0.5328 = 53.28%

There will be 53% of persons whose height is in between 64" & 67"

L24 Practical Session: Normal distribution

L25 Statistical significance using p-value

Importance of inferential statistics

1-Using inferential statistics, we make **inferences about population** (taken to be unobservable) **based on a random sample** taken from the population of interest. 2-We can generate the parametre from the statistic

	Parameter		Statistic			Is risk factor X	associated wit	h disease Y	?	
Overview	 Numbers that summarize entire population. E.g. Average height of all 25-year-old men (population KSA. Not always possible to me because it needs the actual value in the population. 	data for an • N san • E n) in easure nur stat • A it d pop	 Numbers that summarize data from a sample. E.g. The height of the members of a sample of 100 such men are measured; the average of those 100 numbers is a statistic. Always possible to measure because it doesn't need the actual value in the population 			 o From the sample, we compute an estimate of the effect of X (risk factor) on Y (disease or outcome) (e.g. risk ratio if cohort study): o Is the effect real? Did chance play a role? o Why worry about chance? → Because of sampling variabilityyou only get to pick one sample! When we take different samples it's going to give us different values because of the variation in each individual , how we can be sure it's real effect or just a chance? By testing the significance (p value and CI) 				
	Significance testing	· · · · ·				Interj	preting the resu	ılts		
	 The interest is generally in cc Significance testing can only applied to purely descriptive re (e.g., risk of outcome in the t The statistical test depends on (eg. odds ratio in case-contro cohort studies) 	omparing two groups be done if we have esearch) treatment and placeb n the type of data a ol or cross-sectional s	can't be in RCTs and	 Make inferences from data collected using laws of probability and statistics, You have to use these two concepts: Tests of significance (p-value). Confidence intervals. 						
	Null hypothesis (Ho)		Alternative hyp	oothesis (HA)		Hypotl	One and Two nesis tests can be	o Sided Tests one or two sid	ded (tailed):	
	• There is no association betwee predictors (associated factors) a outcome variable in the popular	een the and tion.	• The proposition between the product variable.	• The proposition that there is an association between the predictors and outcome variable.			One tailed tests are Two directional directional		tests are not	
Hypothesis Testing	• Assuming there is no associat statistical tests estimate the pro that the association is due to ch	ition, bability nance.	• We do not test default if the stathypothesis.	• We do not test this directly but accept it by default if the statistical test rejects the null hypothesis.			 H0: μ1- μ2= 0 HA: μ1- μ2 > 0 or HA: μ1- μ2 < 0 One sided test: 		 Ho: μ1- μ2= 0 HA: μ1- μ2≠ 0 Two sided test: A statistical hypothesis test in 	
	• States the assumption (numer tested.	• The opposite of the null hypothesis, challenges the status quo.(means not =)			 A statistical hy which alternative only one end. So tell you if there is 	 o A statistical hypothesis test in which alternative hypothesis has only one end. So, it will tell you if there is a relationship between variables in single which alternative hypothesis has two end. So, it will tell you if there is a relation between variables in boo direction. (37) 		native hypothesis test in native hypothesis test in o, it will tell e is a relationship riables in both		
	• Begin with the assumption th hypothesis is TRUE.	nat the null	• Is generally the hypothesis that is believed to be true by the researcher.			direction.(37) If you truly know one effect	direction.(37) If you truly know the drug has one effect or increas		don't know whether I decrease the weight it	
	• Always contains the '=' sign.		• Never contain	s just the '=' sign.						
	 Rejection region: set of all Level of significance, α: Sp 	test statistic value pecified before an	es for which H0 will be experiment to define r	rejected. ejection region.			Type-I and T	ype-II Erro	rs	
Hypothesis Testing= Rejection region=	One sided: α = 0.05 -1.64 -1.96 and +1.96				5	 Probability o H0 when H0 is Called signift of the test. 	f rejecting true. icance level	 Probabi H0 when is false. 1-β call power of the second secon	lity of not rejecting H0 ed statistical the test.	
	Either left or right	5%	Both left & right		2.5%		x		β	
Diagnosis and	Signif	1.040	-1.	90 U	1.90	Disease status:				
statistical reasoning	Test result	Present (Ho not true)	Absent (Ho is true)	Test result	Pr	Present (Ho not true) Absent (Ho		s true)		
	Reject Ho N	lo error (1-β)	Type I error (α)	+ve	True +ve (Sensitivity) False +ve					
	Accept Ho T	Type II error (β) No error (1-α) -ve				alse -ve	True -ve (spe	cificity)		

L25 Statistical significance using p-value

Significance	Mortality	Subjects with acute	Mortality		Suppose we do Sup	a clinical trial to answer the ab	ove question.			
testing of example	IV nitrate PN	MI <	No nitrate PC	;	● Even if IV nitrat that PN pc	e has no effect on mortality, du	e to sampling variation, it is very	unlikely		
example		?			 PC Any observed d 	ifference between groups may	be due to treatment or a coincid	ence (or		
					chance).					
Null	o There is no ass	ociation betwee	en the indep	endent ar	nd dependen	t/outcome variables.				
Hypothesis	 Formal basis for In the example 	or hypothesis tes Ho [.] "The admir	sting. nistration of	IV nitrate	has no effec	t on mortality in MI n	atients" or PN- PC= (1		
(H0)				iv intrate						
Obtaining P	Trial Number dead (rand	domized) trol) Risk Ratio 9!	5% C.I. P value	From 437:						
values:	Chiche 3/50	8/45 0.33 (0.0	9, 1.13)	o In the table control in t	ble, there are the 6 si the second and third	udies in the first column, sample column. So in IV nitrate (in chic	e size of iv nitrate patients and he study) 50 patients were			
	Bussman 4/31 Flaherty 11/56	12/29 0.24 (0.0 11/48 0.83 (0.3	08, 0.74) 0.01 03, 2.12) 0.70	we got the	d, yet 3 have died (p p value and its inter	eople who died\ total) and we ar pretation?	e interested to know how			
	Jaffe 4/57	2/57 2.04 (0.3	9, 10.71) 0.40							
	Lis 5/64 Jugdutt 24/154 4	10/76 0.56 (0.1 14/156 0.48 (0.2	.9, 1.65) 0.29 28, 0.82) 0.007							
Example of signif	ficance testing		Fest statist	ic for Two	Population	Proportions	Testing significa	nce at 0.05 level		
o In the Chiche trial:			The test statis	tic for p1 – p2	is a Z statistic:					
 pN= 3/50 = 0.06; pC= 8/43 Null hypothesis: 	5 = 0.178		$\left(p_{N}-p_{C}\right)$	$-(P_N - P_C)$	$Pc \rightarrow C$ (PN- Pc	bserved difference to \rightarrow Null hypothesis	Normal, Bali-snaped Curve		$7\alpha/2 = 1.96$	
 H0: pN- pC= 0 or pN= pC Statistical test: Two complementation 	2		$Z = \frac{(I N - IC)}{\int_{p}^{-} \frac{1}{p(1-p)}}$	(1 + 1)	$nN \rightarrow \#$ $nC \rightarrow \#$	of subjects in IV nitrate group	Percentage of cates in portions 13% 2,14% 13,59% 34,11 Bilanian Deviations -0 -30 -30 -10 Commander 0,1% 2,3% 15,9% 34,11	* 34 13% 13.66% 2 14% 13%	In $Z < -Z \alpha/2$ or $Z = Z \alpha/2$	
^o two-sample proportion			V F (F F)	$(n_N n_C)$	${\displaystyle { {\bar p} = \frac{{{\mathbf{X}_{\rm{N}}} + {{\mathbf{X}_{\rm{C}}}}}{{{{\mathbf{n}}_{\rm{N}}} + {{\mathbf{n}}_{\rm{C}}}}}}$, $p_{\rm N}=\frac{{\bf X}_{\rm N}}{n_{\rm N}}$, $p_{\rm C}=\frac{{\bf X}_{\rm C}}{n_{\rm C}}$	Percentage → Z scores Blandard Mne Blandard Mne Percentage → 1 2 3 4 +		> Z W Z	
	TD					0	in Stervie Rejection region Non Re	iction region Rejection region		
	Two Popu	lation Proporti	ons	Statistical test for p1- p2						
Significance	$Z = \frac{(0.06 - 0.178)}{(1 - 0.06 - 0.178)}$	= -1.79		⊚ Two Pop	ulation Proportio	ons. Independent Samples	8:	a /2=0.04	a /2 = 0.04	
testing	$\sqrt{0.116(1116)}\left(\frac{1}{50}+\right)$	$\left(+\frac{1}{45}\right)$		$Z = \frac{(0.00^{\circ} 0.116)(1116)(\frac{1}{20} + \frac{1}{10})}{\sqrt{0.116(1116)(\frac{1}{20} + \frac{1}{10})}} = -1.79$ \odot Za/2= 1.96			= 1.96			
	where: $\bar{p} = \frac{3+8}{45+50} =$	$\frac{3+8}{45-50} = 0.116 , p_{\rm N} = \frac{3}{45} = 0.06 , p_{\rm c} = \frac{8}{50} = 0.178 $ Two-tail test:			5) \rightarrow Reject H0 if Z < -Za/2 or Z > Za/2 $-Z_{a/2}$ $-Z_{a/2}$ $Z_{a/2}$					
	45+50	45	50	HO: pN- pC H1: pN- pC	= 0 ≠ 0	→ Jinc → The	actual p-value = P (Z<-1.79)	+ P (Z>1.79)= 0.08		
			- A Gen esteri							
P-value	Table 1: Table of the Standard Normal C	umulative Distribution Function $\Phi(z)$	statistic we co	onvert this t	o a		- 'p' stands	for probability.		
	s 0.00 0.41 0.60 0.60 0.60 1.4 0.000 5.000 0.000	0.85 0.06 0.07 0.38 0.06 0.001 0.0003 0.0003 0.0003 0.0003 0.004 0.0004 0.0004 0.0005 0.0005 0.006 0.0005 0.0005 0.0005 0.0005 0.005 0.0006 0.0005 0.0007 0.0007 0.001 0.001 0.001 0.0007 0.0007	p-value by co to distributio	mparing its	value tistic		- Tail area p	robability based on the obser as the probability of an effe	ved effect. ct as large as or larger	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.001 0.001 0.001 0.001 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.003 0.004 0.005 0.003 0.003 0.004 0.005 0.003 0.004 0.004 0.005 0.006 0.004 0.004 0.004 0.006 0.004 0.004	under the nul Measure of	l hypothesis how likely tl	s. ne test		than the ol	served effect (more extreme	in the tails of the	
		AD154 Od150 AD134 Od150 AD134 Od150 AD192 Od192 Od244 Od194 Od113 AD195 Od252 Od244 Od199 Od214 AD195 Od252 Od244 Od299 Od214 AD195 Od252 Od244 Od299 Od214 AD192 Od214 Od299 Od214 Od299 AD144 Od292 Od214 Od299 Od214 AD144 Od294 Od215 Od298 Od215 AD145 Od298 Od215 Od298 Od298 AD146 Od298 Od215 Od298 Od298	statistic value	is under the	null		o Size of the P-value	e is related to:	is true.	
Stating the	-1.3 0.0998 0.0911 0.0914 0.0918 0.0919 -1.2 0.1515 0.1118 0.1109 0.0119 0.0919 -1.1 0.0157 0.1120 0.0909 0.1175 -1.0 0.1577 0.1040 0.1039 0.1517 -0.0 0.1577 0.1040 0.1039 0.1518 0.107 -0.0 0.1119 0.0999 0.3918 0.2033 0.2039 -0.7 0.2129 0.2390 0.3918 0.2033 0.2033	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• p-value $\leq \alpha$	\Rightarrow Reject H	0		The sample size. The effect size or the	e observed association or diff	ference.	
of our	4.6 3.2124 2.4299 0.8251 0.2413 0.411 4.6 3.3356 5.3300 0.3151 0.2414 5.757 5.7572 5.7592 5.7592 5.7592 5.7592 5.7592 5.7592 5.759	R2558 0.2546 0.2514 0.243 0.241 0.2912 0.2477 0.243 0.2410 0.2774 2 Manuel Law 2 A 243 0.2410 0.2774 2 Manuel Law 2 M	at level α (sigi ● p-value > α	\Rightarrow Do not re	eject		 Measures the str Smaller p- values 	ength of the evidence again indicate stronger evidence a	st the null hypothesis	
Results			H0 at level α				hypothesis	diagtion about the aligned	1 i	
							observed associati	on.	i importance of the	
							• A very large stud	ly may result in very smal	l p-value based on a	
							translated into clir	ical practice.	iportant when	
								rtant to look at the effec	t size and	
	n-	value is small					n-value			
	Р	, and it sinan					p value			
• we reject the null • "Small" is defined	hypothesis or, equived as a p-value $\leq \alpha$	alently, we accep	t the alternat	ive hypoth	esis.	• we conclude that we evidence to reject the	e cannot reject the null	hypothesis or, equivalentl	y, there is not enough	
where $\alpha = \text{acceptab}$	le false (+) rate (usus	ally 0.05).				 o "Not small" is defin 	ned as a p-value α , wh	ere α = acceptable false (+	-) rate (usually 0.05).	
Size of the p-va	lue is related to	the sample siz	ze (larger	= signifi	cant p valu	e) E	xample:			
Size of the p-va	lue is related to	the effect size	or the ob	served as	ssociation o	r difference	(1) If a new antihypertensive	(2) However, if the decrease	(3) Thus, it is important to	
							therapy reduced the SBP by 1 mmHg as compared	was as large as 10 mmHg, then you would	not only consider whether the difference is	
							to standard therapy we	be interested in the new therapy	statistically significant by	
							swapping to the new therapy.		of the difference should also be considered.	

L25 Statistical significance using p-value

	Statistically significant	t	Not statistically significant		
Statistically significant Vs not statistically significant	• Reject Ho		• Do not reject Ho		
	• Sample value not compatible with Ho.		• Sample value compatible with Ho.		
	• Sampling variation is an unlikely explanation of discrepancy between Ho and sample value.(يعني significant not caused by cha	ance or variation)	• Sampling variation is a likely explanation of discrepancy between Ho and sample value.		
	Statistically significant & clinically important.	Not statistically significan important.	t BUT clinically	Statistically significant BUT NOT clinically important.	
Clinical importance vs. statistical significance	• This is where there is an important, meaningful difference between the groups and the statistics support this.	• This is most likely to occ underpowered and you do r large enough sample size to between groups.	ur if your study is not have a o detect a difference	 If you have enough participants, even the smallest differences can become statistically significant. just because a treatment is statistically significantly better than an alternative treatment, does not necessarily mean that these differences are clinically important. 	

Reaction of investigator to results of a statistical significance test						
		Statistical S	Significance			
		Not significant	significant			
Practical importance	Not important	0	Annoyed			
or observed eneer	important	very sad	Elated			

L26 Statistical Significance of Data II (95% CI)

Two forms of estimation	Point estimation = single value, e.g. (mean, propration, RR, OR, etc) Interval estimation = range of value, e.g Confidence interval						
confidence interval= Estimation	 -A range of values so defined that there is a specified probability that the value of a parameter lies within it. -Components of CI: -Relying on information from a sample will always lead to some level of uncertainty, compare interval is a range of values that tries to quantify this uncertainty For example, 95% CI means that under repeated sampling 95% of CIs would contain the true population parameter Suppose α =0.05, we cannot say: "with probability 0.95 the parameter μ lies in the confidence interval." We only know that by repetition, 95% of the intervals will contain the true population parameter (μ) We are 95% sure that the TRUE parameter value is in the 95% confidence interval?" 						
Statistical inference is based on sampling variability	 -Sample statistics: We summarize a sample into one number e.g. a mean. -Sample variability: If we could repeat an experiment many, many times with different samples on the same number of subjects, the resultant sample statistic would not always be the same (because of chance). Standard error: A measure of the sampling variability.Don't get confused with the terms of standard deviation and standard error -What is the difference? Standard Error means how much is the Variability among different samples. while standard deviation is how much the the values in one sample deviating on average from mean (Variability in one sample). -Smaller Standard Error/Deviation indicates a good precision and vice viscera. 						
How to calculate CI	P = point of estimate, a value drawn form sample (a statistic). $\exists_{\omega} \equiv_{\alpha} \equiv_{\alpha} = 1.96 \ (\sim 95\% \ CI)$. $\exists_{\omega} \equiv_{\omega} \equiv_{\omega} = 1.96 \ (\sim 95\% \ CI)$. $\exists_{\omega} \equiv_{\omega} = 1.9$						
Most commonly used CI:	1-CI 90% corresponds to α 0.10 2-CI 95% corresponds to α 0.05 3-CI 99% corresponds to α 0.01 90% confidence interval: NARROWER than 95% (X ± 1.65sem) 99% confidence interval:WIDER than 95% (X ± 2.58sem)						
CHARACTE RISTICS OF CI'S	 -CI is for both descriptive and analytical studies studies while the P value is only for analytical(Comparison group). -The width of C.I. depends on: Increasing the sample size will increase precision and narrow C.I Sample size By reducing sample size 1-Bell shape converted to skewed 2-increase variability 3- widen C.I and included 0 (larger Sample size narrow CI and smaller variability and smaller P value that all indicate significance) Variability smaller variability the narrow CI and the more precision Degree of confidence 90% narrower than 95% which gives more precision -The (im) precision of the estimate is indicated by the width of the confidence interval. -The wider the interval the less precision, The narrower interval more precision. 						
Properties of Standard Error (SE)	 SE increases with smaller sample size , For any confidence level, large samples reduce the margin of error 2. SE increases with larger standard Deviation 3. SE increases with larger z values 						
Statistic and Parameter	An observed value drawn from the sample is called a statistic The corresponding value in population is called a parameter We measure, analyze, etc statistics and translate them as parameters						

Interpretation

Interpretation

- If a 95% CI includes the null effect, the P-value is > 0.05 (and we would fail to reject the null hypothesis)
- If the 95% CI excludes the null effect, the P-value is < 0.05 (and we would reject the null hypothesis)

Exc	ample: The fol	lowing finding of non-si	gnificance in a clinicc	Il trial on 178 patients:
	Treatment	Success	Failure	Total
	А	76 (75%)	25	101
	В	51 (66%)	26	77
	Total	127	51	178

• Chi-square value = 1.74 (p > 0.1) (non –significant) i.e. there is no difference in efficacy between the two treatments.

- The observed difference is 75% 66% = 9%
- and the 95% confidence interval for the difference is:-4% to 22%
- This indicates that compared to treatment B, treatment A has at best an appreciable advantage (22%) and at worst a slight disadvantage (-4%).
- This inference is more informative than just saying that the difference is non significant.

Trial	Number dead / R	andomized	Risk Ratio	95% C.I.	P value	
	Intravenous nitrate	Control				
Chiche	3/50	8/45	0.33	(0.09,1.13) ¹	0.08	1-Not significant as confidence interval
Wide interval: suggests reduction in mortality of 91%(1-0.09) and an increase of 13%(1-0.13)						including 1.
Flaherty	11/56	11/48	0.83	(0.33,2.12)	0.70	
Jaffe	4/57	2/57	2.04	(0.33,10.71)	0.40	
Reduction	n in mortality as little	e as 18%(1-0.8	2), but little evide	ence to suggest t	hat IV nitrate is harmful	
Jugdutt	24/154	44/156	0.48	(0.28,0.82)	0.007	

Which of the following odds ratios for the relationship between various risk factors and heart disease are statistically significant at the 0.05-significance level? Which are likely to be clinically significant?

Odds ratios	Statistically significant	Clinically significant	Reason
Odds ratio for every 1-year increase in age: 1.10 (95% Cl: 1.01-1.19) 1.1 means increase in the risk	\checkmark	\checkmark	C.I does not include 1 Significant effect size
Odds ratio for regular exercise (yes vs no): 0.50 (95% Cl: 0.30-0.82)	\checkmark	\checkmark	C.I does not include 1 Significant effect size
Odds ratio for high blood pressure (high vs normal): 3.0 (95% CI: 0.90-5.30) It's clinically significant because you can tell if you can maintain pressure as normal the risk of heart disease increased 3 times		\checkmark	C.I include 1 Significant effect size
Odds ratio for every 50-pound increase in weight: 1.05 (95% Cl: 1.01-1.20)	\checkmark		C.I does not include 1 Insignificant effect size

The figer name is Forest plot -The size of square indicates effect size. - Diamond shape indicate sum of confidence intervals.

L26 Statistical Significance of Data II (95% CI)

P- value hypothesis testing	CI estimating
Gives you the probability that the result is merely caused by chance or not by chance, it does not give the magnitude and direction of the difference.	Indicates estimate of value in the population given one result in the sample, it gives the magnitude and direction of the difference
Provides a measure of strength of evidence against the Ho Does not provide information on magnitude of the effect. Affected by sample size and magnitude of effect: interpret with caution!	How confident are we about the true value in the source population Better precision with large sample size Much more informative than P-value
"Is there a statistically significant difference between the two treatments?" (or two groups)	"What is the size of that treatment difference?", and "How precisely did this trial determine or estimate the treatment difference?"
Analytical only	Analytical and descriptive

Comparison between p values and confidence interval

L Practical Session: Statistical Significance (p-value and 95% CI)

Definition of P-Value:

Mark correct and faise statements as: (Yes/No)	
A. A "p" stands for probability and it ranges from 0 to 1.	Yes
B. A p-value of ≤ 0.05 is considered as not statistically significant.	No
C. A p-value of > 0.05 is considered as statistically significant	No
D. Statistically significant is more important than clinical significant.	No
E. The p-value is the probability of getting an outcome as extreme as or more extreme than the actually observed outcome (sample) under the null hypothesis.	Yes
F. Usually the null hypothesis is a statement of "no effect", "no difference" or "=0" and we are eager to find evidence against it.	Yes
G. When large samples are available, even small deviations from the null hypothesis will be significant.	Yes

Conclusions based on P-Value:

- There are two groups of employees (Teaching staff and Hospital staff)
- H0: Mean Income 1 = Mean Income 2
 - \circ You draw a random sample of size 30 from each population.

Statistical Test-result: p = 0.016

Mark correct and false conclusions as: (Yes /No)

Yes

No

No

Yes

A. Statistically, the mean income of the two employee groups is equal.	No
B. With probability 0.016 teaching staff has the same mean income as hospital staff.	No
C. The sample data is not compatible (p=0.016) with the null hypothesis: the mean income in the two groups is equal.	Yes
D. We could not find a significant (at level 0.05) difference in mean income of two groups.	No
E. Data did not show a significant difference in mean income of two groups.	No
F. The sample data is compatible (p=0.016) with the null hypothesis that teaching and hospital staff have the same mean income.	No

Conclusions based on P-Value:

Statistical Test-result: p = 0.09

Mark correct and false conclusions as: (Yes /No)

Mark correct and false conclusions as: (Yes /No)

A. Mean income in the two groups did not differ significantly (p=0.09).

B. Mean income in the two groups differs significantly (p=0.09).

C. The null hypothesis, that the mean income of teaching and hospital are equal, is rejected at significance level $\alpha = 0.05$.

D. The null hypothesis, that the mean income of teaching and hospital are equal, is not rejected at significance level α =0.05.

Definition of Confidence Interval:

A. A confidence interval always covers the true parameter.	No
B. A confidence interval covers the true parameter with a given probability.	No
C. A confidence interval covers the statistic with a given probability.	No
D. In 100 repeated samples, 95% its confidence intervals will contain the true parameter.	Yes

L Practical Session: Statistical Significance (p-value and 95% CI)

Duality of P-value and 95% confidence intervals:

• Which of the 4 statements given below are either consistent or inconsistent by both p-values and 95% confidence intervals? And also comment on the width of the confidence interval where ever it is consistent.

A) A study comparing BMI (each 50 male and female) reported mean difference (male-female) = 6.0, p = 0.10, CI 95% = [-1 to 40]

Answer: The mean BMI difference between male and female in the target population is **not statistically significant** (p=0.10, which is >0.05), also the 95% confidence interval for difference of mean value of BMI included the null value "zero" (of no difference). Hence both p-value and 95% CI are consistent. The width of confidence interval is large due to small sample size, which indicates low precision of the estimate.

B) A study comparing BMI (each 500 male and female) reported means difference (male-female) = 10.5, p = 0.01 CI 95% = [-2; 15]

Answer: The p-value and 95% CI are **inconsistent.** Because p=0.01 which is <0.05 (statistically significant), where as 95% CI included the null value "zero" (of no difference).

C) A study comparing Systolic BP (each 50 male and female) reported mean difference (male-female)=8.0, p = 0.0001 CI 95% = [-2; 20]

Answer: The p-value and 95% CI are inconsistent. Because p=0.0001 which is <0.05 (highly statistically significant), where as 95% CI included the null value "zero" (of no difference).

D) A study comparing Systolic BP (each 500 male and female) reported mean difference (male-female) = 7.5, p = 0.0001 CI 95% = [4.5; 12.0]

Answer: The mean Systolic BP difference between male and female in the target population is highly statistically significant (p=0.0001, which is <0.05) also the 95% confidence interval for difference of mean value of Systolic BP does not included the null value "zero" (of no difference). Hence both p-value and 95% CI are consistent. The width of confidence interval is small due to large sample size, which indicates a good precision of the estimate.

In a sample of 100 children taken from a rural community, it was found anemia prevalence as 35%. Construct 95 % confidence interval for the prevalence of anemia for that community and give your inference. Also comment on the width of confidence interval.

```
[Use: 95% CI for population proportion = p ± confidence factor × S.error of (p), Where confidence factor=1.96 and S.error of (p) = 4.8]
```

Solution:

95% confidence limits are $(0.35\pm1.96 \times 0.048) = 0.2559$ to 0.4441 = 26% to 44%

With 95% confidence, we expect that the anemia prevalence in the population will be as minimum as 26% and as high as 44%. The width of 95% confidence interval is wide, due to sample size of 100 children, which indicates lack of precision of the estimate.

To examine the hypothesis that the low birth weight babies have a higher risk of coronary diseases in later life, a study was conducted in 100 low birth weight babies and in 100 babies born with normal weight. It was found that 15% among the former 10% in the latter had lifetime incidence of chronic diseases. Obtain 95% CI for the difference in proportions in these two groups. Is there a statistically significant difference in the incidence of coronary diseases of low birth weight babies and babies born with normal weight?

[Use: 95% CI for (P1-P2) = (p1-p2) ± confidence factor × S.error of (p1-p2), Where confidence factor=1.96 and S.error of (p1-p2) = 0.0466]

Solution:

95% C I for (P1-P2) is [(0.15-0.10) ± 1.96 x 0.0466] = - 0.0431 to 0.1432 = -4.31% to 14.32%

The CI shows that coronary diseases in low birth weight babies would be as higher as 14.32% when compared to normal group. As the 95% confidence intervals for difference of proportions (incidence of coronary disease) included "zero" (null value of no difference), it can inferred that there is **no statistically significant** difference between low birth weight babies and normal weight babies.

L Practical Session: Statistical Significance (p-value and 95% CI)

interpretation of p-values and 95% confidence intervals in the following abstract:

Title: The Outcome of Extubation Failure in a Community Hospital Intensive Care Unit: A Cohort Study Seymour CW, Martinez A, Christie JD, Fuchs BD. Critical Care 2004, 8:R322-R327 (20 July 2004)

Introduction: Extubation failure has been associated with poor intensive care unit (ICU) and hospital outcomes in tertiary care medical centers. Given the large proportion of critical care delivered in the community setting, our purpose was to determine the impact of extubation failure on patient outcomes in a community hospital ICU.

Methods: A retrospective cohort study was performed using data gathered in a 16-bed medical/surgical ICU in a community hospital. During 30 months, all patients with acute respiratory failure admitted to the ICU were included in the source population if they were mechanically ventilated by endotracheal tube for more than 12 hours. Extubation failure was defined as reinstitution of mechanical ventilation within 72 hours (n=60), and the control cohort included patients who were successfully extubated at 72 hours (n=93).

Results: The primary outcome was total ICU length of stay after the initial extubation. Secondary outcomes were total hospital length of stay after the initial extubation, ICU mortality, hospital mortality, and total hospital cost. Patient groups were similar in terms of age, sex, and severity of illness, as assessed using admission Acute Physiology and Chronic Health Evaluation II score (P > 0.05). Both ICU (1.0 versus 10 days; P < 0.01) and hospital length of stay (6.0 versus 17 days; P < 0.01) after initial extubation were significantly longer in reintubated patients. ICU mortality was significantly higher in patients who failed extubation (odds ratio = 12.2, 95% confidence interval [CI] = 1.5–101; P < 0.05), but there was no significant difference in hospital mortality (odds ratio = 2.1, 95% CI = 0.8–5.4; P < 0.15). Total hospital costs (estimated from direct and indirect charges) were significantly increased by a mean of US\$33,926 (95% CI = US\$22,573–45,280; P < 0.01).

Conclusion: Extubation failure in a community hospital is univariately associated with prolonged inpatient care and significantly increased cost. Corroborating data from tertiary care centers, these adverse outcomes highlight the importance of accurate predictors of extubation outcome.

What is the sample size in each of Extubation failure and successfully extubated groups?

Answer: Extubation failure =60 and successfully extubated =93

On what basis the authors had mentioned that the patients groups were similar?

Answer: By using P > 0.05.

Is there a statistically significant difference in ICU and hospital length of stay initial extubation in re-intubated patients? If yes what are the corresponding p-values?

Answer: Yes, Both ICU (1.0 versus 10 days; P < 0.01) and hospital length of stay (6.0 versus 17 days; P < 0.01) after initial extubation were significantly longer in reintubated patients.

How to interpret ICU mortality odds ratio =12.2? Is it statistically significant?

Answer: The odd s of ICU mortality is 12.2 times higher in patients who failed extubation, when compared with the patients who successfully extubated. Yes the Odds ratio is statistically significant as p-value is <0.05.

What is the interpretation of its 95% confidence interval: 1.5 - 101? Why this confidence interval is very wide?

Answer: This study shows an odds ratio of 12.2. If this study is repeated 100 times, 95 times the odds ratio lies within 1.5 and 101. The confidence interval is wide due to small sample size, which indicates that the odds ratio of 12.2 is not a precise estimate.

L27 Statistical tests to Observe the statistical significance of Quantitative variables

Choosing the appropria	ate Statistical test	Base (Types of variables، N	sed on the three aspects of the data Number of groups being compared & Sample size.)			
Test		Z-test	Student's t-test			
Study variable		Qualitative	Qualitative			
Outcome variable	Q	uantitative or Qualitative	Quantitative			
Comparison	 Sample mean v Example: The edu been accused of " higher GPAs than Two sample m Example: Weight 	with population mean acation department at a university has grade inflation" in medical students with students in general. eans Loss for Diet vs Exercise	 sample mean with population mean - Whether the sample mean is equal to the predefined population mean?- Two means (Independent samples)- Whether the CD4 level of patients taking treatment A is equal to CD4 level of patients taking treatment B ? - paired samples Whether the treatment conferred any significant benefit ? - 			
Sample size	larger in each gro	oup (>30) & standard deviation is known	each group <30 can be used even for large sample size			
Z- value & t-Value	"Z and t" are the r High z & Low z & t	neasures of: How difficult is it to believe t t values: Difficult to believe the null hypo values: Easy to believe the null hypothes	he null hypothesis? thesis - accept that there is a real difference.significant sis - have not proved any difference.no significant			
	Types of variables. Number of groups being compared & Sample size.) Image: Types of variables. Number of groups being compared & Sample size.) Image: Types of variables. Number of groups being compared & Sample size.) Image: Types of variables. Number of groups being compared & Sample size.) Image: Types of variables. Number of groups being compared & Sample size.) Image: Types of variables. Number of groups being compared & Sample size.) Image: Types of variables. Number of groups being compared & Sample size. Image: Types of variables. Number of groups being compared & Sample size. Image: Types of variables. Image: Types of variables.					
Study variable & Out	come variable		Quantitative			
• A number called t	he correlation measu	ures both the <u>direction</u> and <u>strength</u> of the	linear relationship between two related sets of quantitative variables.			
Measurement of o	correlation 1	. Scatter Diagram 2. Karl Pe	arson's coefficient of Correlation			
Scatter diaphragm	 Using the a: X-axis horiz Both axes c 	xes ontally - Y-axis vertical an have different units of measurement.	 Both axes meet: origin of graph: 0/0 Numbers on graph are (x,y) 			
 A correlation coef Range: r is alway Sign of correlation high with high with expenditute no consist Magnitude (absole (9 is just as strong About "r") 	ficient (\mathbf{r}) provides a s between -1 and 1 n indicates <u>direction</u> high and low with high low and low with high ent pattern -> near z ute value) indicates g ing as .9) - 0.10 to 0.4 1- r is not dependent 3- r is not designed to	a quantitative way to express the degree of $\mathbf{L}^{:}$ ow -> positive (Ex. Height and Weight, Agg gh -> negative (Ex. Duration of HIV/AIDS ero <u>strength</u> : 40 weak - 0.40 to 0.80 mod on the units in the problem 2- r ignores the dis o measure the strength of relationships that are	f <u>linear</u> relationship between two variables. ge and BP) S and CD4 CD8, Price and Demand, Sales and advertisement lerate - 0.80 to 0.99 high - 1.00 perfect stinction between explanatory and response variables not approximately straight line. 4- r can be strongly influenced by outliers.			
 A number called the correlation measures both the <u>direction</u> and <u>strength</u> of the linear relationship between two related sets of quantitative variables. Measurement of correlation Scatter Diagram Scatter Diagram						

^{3.} Correlation <u>doesn't imply causality.</u>

L28 Statistical tests to observe the statistical significance of Categorical variables

test	Study varia	ble	Outcome variable	Comparison	Sample size	Expected frequency		
Chi-square	Qualitative			Two or more proportions E.g : (two proportions) : Prevalence of exercise among female and male. (more than two proportions): 1- prevalence of exercise among gp A, gp B, female gp. 2- prevalence of hypertension among 4 age gps.	> 20 >5			
Fisher's exact			Qualitative	Two proportions	< 20			
Macnemar's test (for paired samples)				Two proportions	Any			
Z-test				 Sample proportion with population proportion two sample proportions 	Larger in each group (>30)			
	Purpose	To fin	d out whether the association	on between two categorical variables are statistically sign	nificant.			
	Null Hypothesis	There	There is no association between two variables.					
Chi-square Test	Requirements	\ \ \ \	The data must be in the The total number observ The expected frequency All the observations mu another observation.	form of frequencies counted in each of a set of categorie yed must exceed 20. under the H_0 hypothesis in any one fraction must not no ust be independent of each other. In other words, one of	es. Percentages cannot be rmally be less than 5. oservation must not have a	used. an influence upon		
	Application	• •	Testing for independen Testing for homogeneit Testing of goodness-of -	<mark>ce (or association).</mark> y. (Similarity) fit.				
Fisher's Exact Test	The method of Yates's correction was useful when manual calculations were done. Now different types of statistical packages are available. Therefore, it is better to use Fisher's exact test rather than Yates's correction as it gives exact result.					ble. Therefore, it is		
McNemar's Test	When to use	When	n we have a paired sample s	s and both the exposure and outcome variables are qual	itative variables (Binary).		
	Situation	Two p cross- becon awhil	baired binary variables that over trial (is when you give ne a comparison group, ano e you cross the treatments b	form a particular type of 2 x 2 table. e.g. matched case-ce treatment A to the group and after a while you give the ther situation is when you give first group treatment A an between the groups).	ontrol study or cross-over same group treatment B s nd second group treatmen	trial. o the group t B and after		

Test	Equation
Ch-square	$X^{2} = \sum \left[\frac{(o - e)^{2}}{e} \right]$
Fisher's exact	$=\frac{R_{1}!R_{2}!C_{1}!C_{2}!}{n!a!b!c!d!}$
MacNemar's test	$X^{2} = \frac{(f - g - 1)^{2}}{f + g}$
Z-test	$z = \frac{p - P}{\sqrt{\frac{pq}{n}}} Z = \frac{P_1 - P_2}{\sqrt{\frac{P_1(1 - P_1)}{n} + \frac{P_2(1 - P_2)}{n_2}}}$

What are the three criteria to use, in selecting the appropriate statistical test?

1- Type of variables.

2- Number of groups being compared. 3- Sample size

One of the best indicators of the health of a baby is his/her weight at birth.

Birth weight of >2500 gms is considered normal. A researcher wants to test whether birth weight of babies born last year in a region are normal. He took a sample of 100 babies and calculated mean and SD (Standard deviation) of the birth weights. What test he should do to test his hypothesis that the birth weight of babies normal?

Outcome variable: Birth weight Type of variable: Quantitative How many groups: 1 Sample size: 100 (large) (more than 30) Statistical test: The best test for this case is Z-test for single mean and we can also use student's t-test since its used for small and large sample size.

A team of scientists wants to test a new medication to see if it has either a positive or negative effect on intelligence, or no effect at all. In the population, the average IQ is 100 with a standard deviation of 15. A sample of 30 participants who have taken the medication has a mean of 140. Did the medication affect intelligence, using alpha = 0.05? Using an appropriate statistical test they concluded that medication has significantly affected intelligence. What is the statistical test they used here?

Outcome variable: IQ Type of variable: Quantitative How many groups: 1 Sample size: 30 (small) Statistical test: Student's t-test for single mean Remember whenever you see mean or average its quantitative data and whenever you see proportion, out of and the frequency its categorical (qualitative) data.

research survey claims that 9 out of 10 doctors recommend aspirin for their patients with headaches. To test this claim, a random sample of 100 doctors is obtained. Of these 100 doctors, 82 indicate that they recommend aspirin. Is this claim accurate? Using an alpha of 0.05 with a two-tailed test, it was concluded that the claim that 9 out of 10 doctors recommend aspirin for their patients can't be rejected? What is the statistical test used here?

Outcome variable: Recommend aspirin or not recommend Type of variable: Qualitative (nominal) How many groups: 1 Sample size: 100 (large) Statistical test: Z-test for single proportion.

A statistics teacher wants to compare his two classes to see if they performed any differently on the tests he gave that semester. Class A had 25 students with an average score of 70, standard deviation 15. Class B had 20 students with an average score of 74, standard deviation 25. Using alpha 0.05, did these two classes perform differently on the tests?

Using an appropriate statistical test, he concluded that there was no significant difference between the performances of Class A and Class B. What is the statistical test the teacher has used ?

Outcome variable: Score Type of variable: Quantitative How many groups: 2 (class A and class B) Sample size: 20 and 25 (small) (less than 30) Statistical test: Student's t-test for independent samples (two means). Degrees of freedom: n1+n2-2 = 20+25-2= 43

We wish to test the proportion of smokers in a region is 15%. Taking a random sample of 320 persons in that region and found the proportion as 22%. What is an appropriate test here to test the hypothesis that sample proportion is not equal to proportion of smokers in that region?

Outcome variable: Proportion of smoking (Smoker or non-smoker) Type of variable: Qualitative (nominal) How many groups: 1 Sample size: 320 (large) (more than 30) Statistical test: Z-test for single proportion. We can't apply the chi-square here because its a single proportion and Chi-Square test is for 2 or more

proportion.

L Practical Session: Using appropriate statistical tests

Researchers want to test the effectiveness of a new anti-anxiety medication. In clinical testing, 64 out of 200 people taking the medication report symptoms of anxiety. Of the people receiving a placebo, 92 out of 200 report symptoms of anxiety. Is the medication working any differently than the placebo? Test this claim using alpha = 0.05. what is the appropriate statistical test we can use in this situation?

Outcome variable: Symptoms of anxiety (present or absent) Type of variable: Qualitative (How many groups: 2 (medication and placebo) Sample size: 200 and 200 (large) (more than 30) Statistical test: Z-test for two proportions.	nominal)			
To test the association between gender and favorite color a study has been done on 500 col green, or pink? Results are shown below: What is the appropriate statistical test we can use in this situation?	lege boys and girl BOYS 100 150 GIRLS 20 30 TOTAL 120 180	s are asked which is N PINK TOTAL 20 300 180 200 200 500	s their favorite col	or: blue,
Outcome variable: Color Type of variable: Qualitative (nominal) How many groups: 2 Sample size: 500 (large) (more than 20) Statistical test: Chi-square test for independence (or association). Whenever you see association you know by default that it is Chi-Square test. The degrees of freedom: $(r-1)(c-1) = (2-1)(3-1) = 2$	iation			
In 2010, ages of a random sample of 500 individuals from the same small town was taken. Using $alpha = 0.05$, would you conclude that the population distribution of ages is equally this situation?	. below are the res distributed? What	sults: t is the appropriate s	tatistical test we c	can use in
mean or proportions ? Proportions Outcome variable: Age Type of variable: Qualitative (age in category) (ordinal) How many groups: 1 Sample size: 500 (large)(more than 20) Statistical test: Chi-square test for homogeneity (to see whether the values are distributed e homogenous because 288 which is 57.6% of 500 are in the 18-35 years category so we need	<18 years 121 equally or not). In ed to provide statis	18-35 years 288 this example it isn't stical evidence	>35 years 91 uniformly distrib	uted (not
9-Researchers want to test a new weight loss pill. The following is the weights (kg) of 10 p How to find the effect of this pill on weight loss? What test will you do in this situation usi	people before and ing alpha = $0.05?$	after taking the pill. What is the degrees	of freedom?	
Outcome variable: WeightType of variable: QuantitativeBefore901007050705090How many groups: 1After 85 85 65 40 50 40 70 Sample size: 10 (small) (less than 30)Statistical test: Student's t-test for paired samples (dependent samples). (because it's before and after, with small sample size)The degrees of freedom: $(n-1) = (10-1) = 9$ (n-1 because its one sample)	60 80 70 50 50 70			
When the chi-squared test for $2x2$ table is not valid (when the expected numbers are <5) W	/hat is an alternati	ve test we use?		
Answer : Fisher's exact test. Remember, the only alternative test for Chi-Square test when the table is 2x2 with a small Fisher's exact test. Fisher's exact test is only for 2x2 table, not bigger dimensions tables.	sample size which	n results in an expec	ted value less that	n 5 is
A researcher wants to test the mean systolic blood pressure of Saudi females of took a random sample of 525 Saudi females and found the mean systolic bloo What is an appropriate test here to test his hypothesis?	of Dammam cit d pressure as 1	y is 120 mm/hg v 10 mm/hg .	with 95% confi	dence. He
Outcome variable: Mean systolic blood pressure Type of variable: Quantitative How many groups: 1 Sample size: 525 (large) (more than 30) Statistical test: Z-test for single mean (Z test because sample size is large)				

L Practical Session: Using appropriate statistical tests

The following data describe numbers of children with different sized palatine tonsils and their carrier status for Strep. pyogenes. What is the statistical test used to observe an association between carrier status and size of tonsils?

Outcome variable: Size of tonsils					
Type of variable: Qualitative (ordinal)		Tonsils			
How many groups: 2 (carriers and non-carriers)		not enlarged	Enlarged	Enlarged greatly	Total
Sample size: 1398 (large) (more than 20)	Carriers	19	29	24	72
Statistical test: Chi-square test for association (or independence).	Non-carriers	497	560	269	1326
The degrees of freedom: $(r-1)(c-1) = (2-1)(3-1) = 2$	Total	516	589	293	1398
Can we calculate the odds ratio for this table? No, because it's 3 columns and 2 rows					1070

14. A researcher wants to test the mean HB of a pregnant women of Malaz area is 12 g/dl. He took a random sample of 20 and found that the mean score is 11 g/dl and standard deviation is 34 g/dl. Could this sample originate from a population of mean = 12 g/dl? What is an appropriate test here?

Outcome variable: Hemoglobin Type of variable: Quantitative How many groups: 1 Sample size: 20 (small) (less than 30) Statistical test: Student's t-test for single mean. (you can't apply z-test here because sample size is small) The degrees of freedom: (n-1) = (20-1) = 19

15. A research team claims that their new drug increases the birth weight of babies. In order to test this, he took a random sample of 75 women for treatment group and 75 for Control group and at the end of the study period it was found Average birth Weight 3100 g and SD 420g for treatment group and for control **average** weight was 2750 g and SD 425g. What is an appropriate test to be done here?

Outcome variable: Birth weight				
Type of variable: Quantitative	Severe colds	olds Severe colds at age 14		Total
How many groups: 2 (treatment group and control group)	at age 12	Yes	No	
Sample size: 75 and 75 (large)(more than 30)	Yes	212	144	356
Statistical test: Z-test for two means. You can also apply student's t-test for independent	No	256	707	963
statistical test. 2-itest for two incaris, four carriers apply student's t-test for independent	Total	468	851	1319
samples because it can be used for small and large samples. Degrees of freedom: $n_1+n_2-2 = 75 + 75 - 2 = 148$				-

16. In an epidemiological survey, 1319 schoolchildren were assessed symptoms of severe cold at the age of 12 and again at the age of 14. At age 12, 356 (27%) children were reported to have severe colds in the past 12 months compared to 468 (35.5%) at age 14. what test is to be used to test these proportions? Was there a significant increase of the prevalence of severe cold?

Outcome variable: Symptoms of severe cold Type of variable: Qualitative (nominal) How many groups: 1 Sample size: 1319 (large) (more than 20) Statistical test: McNemar's chi-square test. (Because they are related "paired dependent sample" Follow up of the same group)(same sample at the age of 12, same sample at the age of 14) Degrees of freedom: n-1 = 2-1= 1

17. A researcher wants to quantify the linear relationship between systolic blood pressure and age of his study subjects. What is the appropriate plot so as to observe the relationship and what statistical measure he has to apply to quantify this relationship? Solution:

Outcome variable: Systolic blood pressure and age Type of variable: Quantitative What is the aproperite plot: Scatter plot. By putting age on x-axis and systolic BP on y-axis. Statistical measures: Karl pearson of correlation coefficient.

18. What is the range of correlation coefficient?

Between -1 and +1

-1 to $0 \rightarrow$ negative correlation

0 to $+1 \rightarrow$ positive correlation The + and - gives us the direction and the values gives us the magnitude.

19. What are the statistical tests to use, for test of association and for the measure of association? Solution:

• Test the association: Chi-square test (will see either there is association or not)

• Measure the association: Odds ratio (for cross sectional, prospective study and case control) or relative risk (for retrospective study and RCT).

20. What are the degrees of freedom for 3 x 4 & 2 x 3 contingency tables? Solution:

Answer :(R-1)(C-1)

- * first number is the rows, second number is the columns (Rows x Columns)
- 3×4 table = (3-1)(4-1) = 6
- 2 x 3 table = (2-1)(3-1) = 2

Leader

Rania almutiri

The work done by

Raina almutiri Renad alhomaidi Haya Alanazi Hessah Fahad Shatha Aldhohair Samar almohammedi Nourah Alklaib shatha Aldossari Sara alobed Noura almasoud Abdulaziz alomar