Research Summary

The red (important for sure) but the highlighted red more important it's from the gifts $\mathbb{1}$
For the last 2 lectures for more examples give the lectures a look but according to the doctor (I'll give you a scenario and you have to choose the appropriate test, no calculations)

وصلنا الى نـهايـة الفلم شُكرا لمتابـعتكم

Editing file

Black: in male AND female slides
Red : important
Gray: extra information

L16 Sampling Techniques to select study subjects

What is Sampling	Sampling is the process or technique of selecting a study sample of appropriate characteristics and of adequate size.
Why to use Sampling in Research?	Unable to study all members of a population Reduce selection bias Save time and money 'Measurements may be better in sample than in entire population Feasibility
Definitions	- Population - group of things (people) having one or more common characteristics "a set which includes all measurements of interest to the researcher (The collection of all responses, measurements, or counts that are of interest)" - Sample - representative subgroup of the larger population Used to estimate something about a population (generalize) and Must be similar to population on characteristic being investigated " (A subset of the population)
Sampling Frame	This is the complete list of sampling units in the target population to be subjected to the sampling procedure. Completeness and accuracy of this list is essential for the success of the study.
Sampling Units	These are the individual units / entities that make up the frame just as elements are entities that make up the population.
Sampling Error	This arises out of random sampling and is the discrepancies between sample values and the population value.
Sampling Variation	- Due to infinite variations among individuals and their surrounding conditions. - Produce differences among samples from the population and is due to chance.
Example:	In a clinical trail of 200 patients we find that the efficacy of a particular drug is 75% If we repeat the study using the same drug in another group of similar 200 patients we will not get the same efficacy of 75%. It could be 78% or 71%. "Different results from different trails though all of them conducted under the same conditions"

Representativeness (validity)

A sample should accurately reflect distribution of relevant variable in population (Person e.g. age, sex - Place e.g. urban vs. rural - Time)
Representativeness essential to generalise
Ensure representativeness before starting, Confirm once completed

Validity of a Study Two components of validity: Internal validity and External validity

Internal validity : A study is said to have internal validity when there have been proper selection of study group and a lack of error in measurement.
,For example, it is Concerned with the appropriate measurement of exposure, outcome, and association between exposure and disease

How to

 sample?In general, 2 requirements

1. Sampling frame must be available, otherwise develop a sampling frame.
2. Choose an appropriate sampling method to draw a sample from the sampling frame.

The Sampling Design Process

Define the Population then Determine the Sampling Frame \longrightarrow Select Sampling Technique(s) \longrightarrow Determine the Sample Size $->$ Execute the Sampling Process

Types of Sampling Methods

Probability Sampling

External validity: External validity implies the ability to generalize beyond a set of observations to some universal statement.

| Probability Sampling | Non- probability Sampling |
| :---: | :---: | :---: |

Simple Random Sampling (SRS), Stratified Random Sampling , Systematic Random Sampling, Cluster Sampling,Multistage Sampling

Deliberate (Quota) Sampling, Convenience Sampling , Purposive Sampling, Snowball Sampling, Consecutive Sampling

L16 Sampling Techniques to select study subjects

Simple Random Sampling

Numbering all subjects as a list and using random numbers to select required subjects from that list.

Systematic random Sampling

Stratified
Random
Sampling

Cluster (Area)

random sampling

Multistage
random sampling

Equal probability

Techniques :

Lottery method
Table of random numbers
Advantage
Most representative group

Alumed	M12	${ }^{\text {2.1. ratad }}$
$\substack{\text { Kanid } \\ \text { Cmmer }}$	cile	, bin
	ctiche	
Stiol		come

Disadvantage

Difficult to identify every member of a population

How to select a simple random sample

1. Define the population
2. Determine the desired sample size
3. List all members of the population or the potential subjects

For example:

4th grade boys who have demonstrated problem behaviors, lets select 10 boys from the list

Another example: Simple random sampling (Estimate hemoglobin levels in patients with sickle cell anemia)

1. Determine sample size -2 . Obtain a list of all patients with sickle cell anemia in a hospital or clinic - 3. Patient is the sampling unit -4 . Use a table of random numbers to select units from the sampling frame - 5. Measure hemoglobin in all patients -6 . Estimate the levels (normal \& abnormal) of hemoglobin

Technique: Select a random starting point and then select every $\mathbf{k}^{\text {th }}$ subject in the population
 Use "system" to select sample (e.g., every 5th item in alphabetized list, every 10th name in phone book)
 Advantage Quick, efficient, saves time and energy
 Disadvantage
 - Not entirely bias free; each item does not have equal chance to be selected
 - System for selecting subjects may introduce systematic error
 - Cannot generalize beyond population actually sampled

Divide the population into at least two different groups with common
characteristic(s), then draw subjects randomly from each group (group is called strata or stratum)

Technique

- Divide population into various strata (ex. divide population by age/sex)(Stratification variable)
- Randomly sample within each strata
- Sample from each strata should be proportional

Advantage

Better in achieving representativeness on control variable

Disadvantage

- Difficult to pick appropriate strata
- Difficult to Identify every member in population

Good sampling method to represent various segments of non-homogenous target population

Randomly select groups (cluster) - all members of groups are subjects Advantage

More practical, less costly
Conclusions should be stated in terms of cluster (sample unit - school)
Sample size is number of clusters
Example: Randomly selecting multiple schools then sampling all the students in them

Example

If a systematic sample of 500 students were to be carried out in a university with an enrolled population of 10,000 , the sampling interval would be:

$\mathrm{I}=\mathrm{N} / \mathrm{n}=10,000 / 500=20$

All students would be assigned sequential numbers. The starting point would be chosen by selecting a random number between 1 and 20. If this number was 9 , then the 9 th student on the list of students would be selected along with every following 20th student. The sample of students would be those corresponding to student numbers $9,29,49,69, \ldots9929$, 9949, 9969 and 9989.

Sampling in Epidemiology

Stratified random sample
"Assess dietary intake in adolescents

1. Define three age groups: 11-13, 14-16, 17-19
2. Stratify age groups by sex
3. Obtain list of children in this age range from schools
4. Randomly select children from each of the 6 strata until sample size is obtained
5. Measure dietary intake

Appropriate when

- you can't obtain a list of the members of the population
- have little knowledge of population
characteristics
- Population is scattered over large geographic area

Stage 1
randomly sample clusters (schools)
Stage 2
randomly sample class rooms from the schools selected
Stage 3
random sample of students from class rooms (if its cluster sampling, all students will be part of the sample)

Random Selection/Sample vs. Random Assignment/Allocation

Random Selection $=$

Every member of the population has an equal chance of being selected for the sample.(Choosing which potential subjects will actually participate in the study)

Random Assignment $=$

Every member of the sample (however chosen) has an equal chance of being placed in the experimental group or the control group.(Random assignment allows for individual differences among test participants to be averaged out.)"Deciding which group or condition each subject will be part of"

L16 Sampling Techniques to select study subjects

Nonprobability Sampling	Deliberate (Quota) Sampling	2-Convenience Sampling
	Similar to stratified random sampling Technique - Quotas set using some characteristic of the population thought to be relevant - Subjects selected non-randomly to meet quotas (usu. convenience sampling) Disadvantage - selection bias - Cannot set quotas for all characteristics important to study	Technique "Take them where you find them" (non-random sampling) Dr: it is where the sample is taken from a group of people easy to contact or to reach like posting your questionnaire on social media. Its very unfavorable and reduces the power of a research paper. Intact classes, volunteers, survey respondents (low return), a typical group, a typical person Disadvantage: - Selection bias
	3- Purposive Sampling	4- Snowball Sampling
	- Purposive sampling (criterion-based sampling) "Establish criteria necessary for being included in study and find sample to meet criteria. - Solution: Screening Obtain a sample of larger population and then those subjects that are not members of the desired population are screened or filtered out. EX: want to study smokers but can't identify all smokers	In snowball sampling, an initial group of respondents is selected. - After being interviewed, these respondents are asked to identify others who belong to the target population of interest. (ask the responders to identify other responders) - Subsequent respondents are selected based on the referrals
	5- Consecutive sampling	
	- Outcome of 1000 consecutive patients presenting to the emergency room with chest pain - Natural history of all 125 patients with HIV-associated TB during 5 year period - Explicit efforts must be made to identify and recruit ALL persons with the condition of interest	

Choosing probability vs. non-probability sampling method Prof. Shaffi: Very important table

Probability sampling	Evaluation Criteria	Non-probability sampling
Conclusive	Nature of research	Exploratory
Larger sampling errors	Relative magnitude sampling vs non-sampling error	Larger non-sampling error
High [Heterogeneous]	Population variability	Low [Homogeneous]
Favorable	Statistical Considerations (all statistical analysis are based on the assumption that the sample is random - use proper random sample technique -)	Unfavorable
High	Sophistication Needed	Low
Relatively Longer	Time	Relatively shorter
High	Budget Needed	Low

L16 Practical Session: How to apply Sampling Techniques?

How to apply sampling techniques?

First, he needs only the list of these 60 schools. In the first stage he can select 5 schools among 60 schools at random, and form each of the selected school, out of five standards VI to X, select two standards at random. This is second stage of selection.
So our sample consists of 200 students ($5 \times 2 \times 20$). This is his sample of students from whom he has to collect data to estimate the prevalence of anemia of high school children of that district.
1 st stage - randomly select from list of 60 schools
2nd stage - randomly select from VI - X classes
3rd stage - randomly select from students list
Health authorities asked an epidemiologist to find out the prevalence of anemia in high school children of standard VI to X in a district of an African country. There are 60 schools in this district. And each school has standard VI to X classes. He wanted to use multistage sampling method to estimate the prevalence of anemia in high school children of standard VI to X in that district. How he would have done multistage sampling method in this situation?
It was decided to estimate prevalence of diabetes in KSA. He had limited resources. So, he divided entire KSA into 5 regions as north, south, east, west and central. Then he made 10 contiguous geographical areas in each of these five regions. Then he selected one area at random from each region. He collected data from all the eligible individuals from each selected area and he found 5000 individuals from these five selected areas. Then he collected relevant data from all these individuals.
$\rightarrow \quad$ What type of sampling method he used here? Cluster sampling (key words: all the eligible individuals from each selected area, all individuals)
$\rightarrow \quad$ Why did he adopt this method? He used cluster sampling because he had limited resources and he does not need sampling frame that is list of all the individuals of entire KSA, which is difficult to get. It's enough if he has list of clusters, and he could collect the data from all individuals of the selected clusters only. In this way, he saves lot of resources by not traveling widely to take a simple randomness sample.
$\rightarrow \quad$ What are these two groups called in sampling? These groups are called strata in sampling.
$\rightarrow \quad$ What is the sampling method adopted here to select a sample of 100 cases? This method of sampling is called stratified sampling.
$\rightarrow \quad$ Why did the researcher adopt this sampling method? He adopted this sampling method because that both strata that is, overweight and of less weight cases to be represented in the sample
Consider one more hospital where 1000 MI cases were reported last year. He wants to do a study one these cases. As these number of cases is large, he wants to take a sample of 100 cases. And also, as the physiological parameters of these cases would be different in overweight and less weight cases, the researcher wants to divide these 500 MI cases into two groups one with overweight/obese(that is BMI>=25) cases and the other less weight $(\mathrm{BMI}<25)$ cases and that both these groups to represent in his sample of 100 cases. Then he took a sample of 50 patients at random from each of these two groups.
In a big hospital, every year 500 cases of MI (myocardial infarction) are reported. We want to study their physiological profile-their BP, cholesterol level, lipoprotein level, BMI, etc. Resources permit us to do investigations only for 50 cases. How do you select a simple random sample (SRS) of 50 cases out of these 500 cases? Explain the crude way as well as easy way to select this sample.

We will write ID numbers of these 500 cases in 500 similar looking slips and roll them and put in a bowl and shuffle well and then take 50 slips one by one. The patients whose ID numbers are picked up is our sample. This method of sampling is called simple random sampling. This is the crude way and difficult to do.
Easy way is take 50 random numbers within 1 to 500 from the computer or form the random number tables and the patients whose ID numbers are selected, will be our sample.
A researcher wants to take a random sample of 100 cases from 1000 deliveries that occurred in maternity hospital in the last year. He has taken one random number out of 1 and 10 say, 5 . Then he took a case having ID No.5. Then he took cases having ID numbers $15,25,35,45 \ldots \ldots 99$ as his sample. What method of sampling the researcher adopted here?

The research has adopted systematic sampling. Why? There is a fixed and periodic interval

L17 How many study subjects are required? (Estimation of Sample size)

How to calculate sample size?

SAMPLE

SIZE:

Most Important: sample size calculation is an educated guess It is more appropriate for studies involving hypothesis testing
There is no magic involved; only statistical and mathematical logic and some algebra
Researchers need to know something about what they are measuring and how it varies in the population of interest
How many subjects are needed to assure a given probability of detecting a statistically significant effect of a given magnitude if one truly exists?

Before We Can Determine Sample Size We Need To Answer The Following:

1. What is the primary objective of the study?
2. What is the main outcome measure?Is it a continuous or dichotomous outcome?
3. How will the data be analyzed to detect a group difference?
4. How small a difference is clinically important to detect?
5. How much variability is in our target population?
6. What is the desired a (alpha)and b (beta)?
7. What is the anticipated drop out and non-response $\%$?

Rejecting H0 when H0 is true

- α : The type I error rate

Where do we

 get thisknowledge?

Estimation of Sample Size by Three ways:

Type I error:

SAMPLE SIZE FOR ADEQUATE PRECISION

In a descriptive study,

- Summary statistics (mean, proportion)
- Reliability (or) precision
- By giving "confidence interval"
- Wider the C.I - sample statistic is not reliable and it may not give an accurate estimate of the true value of the population parameter

Sample size formulae for reporting precision
For single mean : $\mathrm{n}=\mathrm{Z} 2 \alpha \mathrm{~S}^{2} / \mathrm{d}^{2}$ where $\mathrm{S}=\mathrm{sd}(\mathrm{s})$
For a single proportion : $\mathrm{n}=\mathrm{Z} 2 \alpha \mathrm{P}(1-\mathrm{P}) / \mathrm{d} 2$
Where, $\mathrm{Z} \alpha=1.96$ for 95% confidence level
$\mathrm{Z} \alpha=2.58$ for 99%

Problem 1

(Single mean)

A study is to be performed to determine a certain parameter(BMI) in a community. From a previous study a sd of 46 was obtained. If
a sample error of up to 4 is to be accepted. How many subjects should be included in this study at 99% level of confidence?

Answer $\quad \mathrm{n}=(\mathrm{Z} \alpha / 2) 2 \sigma 2 / \mathrm{d} 2$

σ : standard deviation $=46$
d: the accuracy of estimate (how close to the true mean)= given sample error $=4$
$\mathrm{Z} \alpha / 2$: A Normal deviate reflects the type I error. For 99% the critical value $=2.58$
$2.58^{2} .46^{2} / 4^{2}=880.3 \sim \sim 881$

Problem 2

(Single
proportion)
It was desired to estimate proportion of anemic children in a certain preparatory
school. In a similar study at another school a proportion of 30% was detected. Compute the minimal sample size required at a
confidence limit of 95% and accepting a difference of up to 4% of the true population.

Answer
$\mathrm{n}=(\mathrm{Z} \alpha / 2) 2 \mathrm{p}(1-\mathrm{p}) / \mathrm{d} 2$
p: proportion to be estimated $=30 \%(0.30)$
d: the accuracy of estimate (how close to the true proportion) $=4 \%(0.04)$
$\mathrm{Z} \alpha / 2$: A Normal deviate reflects the type I error For 95% the critical value $=1.96$

$$
\mathrm{n}=1.96^{2} \cdot 0.3(1-0.3) / 0.04^{2}=504.21 \sim \sim 505
$$

L17 How many study subjects are required? (Estimation of Sample size)

SAMPLE SIZE FOR ADEQUATE power

Three bits of information required to determine the sample size Type I \& II errors
Clinical effect

Variation

Researcher fixes probabilities of type I and II errors ■ Prob (type I error) = Prob (reject HO when H 0 is true) $=\alpha$ Smaller error \Rightarrow greater precision \Rightarrow need more information \Rightarrow need larger sample size
■ Prob $($ type II error $)=\operatorname{Prob}($ don't reject H 0 when HO is false $)=\beta$ - Power =1- β

More power \Rightarrow smaller error \Rightarrow need larger sample size

Quantities related to the research question (defined by the researche :

- $\alpha=$ Probability of rejecting H 0 when H 0 is true which's called significance level of the test
- $\quad \beta=$ Probability of not rejecting H 0 when H 0 is false, is called statistical power of the test
- Size of the measure of interest to be detected
- Difference between two or more means Difference between two or more proportions Odds ratio, Relative risk, Correlation, Regression coefficients Change in R2, etc
- The magnitude of these values depend on the research question and objective of the study (for example, clinical relevance)

Clinical Effect Size
What is a meaningful difference between the groups
It is truly an estimate and often the most challenging aspect of sample size p
Large difference - small sample size

- Small differences - large sample size
- Cost/benefit

Test Statistic $=$
Difference between parameters $/ \mathrm{v} / \sqrt{ } \mathrm{n}$
As $\mathrm{n} \uparrow \mathrm{v} / V_{\mathrm{n}} \downarrow$ Test statistic \uparrow (where’s $\mathrm{v}=$ Variation)

Sample size formulae for comparing two means	$\mathrm{n}=2 \mathrm{~S} 2(\mathrm{Z} \alpha+\mathrm{Z} \beta) 2 / \mathrm{d} 2$ where $\mathrm{S}=\mathrm{sd}$; $\mathrm{d}=$ difference two proportions : $Z \alpha=1.96$ for 95% confidence level $Z \alpha=2.58$ for 99% confidence level ; $Z \beta=0.842$ for 80% power $Z \beta=1.282$ for 90% power $n=\frac{\left(Z_{a}+Z_{p}\right)^{2}\left(\left(p_{1} q_{1}\right)+\left(p_{2} q_{2}\right)\right)}{\left(p_{1}-p_{2}\right)^{2}}, \text { whste } q_{1}=\left(1-p_{1}\right), q_{2}=\left(1-p_{2}\right)$
Example 1:	Does the consumption of large doses of vitamin A in tablet form prevent breast cancer? Suppose we know from our tumor- registry data that incidence rate of breast cancer over a 1-year period for women aged $45-49$ is 150 cases per 100,000 . Women randomized to Vitamin A vs. placebo Group 1: Control group given placebo pills. Expected to have same disease rate as registry (150 cases per 100,000) Group 2: Intervention group given vitamin A tablets. Expected to have 20\% reduction in risk (120 cases per 100,000) Want to compare incidence of breast cancer over 1 year Planned statistical analysis: Chi-square test to compare two proportions from independent samples. H0: p1 = p2 vs. HA: p1 p2
Answer	Test H0: $\mathrm{p} 1=\mathrm{p} 2$ vs. HA $\mathrm{p} 1 \neq \mathrm{p} 2$ - Assume 2 -sided test with $\alpha=0.05$ and 80% power $\cdot \mathrm{p} 1=150$ per $100,000=.0015$ - p2 = 120 per $100,000=.0012(20 \%$ rate reduction $)$ - $\Delta=\mathrm{p} 1-\mathrm{p} 2=.0003$ - $\mathrm{z} 1-\alpha / 2=1.96 \mathrm{zl}-\beta=.84$ $n=\frac{\left(Z_{a}+Z_{p}\right)^{2}\left(\left(p_{1} q_{1}\right)+\left(p_{2} q_{2}\right)\right)}{\left(p_{1}-p_{2}\right)^{2}}, \text { where } q_{1}=\left(1-p_{1}\right) q_{2}=\left(1-p_{2}\right)$ - n per group $=234,882$ (Too many to recruit in one year!)
Example 2:	Does a special diet help to reduce cholesterol levels? Suppose an investigator wishes to determine sample size to detect a $10 \mathrm{mg} / \mathrm{dl}$ difference in cholesterol level in a diet intervention group compared to a control (no diet) group - \quad Subjects with baseline total cholesterol of at least $300 \mathrm{mg} / \mathrm{dl}$ randomized Group 1: A six week diet intervention - Group 2: No changes in diet Investigator wants to compare total cholesterol at the end of the six week study Planned statistical analysis: two sample t-test (for independent samples)(comparison of two means) H0: $\mu 1=\mu 2$ vs. HA: $\mu 1 \neq \mu 2$

Answer	Sample Size Formula To Compare Two Mean 1

To Compare Two Means From Independent Samples: H0: $\mu 1=\mu 2$

1. α level
2. β level (1 - power)
3. Expected population difference $(\Delta=|\mu 1-\mu 2|)$
4. Expected population standard deviation $(\sigma 1, \sigma 2)$

Continuous Outcome

(2 Independent Samples)

- Test H0: $\mu 1=\mu 2$ vs. HA: $\mu 1 \neq \mu 2$
- Two-sided alternative
- Assume outcome normally distributed with:
$\mathrm{S}=$ standard deviation; $\mathrm{d}=$ difference between two means ; $Z \alpha=1.96$ for 95% confidence level; $Z \beta=1.28$ for 90% power
Test H0: $\mu \mathbf{1}=\mu 2$ vs. HA : $\mu \mathbf{1} \neq \mu 2$
- Assume 2 -sided test with $\alpha=0.05$ and 90% power
- $\mathrm{d}=\mu 1-\mu 2=10 \mathrm{mg} / \mathrm{dl}$
- $\sigma 1=\sigma 2=(50 \mathrm{mg} / \mathrm{dl})$
- $\mathrm{z} \alpha=1.96 \mathrm{z} \beta=1.28$
- n per group $=525$
- Suppose 10% loss to follow-up expected, adjust $\mathrm{n}=525 / 0.9=584$ per group

Problem (comparison of

 two means) respectively.[^0]$\mathrm{N}=---------\mathrm{f}(\alpha, \beta)$
$2(2)^{2} /(0.5)^{2} * 7.9=252.8($ in each group $)$

L17 Practical Session: How to calculate Sample Size?

We want to estimate the mean hemoglobin of Saudi females. The standard deviation is around 5 grams/deciliter and we wish to estimate the true mean to within 2 grams/deciliter with 95% confidence. What is the required sample size?

Study

No. 1

1. Outcome variable $=$ mean hemoglobin (continuous)
2. Type of study $=$ descriptive

According to the outcome variable and study type we will use single mean formula
Findings: $Z \alpha=1.96$ for 95% confidence interval, $S=5, d=2$
$\mathrm{n}=\mathrm{Z} \alpha 2 \mathrm{~S} 2 \mathrm{~d} 2$
$\mathrm{n}=1.962 \times 52 / 22=24.01 \sim 24$
$\mathrm{n}=24+20 \%$ non-response rate $=24+4.8=28.8 \sim 29$

A researcher wanted to estimate average/mean number of cigarettes smoked per week by undergraduate students studying in a certain city. How many students are to be selected in to the sample such that the estimate of mean number of cigarettes smoked is to be within 2 of the true average with $\mathbf{9 5 \%}$ confidence? (Based on a pilot study, it was found that the Sd. of number of cigarettes smoked is 30

1. Outcome variable $=$ mean number of cigarettes (continuous)
2. Type of study $=$ descriptive

According to the outcome variable and study type we will use single mean formula
Findings: $\mathrm{Z} \alpha=1.96$ for 95% confidence interval, $\mathrm{S}=30, \mathrm{~d}=2$
$\mathrm{n}=\mathrm{Z} \alpha 2 \mathrm{~S} 2 / \mathrm{d} 2 \mathrm{n}=1.962 \times 302 / 22=864.36 \sim 864$
$\mathrm{n}=864+20 \%$ non-response rate $=864+172.8=1036.8 \sim 1037$

We wish to estimate the proportion of Saudi males who smoke. What sample size do we require to achieve a 95% confidence interval of width \pm 5% (that is to be within 5% of the true value)? A study some years ago found approximately 30% were smokers?

1. Outcome variable = proportion of Saudi males who smoke (categorical)
2. Type of study $=$ descriptive

According to the outcome variable and study type we will use single proportion formula

Findings: $\mathrm{Z} \alpha=1.96$ for 95% confidence interval, $\mathrm{P}=0.3, \mathrm{~d}=0.05$
$\mathrm{n}=\mathrm{Z} \alpha 2 \mathrm{P}(1-\mathrm{P}) / \mathrm{d} 2 \mathrm{n}=1.962 \times 0.3 \times(1-0.3) / 0.052=322.6944 \sim 323$
$\mathrm{n}=323+20 \%$ non-response rate $=323+64.6=387.6 \sim 388$

An epidemiologist was asked to estimate the Knowledge level (\%) towards Covid-19 in a particular community. How many subjects he should select, if the resulting estimate is to fall within 10% (width of confidence interval) of the true proportion with 95% confidence? What will happen to sample size if width of confidence interval is 5%. (As no literature is available researcher assumes that only 30% of subjects had good knowledge level)

1. Outcome variable $=$ knowledge level $($ categorical $)$
2. Type of study = descriptive

According to the outcome variable and study type we will use single proportion formula

Findings: $\mathrm{Z} \alpha=1.96$ for 95% confidence interval, $\mathrm{P}=0.3, \mathrm{~d}=0.1$
$\mathrm{n}=\mathrm{Z} \alpha 2 \mathrm{P}(1-\mathrm{P}) / \mathrm{d} 2$
$\mathrm{n}=1.962 \times 0.3 \times(1-0.3) / 0.12=80.6736 \sim 81$
$\mathrm{n}=81+20 \%$ non-response rate $=81+16.2=97.2 \sim 97$
What will happen to sample size if width of confidence interval is 5% ?
Findings: $\mathrm{Z} \alpha=1.96$ for 95% confidence interval, $\mathrm{P}=0.3, \mathrm{~d}=0.05$
$\mathrm{n}=\mathrm{Z} \alpha 2 \mathrm{P}(1-\mathrm{P}) / \mathrm{d} 2$
$\mathrm{n}=1.962 \times 0.3 \times(1-0.3) / 0.052=322.6944 \sim 323$
$\mathrm{n}=323+20 \%$ non-response rate $=323+64.6=387.6 \sim 388$

L17 Practical Session: How to calculate Sample Size?

An epidemiologist wants to test whether an iron supplement for pregnant women will increase their Hb level. One group of women will receive new supplement and the other group the usual supplement. From a pilot study the sd of Hb is $4 \mathrm{~g} / \mathrm{dl}$ and is assumed to be same for both groups. what is the sample size required to test the hypothesis of no difference in mean Hb level at 99% level of confidence and 90% power of detecting an increase of $2 \mathrm{~g} / \mathrm{dl}$.

Study

1. Outcome variable $=$ hemoglobin level (continuous)
2. Type of study $=$ analytical

According to the outcome variable and study type we will use two means formula
Findings: $Z \alpha=2.58$ for 99% confidence interval, $Z \beta=1.282$ for 99% power, $S=4, d=2$
$\mathrm{n}=2 \mathrm{~S} 2(\mathrm{Z} \alpha+\mathrm{Z} \beta) 2 / \mathrm{d} 2$, per arm
$\mathrm{n}=2 \times 42 \times(2.58+1.282) 2 / 22=119.320 \sim 119 \mathrm{n}=119+20 \%$ non-response rate $=119+23.8=142.8 \sim 143$, per group
Total sample size $=143 \times 2=286$

Suppose it has been estimated that the rate of caries is $\mathbf{8 0 0}$ per $\mathbf{1 0 0 0}$ school children in one district and $\mathbf{6 0 0}$ per 1000 in another district. What is the sample size required from each district to determine whether the difference is significant at the 95% level if we wish to have an $\mathbf{9 0 \%}$ of chance of detecting the difference if it is real?

1. Outcome variable $=$ rate of caries (categorical)
2. Type of study = analytical

According to the outcome variable and study type we will use two proportions formula
Study
No. 2
Findings: $Z \alpha=1.96$ for 95% confidence interval, $Z \beta=1.282$ for 99% power, $p 1=800 / 1000=0.8, p=600 / 1000=0.6, q 1=1-0.8=0.2, q 2=$ $1-0.6=0.4$, difference $=\mathrm{p} 1-\mathrm{p} 2=0.8-0.6=0.2$
$\mathrm{n}=(\mathrm{Z} \alpha+\mathrm{Z} \beta) 2((\mathrm{p} 1 \mathrm{q} 1)+(\mathrm{p} 2 \mathrm{q} 2)) /(\mathrm{p} 1-\mathrm{p} 2) 2$, per arm, where $\mathrm{q} 1=(1-\mathrm{p} 1), \mathrm{q} 2=(1-\mathrm{q} 2)$
$\mathrm{n}=(1.96+1.282) 2 \times((0.8 \mathrm{x} 0.2)+(0.6 \mathrm{x} 0.4)) / 0.22=105.106 \sim 105$
$\mathrm{n}=105+20 \%$ non-response rate $=105+21=126$, per group
Total sample size $=126 \times 2=252$

	$\begin{aligned} & \text { Table } 2 \mathrm{~A} \\ & \text { Za for } 99 \% \text { level }=\mathbf{2 . 5 8} \\ & \text { 7h for } 90 \% \text { nower }=1.78 \end{aligned}$				SAMPLE SZESS for two means for various values of d and $s d$									14	15									
Sd	1	2		4	5	6	7	8	9	10	11	12	13				${ }^{17}{ }^{18}$							
1	30	7	3	2	1	1	1	0	0	0	0	0	0		0			0						
2	119	30	13	7	5	3	2	2	1	1	1	1	1	1	,	-	0	-	-					
	268	67	30	17		7	5	4	3	3	2	2	2	1	1	1								
4	477	119	53	30	19	13	10	7	6	5	4	3	3	2	2	2	2	1						
5	745	186	83	47	30	21	15	12	9	T	6	5	4	4	3	3	$3{ }^{2}$	2	2					
${ }^{6}$	1073	268	119	67	${ }^{43}$	30	22	17	13	11	9	7	6	5	5	4	${ }_{4}{ }^{3}$	3	3					
7	1460	365	162	91	58	${ }_{4}^{41}$	30	23	18	15	12	10	9	7	${ }^{6}$	6	5 5	${ }^{5}{ }^{5}$	4					
8	1907	477	212	119	76	53	39	30	24	19	16	13	11	10	8	7	7.6	$6{ }^{5}$	5					
9	2414	603	268	151	97	67	49	38	30	24	20	17	14	12	11	9	8	77	6					
${ }^{10}$	2980	745	331	186	119	83	61	47	37	30	25	21	18	15	13	12	109	98						
11	3606	901	401	225	144	100	74	56	45	36	30	25	21	18	16	14	12.11	11.10	9					
12	${ }^{4291}$	${ }^{1073}$	${ }^{477}$	268	172	119	${ }^{88}$	67	53	43	35	30	25	22	19	17.1	15.13	$13{ }^{12}$	${ }^{11}$					
13	5036	1259	560	315	201	140	103	79	62	50	42	35	30	26	22	20	${ }^{17}{ }^{16}$	$1{ }^{16}{ }^{14}$						
14	5841	1460	649	365	234	162	119	91	72	58	48	41	35	30	26	23	20	18.16						
15	6705	1676	745	419	268	186	137	105	83	67	55	47	40	34	30	26	23.2	21.19						
16	7629	1907	${ }^{848}$	47	305	212	156	119	94	76	63	53	45	${ }^{39}$	34	30	26.24	24	19					
17	8612	2153	957	538	344	239	176	135	106	86	71	60	51	44	${ }^{38}$	34	30	27.24						
${ }^{18}$	9655	2414	1073	603	386	268	197	151	119	97	80	67	57	49	43	38 3	${ }^{33} 3$	30	24					
19	10758	2689	1195	672	430	299	220	${ }^{168}$	133	108	89	75	64	55	${ }^{48}$	42	${ }^{37}{ }^{33}$	$33 \quad 30$						
${ }^{20}$	11920	2880	1324	745	477	331	243	186	${ }^{147}$	119	99	83	71	61	53	47	${ }^{41}{ }^{37}$	$37{ }^{33}$						
21	13141	3285	1460	821	526	365	268	205	162	131	109	91	78	67	58	51	${ }^{45}{ }^{41}$	${ }_{41}{ }^{36}$						
22	14423	3606	1603	901	577	401	294	225	178	144	119	100	85	74	64	56	50	45						
23	15764	3941	1752	985	631	438	322	246	195	158	130	109	93	80	70	62	55	4944	39					
24	17164	4291	1907	${ }_{3}^{107}$	687	47	350	268	212	172	142	119	102	88	76	67	595	5348						
25	18625	4656	2069	${ }_{4}^{116}$	745	517	380	291	230	186	154	129	110	95	83	73	645	5752	47					
	P_{1}																							
${ }^{\text {P2 }}$	10\%	15\%	20\%	25\%	30\%	35\%	${ }^{40 \%}$	458	50\%	55\%	60\%	65\%	70\%	75\%	${ }^{80 \%}$	${ }^{85 \%}$	90\%	\% ${ }^{\text {95\% }}$	100\%					
10\%		914	263	130	79	53	39	29	22	18	14	11		7	5			2						
15\%			1209	331	158	93	62	44	${ }^{32}$	25	19	15	12	9	7	5	$5{ }^{4}$	${ }^{4}{ }^{3}$	${ }^{2}$					
20\%				${ }^{1461}$	389	181	105	69	48	${ }^{35}$	26	20	16	12	9	,	5	$5{ }^{4}$	3					
25\%					1671	436	200	114	74	51	37	27	21	16	12	9	7	75	4					
30%						1839	473	214	121	7	53	38	28	21	16	12	9	9	5					
35\%							1965	499	223	125	79	53	${ }^{38}$	27	20	15	11	1	${ }^{6}$					
40\%								2050	515	228	126	79	53	37	26	19	14	${ }^{14} 10$						
45\%									2092	520	228	125	7	51	${ }^{35}$	${ }^{25}$	18	${ }^{18}$	9					
50\%										2092	515	223	121	74	${ }^{48}$	32	${ }^{22}$	${ }^{22} 15$	${ }^{11}$					
55\%											2050	499	214	114	69	44	29	${ }^{29} 19$	${ }^{13}$					
60\%												1965	473	200	105	62	39	3925	16					
65\%													1839	436	181	93	53	33	20					
70\%														1671	389	158	79	${ }^{9} 43$	25					
75\%															1461	331	130	${ }^{30} 6$	32					
80\%																1209	263	238	${ }^{42}$					
${ }^{85 \%}$																	914	$4{ }^{184}$	${ }^{60}$					
90\%																		578	95					
95\%																			200					
100\%																								

			发						US	and dof	for 95%	\% level,	2 za 1.96	.96						
P	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.5	0.55	0.60	0.65							
0.01	16	4	2		1	1	1	1	1	1	1		11	1						
0.02	31	8	4			1														
0.03	45	12	5	5		2							1							
0.04	60	15	7	4	3	2	2		1		1		1	1						
0.05	73	19	9			3														
0.06	87	22	10			4														
0.07	101	26	12	7	5	3	${ }^{3}$	2												
0.08	114	29	13	8	5	4	${ }^{3}$	2	2	2			1	1						
0.09	126	32	14			4														
0.1	139	35	16		${ }^{6}$	4		3	${ }^{2}$	2			1							
0.11	151	38	17	10	7	5	4	3	2	2	2	2	1	1						
0.12	163	41	19			5														
0.13	174	44	20	11		5		${ }^{3}$	3			2	2							
0.14	186	47	21	12	,	${ }^{6} 6$	4	${ }^{4}$	3	2	2	2	2	1		1				
0.15	196	49	22	${ }^{13}$	8	${ }^{6}$	4	4					2	1						
0.16	207	52	23	13		6							2	${ }^{2}$						
0.17	217	55	25	14	-	7	5	4	3	${ }^{3}$	2	2	2	2		1	1			
0.18	227	57	26	15	10	7	5	4	3	3	2	2	2	2		1				
0.19	23	60	27	15	10	7	5	4	${ }^{3}$				2							
0.2	246	62	28	16	10	7	${ }^{6}$						2	${ }^{2}$						
0.21	255	64	29	16	11	8	6	,	4	3	3	2	2	${ }^{2}$	${ }^{2}$	1	1			
0.22	264	66	30	17	11	8	6	5	4	3	3	2	2	2	2	2	1			
0.23	273	69	31	18	11	8	${ }^{6}$						2							
0.24	281	71	32		12			5					,							
0.25	289	73	33	19	12	- 9	6	5	4	3	3	3	2	2	2	2				
0.26	296	74	33	19	12	-	7	5	4	3	3	3	2	2	2	${ }_{2}$	2			
0.27	303	76	34	19	13	3	7	5	4	4			2	2	2		2			
0.28	310	78	35	20	13	9	7	5	4	4	3	3	2	2	2	2	2			
0.29	317	80	36	20	13	9	7	5	4	,	3	3	2		2	,	2			
0.3	${ }^{323}$	${ }^{81}$	36	$\frac{21}{21}$	13	9			5				$\stackrel{2}{2}$		${ }^{2}$					
0.31	32	83	37	21	14	10	7	6	5	4	${ }^{3}$	3	2	2	${ }^{2}$	$\stackrel{2}{2}$	2			
0.32	335	84	38	21	14	40	7		5		${ }^{3}$	3	,	2	$\stackrel{2}{2}$,	${ }^{2}$			
0.33		$\frac{85}{87}$	$\frac{38}{39}$		${ }_{14}^{14}$									$\frac{2}{2}$						
0.35	${ }^{350}$	88	39	22	14	10	,	,				,	3	,	,	,				
0.36	355	89	40	23	15	10	8	6	5	4	3	3	3	2	2	2	2	2		
0.37	359	90	40	23	15	10	${ }^{8}$	6	5	4	3	3	3	2	2	2	2			
0.38	363	91	41	23	15	11									2					
0.39	366	92	41	23	15	11	8	6	5	4	4		3	${ }^{2}$	2	2	2	2		
0.4	369	93				11														

[^1]
L21 Basic concepts and terminology in Biostatistics

Examples:

- (1) Apgar score based on appearance, pulse, grimace, activity and respiration is used for neonatal prognosis.
- (2) Smoking index: no. of cigarettes, duration, filter or not, whether pipe, cigar etc.,
- (3) APACHE (Acute Physiology and Chronic Health Evaluation) score: to quantify the severity of condition of a patient

L21 Basic concepts and terminology in Biostatistics

Categorical (Qualitative) Data	The objects being studied are grouped into categories based on some qualitative trait. - The resulting data are merely labels or categories. - Nominal and Ordinal scales will be used for categorical data or qualitative data.	
$\begin{aligned} & \text { Quantitative } \\ & \text { data } \end{aligned}$	The objects being studied are 'measured' based on some quantitative trait. - The resulting data are set of numbers. - Interval and Ratio scales will be used to measure quantitative data. CONTINUOUS DATA can be converted into QUALITATIVE DATA Ex :Wt. (In kg.) : Under wt, normal \& over wt. Ht. (In cm.): Short, medium \& tall	
Types of quantitative data:	1- Discrete	2- Continuous:
	Only certain values are possible (There are gaps between the possible values). Implies counting. A whole number (Ex: Number of Children)	Continuous: Theoretically, with a fine enough measuring device. Implies measuring. (There is a decimal.) (Ex: Haemoglobin levels,2.5..)Age (in years),Height(in cms.), Weight (in Kgs.), Sys.BP, Hb., Etc

Practical session: Scales of measurement and type of variables

Question 1	Q1) Name type of measurement scale for the following :	
	Measurement scale	Type
	Education status (Literate / Illiterate)	Nominal scale
	Outcome of a newborn baby (Boy / Girl)	Nominal scale
	Body mass Index (weight $(\mathrm{kg}) / \operatorname{Height}^{2}(\mathrm{~m})$)	Ratio scale
	Blood sugar level (Quantitative variable)	Ratio scale
	Cholesterol level (Quantitative variable)	Ratio scale
	Immunization status of the child (Yes / No)	Nominal scale
	Grades of Exam Result ($\mathrm{A}+, \mathrm{A}, \mathrm{B}+, \mathrm{B}$, etc.,)	Ordinal scale

Q2) A sample data of a study is given below. Name the type of variable:

Pt ID	Age (years)	sex	Marital status	Education	BMI	CD4 cell count	Viral load	ESR at 1 hour
1	34	1	1	1	20.1	351	728000	35
2	30	2	1	1	17.8	33	11300	25
3	48	2	2	1	25.1	179	53900	30
4	40	1	1	2	17.6	235	498000	34
5	36	1	1	1	18.1	70	7360	19
6	25	1	2	2	17.3	86	400	10
7	29	2	1	1	16.9	228	750000	39
8	25	1	1	2	17.3	67	83400	22
9	38	2	2	1	22.5	27	14300	23
10	40	1	2	2	17.5	41	290000	30

Sex (1=Male, 2=Female); Marital status (1=single, 2=married); Education(1=illiterate, 2=literate)

Age (years)	Sex	Marital status	Education	BMI	CD4 cell count	Viral load	ESR at 1 hr
QNV (Discrete)	QLV (Nominal)	QLV (Nominal)	QLV (Nominal)	QNV (Continuous)	QNV (Discrete)	QNV (Discrete)	QNV (Discrete)

$$
\text { QLV =Qualitative variable. } \quad \text { QNV= Quantitative variable }
$$

Question 3

Q3) Classify the following variables as: - Quantitative (discrete or continuous).

- Qualitative (ordinal or nominal).

Variable	Type	Variable	Type
White blood cells per deciliter of whole blood	Quantitative variable (continuous)	Satisfaction: 1=very satisfied, 2= satisfied, 3= neutral, 4= unsatisfied, $5=$ other	Qualitative variable (ordinal)
Leukemia rates in geographic regions (cases per 100,000 people)	Quantitative variable (continuous ${ }^{1}$)	Treatment group : 1 = active treatment, 2 = placebo	Qualitative variable (nominal)
Presence of type II diabetes mellitus (yes or no)	Qualitative variable (nominal)	The number of road accidents in KSA during Ramadan month.	Quantitative variable (discrete)
Body weight (kilograms)	Quantitative variable (continuous)	The number of boys in a family	Quantitative variable (discrete)
Low-density lipoprotein level (mg/dl)	Quantitative variable (continuous)	The length of time that a cancer patient and survives after diagnosis.	Quantitative variable (either discrete or continuous ${ }^{2}$)
Grade in course coded : A, B, C, D or F	Qualitative variable (ordinal)		unntitative variable (discrete)
Course credit (pass or fail)	Qualitative variable (nominal)	expectant mother had.	

L23 Description of Data (Using Summary \& Variability measures)

- IF variable is Nominal.. \longrightarrow Mode, Ex: number of people who smoke
- IF variable is Ordinal... — Mode or Median (or both)
- IF variable is Interval-Ratio and distribution is Symmetrical... \longrightarrow Mode, Median or Mean
- IF variable is Interval-Ratio and distribution is Skewed... \rightarrow Mode or Median
- $7,8,9,10,11 \quad \mathrm{n}=5, \quad \mathrm{x}=45, \quad \mathrm{X}=45 / 5=9 \quad$ S.D. $=1.58, \quad 1.58 \longrightarrow$ Less variability
- $3,4,9,12,15 \quad \mathrm{n}=5, \quad \mathrm{x}=45, \quad \mathrm{X}=45 / 5=9 \quad$ S.D. $==4.74, \quad 4.74 \longrightarrow$ There is variability
- $1,5,9,13,17 \quad \mathrm{n}=5, \quad \mathrm{x}=45, \quad \mathrm{X}=45 / 5=9 \quad$ S.D. $==6.32, \quad 6.32 \longrightarrow$ High variability

Variability will be low when: 1-Accurate measurements. 2-Good sample size
Dispersion(التشتّ)
(Variability)

L23 Description of Data (Using Summary \& Variability measures)

Exploring data VERY IMPORTANT

Graphical illustrations

1- Categorical data-qualitative-

- Bar chart
- Clustered bar charts (two categorical variables)
- Pie charts

2- Continuous data-quantitative-:

- Histogram (can be plotted against a categorical variable)
- Box \& Whisker plot (can be plotted against a categorical variable)
- Stem and Leaf plot
- Scatter plot (2 continuous variables)(observe the relationship between two quantitative variables.)

Descriptive statistics

1- categorical data :

- Frequency
- Percentage (row, column or total)

2- Continuous data (Measure of location) :

- Mean
- Median

3- Continuous data (Measure of variation) :

- \quad Standard deviation
- \quad Range (Min,Max)
- Interquartile range (LQ, UQ)

L24 Practical Session: Normal distribution

Question 1

 using the NORMAL curve shown below, answer the following
A. The normal curve is a bell shaped curve.
B. The total area under the curve is equal to $1(100 \%)$.
C. 68% of the area lies between (mean-sd) and (mean +sd).
D. 95% of the area lies between (mean- 2 sd) and (mean+2sd).
E. $\quad \underline{99 \%}$ of the area lies between (mean-3sd) and (mean +3 sd).
F. Normal distribution can be standardized in terms of a quantity called

Observation - Mean
$\mathbf{Z}=. \quad----------------------\quad$, what do you call this \mathbf{Z} : standard normal deviate Standard deviation
SD

Question 2:

 standardized normal curve (mean 0 and variance 1) is shown

Looking at the graph, fill up the followi
A. what is the area lies between $(-1 \leq \mathrm{Z} \leq 1)$? 68.27%
B. what is the area lies between $(-2 \leq \mathrm{Z} \leq 2)$? 95.45%
C. what is the area lies between $(-3 \leq \mathrm{Z} \leq 3)$? $\underline{99.73 \%}$

Tabie : stanaara ivormaı isistribution - Area rrom u to Z value

Question 3:

To find the shaded area under normal curve from mean to z value 1.45 using z tables.

L24 Practical Session: Normal distribution

a) Find the Proportion of persons whose height exceeds 68"

- Answer: Normal deviate $=\mathrm{Z}=(\mathrm{X}-\mathrm{mean}) / \mathrm{sd}=(68-65) / 2=1.5$

The z table gives areas from 0 to z. But, now we want the area from z to infinity. This gives us proportion of persons whose height exceeds 68 '. We know the area from 0 to infinity is 0.5 . so, if we subtract area of 0 to 1.5 from 0.5 , we get the area from z to infinity.
Area from 1.5 to infinity $=(0$ to infinity $)-(0$ to 1.5$)$

$$
\begin{aligned}
& =0.5-0.4332 \\
& =0.0668=6.68 \% \text { That is, there are nearly } 7 \% \text { of persons whose height exceeds } 68 \text { " }
\end{aligned}
$$

(X)

(Z)

Proportion $=$ percentage, probability $=$ number
b) Find the proportion of persons whose height is less than 60"

- Answer: compute Normal deviate $=\mathrm{Z}=(\mathrm{X}-\mathrm{mean}) / \mathrm{sd}=(60-65) / 2=-2.5$

We want the area from $-\infty$ to -2.5 because we want the proportion of persons whose height is less than 60 ". The z tables give areas from 0 to z. We know the area from 0 to infinity is 0.5 . So, if we subtract value of 0 to 2.5 from 0.5 , we get the area from z to infinity. Area from 2.5 to infinity $=(0$ to infinity $)-(0$ to 2.5$)=0.5-0.4938=0.0062=0.6 \%$ There are nearly 0.6% of persons whose height is <60 "

(x)

c) Proportion of persons whose height is in between 64" \& 67"

- Answer: First, find Normal deviate for 64 " Z1 $=(64-65) / 2=-0.5$ Next, find Normal deviate for 67 " $Z 2=(67-65) / 2=1$ We want the area from -0.5 to 1 Z table gives area from 0 to z . We know area from -0.5 to 0 is same as area from 0 to 0.5 Hence, answer to the problem is to add the areas Area from 0 to 0.5 and from 0 to, Area from 0 to $0.5=0.1915$ Area from 0 to $1=0.3413$ Area from -0.5 to $1=0.5328=53.28 \%$
There will be 53% of persons whose height is in between 64" \& 67"

L24 Practical Session: Normal distribution

a) What percentage of population is likely to have a level more than $210 \mathrm{mg} / \mathrm{dl}$?

- Answer: first we draw rough normal curve showing which area we want to find. Next, we want the area from 210 to the end. So, we find the z value corresponding to $210 \mathrm{mg} / \mathrm{dl}$ and find the area from this z to the end.
$Z=(x-m e a n) / s d=(210-160) / 25=50 / 25=2$
Area from 2 to end $=(0.5)-($ area from 0 to 2) "get it from the table"
$=0.5-0.4772=0.0228=2.3 \%$
2.3% population is likely to have a level more than $210 \mathrm{mg} / \mathrm{dl}$

b) What percentage of population is likely to have a level between 110 and $210 \mathrm{mg} / \mathrm{dl}$?
- Answer: here also draw rough normal curve and shade the area from 110 and $210 \mathrm{mg} / \mathrm{dl}$ and then find the z values corresponding to 110 and 210 find the area from the z tables.
Let $\mathrm{z} 1=(x-$ mean $) / \mathrm{sd}=(110-160) / 25=-50 / 25=-2$
Let $\mathrm{z2}=(\mathrm{x}$-mean $) / \mathrm{sd}=(210-160) / 25=50 / 25=2$
Area from -2 to $2=($ area from -2 to 0$)+($ area from 0 to 2$)$
Area from -2 to $0=$ area 0 to 2 because of symmetry,
Area from -2 to $2=0.4772+0.4772$
= 0.9554 = 95.54%
95.5% of the population is likely to have a level between 110 and $210 \mathrm{mg} / \mathrm{dl}$

c) What percentage of population is likely to have a level below $160 \mathrm{mg} / \mathrm{dl}$?
- Answer: here also first draw rough normal curve and shade the area up to $160 \mathrm{mg} / \mathrm{dl}$ and find z value corresponding to 160 .
Let $z=(x$-mean $) /$ sd $=(160-160) / 25=0$
Area up to $0=0.5=50 \%$
50% of population is likely to have a level below $160 \mathrm{mg} / \mathrm{dl}$.
(NB: without calculation z itself, we can tell because 50\% lie below mean value $160 \mathrm{mg} / \mathrm{dl}$)

L25 Statistical significance using p-value

Importance of inferential statistics

1-Using inferential statistics, we make inferences about population (taken to be unobservable) based on a random sample taken from the population of interest. 2-We can generate the parametre from the statistic

L25 Statistical significance using p-value

> Size of the p-value is related to the sample size (larger = significant p value) Size of the p-value is related to the effect size or the observed association or difference

Example:

If a new antihypertensive therapy reduced the SBP by 1 mmHg as compared to standard therapy we are not interested in swapping to the new therapy.
\odot "Small" is defined as a p-value $\leq \alpha$,
where $\alpha=$ acceptable false (+) rate (usually 0.05).

- After calculating a test statistic we convert this to a to distribution of test statistic under the null hypothesis.
- Measure of how likely the test hypothesis:
- p-value $\leq \boldsymbol{\alpha} \Rightarrow$ Reject H0
- p -value $>\alpha \Rightarrow$ Do not reject

H0 at level α

What is a P-value?

' p ' stands for probability.

- Tail area probability based on the observed effect. Calculated as the probability of an effect as large as or larger than the observed effect (more extreme in the tails of the distribution), assuming null hypothesis is true.
Size of the P -value is related to:
The sample size.
- Measures the strength of the evidence against the null hypothesis - Smaller p- values indicate stronger evidence against the null

P values give no indication about the clinical importance of the observed association.
\odot A very large study may result in very small p-value based on a mportant when translated into clinical practice. confidence intervals.
evidence to reject the null hypothesis.
\odot "Not small" is defined as a p-value> α, where $\alpha=$ acceptable false (+) rate (usually 0.05).
(

p-value is small

L25 Statistical significance using p-value

Statistically significant Vs not statistically significant	Statistically significant		Not statistically significant	
	- Reject Ho		- Do not reject Ho	
	- Sample value not compatible with Ho.		- Sample value compatible with Ho.	
	- Sampling variation is an unlikely explanation of discrepancy between Ho and sample value. (يعنيsignificant not caused by chance or variation)		- Sampling variation is a likely explanation of discrepancy between Ho and sample value.	
	Statistically significant \& clinically important.	Not statistically important.	BUT clinically	Statistically significant BUT NOT clinically important.
Clinical importance vs. statistical significance	- This is where there is an important, meaningful difference between the groups and the statistics support this.	- This is most likely underpowered and large enough samp between groups.	ur if your study is ot have a detect a difference	If you have enough participants, even the smallest differences can become statistically significant. \circ just because a treatment is statistically significantly better than an alternative treatment, does not necessarily mean that these differences are clinically important.

Reaction of investigator to results of a statistical significance test			
		Statistical Significance	
	Not significant	significant	
Practical importance of observed effect	Not important	0	Annoyed
	important	very sad	Elated

L26 Statistical Significance of Data II (95\% CI)

Two forms of estimation	Point estimation $=$ single value,e.g. (mean, propration,RR,OR,etc) Interval estimation $=$ range of value, e.g Confidence interval
confidence interval= Estimation	-A range of values so defined that there is a specified probability that the value of a parameter lies within it. -Components of CI: -Relying on information from a sanıfe wir aıways rau w sume tever or uncitamy, commence interval is a range of values that tries to quantify this uncertainty For example, 95% CI means that under repeated sampling 95% of CIs would contain the true population parameter - Suppose $\alpha=0.05$, we cannot say: "with probability 0.95 the parameter μ lies in the confidence interval." - We only know that by repetition, 95% of the intervals will contain the true population parameter (μ) - We are 95% sure that the TRUE parameter value is in the 95% confidence interval"

	-Sample statistics: We summarize a sample into one number e.g. a mean. Statistical inference is based on		
-Sample variability:If we could repeat an experiment many, many times with different samples on the same number of subjects, the resultant sample statistic would not always be the same (because of chance).			
variability		\quad	Standard error: A measure of the sampling variability.Don't get confused with the terms of standard deviation and standard error
:---			
-What is the difference?			
Standard Error means how much is the Variability among different samples. while standard deviation is how much the the values in one			
sample deviating on average from mean (Variability in one sample).			
-Smaller Standard Error/Deviation indicates a good precision and vice viscera.			

How to calculate CI	P = point of estimate, a value drawn form sample (a statistic). أي قيمة إحصائية mean,proportion, difference of tow means or proportions,OR,RR etc... Z $\boldsymbol{\alpha}=$ standard Normal deviate for α, if $\alpha=0.05, Z \alpha=1.96(\sim 95 \%$ CI) $)$ Example : σ or $\mathrm{S}=$ standard deviation $\mathrm{n}=$ number of sample (sample size) SE or $S \bar{X}$ of the mean $($ sem $)=\sigma / \sqrt{n}$ calculate the standard error from the standard deviation Standard error of the mean(sem) should be always smaller than standard deviation(S) General formula: $\mathbf{C I}=\mathbf{P}+/-\mathbf{Z}_{0} \times \mathbf{S E}$. Standard deviation $=\sqrt{ } S^{2}=\sqrt{ } 4.67=2.16$ The standard deviation measures how each X value $(6,10,5,4,9,8)$ (Sample statistic) $+/-[($ confidence level) (standard error)
Most commonly used CI:	1-CI 90% corresponds to $\alpha 0.10$ 2-CI 95% corresponds to $\alpha 0.05$ 3 -CI 99% corresponds to $\alpha 0.01$ 90% confidence interval: NARROWER than 95% ($X \pm 1.65$ sem) 99% confidence interval:WIDER than 95% ($X \pm 2.58 \mathrm{sem}$)

CHARACTE
RISTICS OF
CI'S
-The width of C.I. depends on:Increasing the sample size will increase precision and narrow C.I

- Sample size By reducing sample size 1-Bell shape converted to skewed 2-increase variability 3- widen C.I and included 0 (larger Sample size narrow CI and smaller variability and smaller P value that all indicate significance)
- Variability smaller variability the narrow CI and the more precision
- Degree of confidence 90% narrower than 95% which gives more precision
-The (im) precision of the estimate is indicated by the width of the confidence interval.
-The wider the interval the less precision, The narrower interval more precision.

Properties of

SE increases with smaller sample size, For any confidence level, large samples reduce the margin of error
Standard Error
(SE)
2. SE increases with larger standard Deviation
3. SE increases with larger z values

Statistic and
 Parameter

An observed value drawn from the sample is called a statistic
The corresponding value in population is called a parameter
We measure, analyze, etc statistics and translate them as parameters

L26 Statistical Significance of Data II (95\% CI)

Interpretation

The result considered statically significant:
1 -When P value less than or equal to alpha(α) but because we mostly use 95% C.I ($\alpha=0.05$)
2- In descriptive study $\mathbf{C l}$ for a difference between two means: Does the interval include $\mathbf{0}$ (zero)? we take the difference between 2 mean which can $=0$ (ex;p:50-50) which includes no significant
3 - In analytical study, when the Confidence interval in Odds ratio Or Relative risk (risk ratio) do not include one.here
we divide not taking the difference so it's either = 1 where there's no association or ris The Result considered clinically significant when it has significant effect size.
Width of the confidence interval (CI)

```
Interpretation of Conidence intevcls
```

\circ A narrow Cl implies high precision.
\circ A wide Cl implies poor precision (usually due to inadequate sample size).

In representative sample of 100 observations of heights of men, drawn at random from a lalarge population, suppose the sample mean is found to be 175 cm (standard deviation $=10 \mathrm{~cm}$).
Can we make any statement about the population mean?

- We can not say that population mean is 175 cm because we are uncertain As to how much sampling fluctuation has occurred.
- What to do instead is to determine a range of possible values for population mean, with 95% of confidence ${ }^{3}$.
- This range is called the 95% confidence interval and can be important adjuvant to significance test.

In the example , $\mathrm{n}=100$, sample mean= 175, S.D, $=10$,
and the S, Error $=10 / \sqrt{ } 100=1$

- Using the general format of confidence interval :

Statistic \pm confidence factor \times Standard Error of statistic

- Therefore the 95% confidence is 175 ± 1.96 * $1=173$ to 177
- That is, if numerous random sample of size 100 are draw. And 95% confidence interval is computed for each sample, the population mean will be within the computed intervals in 95% of instances.

Example 1

- 100 KKUH student 60 do daily exercise ($p=0.6$).
- What it the proportion of student do daily exercise in the KSU.

$$
\begin{gathered}
S E(p)=\sqrt{\frac{p q}{n}} \\
=>95 \% C I=0.6 \pm 1.96 \sqrt{\frac{0.6 \times 0.4}{100}} \\
=0.6 \pm 1.96 \times \frac{0.5}{10} \\
=0.6 \pm 0.1=0.5 ; 0.7
\end{gathered}
$$

If someone repeat the study,We are 95% confident that people who do daily exercise between $0.5(50 \%)$ to 0.7 (70\%).
(The closer the interval the better the precision is. And vice versa)

We are 95\% confident that true population mean lies within 2920 to 3080

Example 3: Cl of difference

 between proportions (p1-p2)- 50 patients with drug A, 30 cured ($\mathrm{p} 1=0.6$)
- 50 patients with drug B, 40 cured (p2=0.8)

Example 4: Cl for difference

 between 2 means- Mean systolic BP:
- 50 smokers $=146.4$ (SD 18.5) mmHg
-50 non-smokers $=140.4$ (SD 16.8) mmHg
- $\overline{\mathrm{X}} 1-\overline{\mathrm{X}} 2=6.0 \mathrm{mmHg}$
- $95 \% \mathrm{Cl}(\overline{\mathrm{X}} 1-\overline{\mathrm{X}} 2)=(\overline{\mathrm{X}} 1-\overline{\mathrm{X}} 2) \pm 1.96 \times \mathrm{SE}$ ($\overline{\mathrm{X}} 1-\overline{\mathrm{X}} 2$)
- $\quad S E(\bar{X} 1-\bar{X} 2)=S \times \sqrt{ }(1 / n 1+1 / n 2)$
$s=\sqrt{\frac{(n 1-1) s 1^{2}+(n 2-1) s 2^{2}}{(n 1+n 2-2)}}$
$s=\sqrt{\frac{(49 \times 18.6)+(49 \times 16.2)}{98}}=17.7$
$S E(\bar{X} 1-\bar{X} 2)=17.7 \sqrt{\frac{1}{50}+\frac{1}{50}}=3.53$
-Statically significant because the C.I doesn't include zero value -The Confidence interval is wide due to low sample size (poor precision).

The result is Not statically significant because the confidence interval include Zero value, so we accept H_{0}

L26 Statistical Significance of Data II (95\% CI)

Interpretation

- If a $95 \% \mathrm{Cl}$ includes the null effect, the P -value is >0.05 (and we would fail to reject the null hypothesis)
- If the $95 \% \mathrm{Cl}$ excludes the null effect, the P -value is <0.05 (and we would reject the null hypothesis)

Example: The following finding of non-significance in a clinical trial on 178 patients:

Treatment	Success	Failure	Total
A	$76(75 \%)$	25	101
B	$51(66 \%)$	26	77
Total	127	51	178

- Chi-square value $=1.74(p>0.1)$ (non-significant) i.e. there is no difference in efficacy between the two treatments.
- The observed difference is $75 \%-66 \%=9 \%$
- and the 95% confidence interval for the difference is:- 4% to 22%
- This indicates that compared to treatment B, treatment A has at best an appreciable advantage (22\%) and at worst a slight disadvantage (-4\%).
- This inference is more informative than just saying that the difference is non significant.

Trial	Number dead / Randomized		Risk Ratio	95\% C.I.	P value
	Intravenous nitrate	Control			
Chiche	$3 / 50$	$8 / 45$	0.33	$(0.09,1.13)^{1}$	0.08

Wide interval: suggests reduction in mortality of $91 \%(1-0.09)$ and an increase of $13 \%(1-0.13)$

1-Not significant as confidence interval including 1 .

Which of the following odds ratios for the relationship between various risk factors and heart disease are statistically significant at the 0.05 -significance level? Which are likely to be clinically significant?

Odds ratios	Statistically significant	Clinically significant	Reason
Odds ratio for every 1-year increase in age: 1.10 ($95 \% \mathrm{Cl}: 1.01-1.19$)	\checkmark	\checkmark	C.I does not include 1 Significant effect size
Odds ratio for regular exercise (yes vs no): 0.50 (95% Cl: 0.30-0.82)	\checkmark	\checkmark	C.I does not include 1 Significant effect size
Odds ratio for high blood pressure (high vs normal): 3.0 ($95 \% \mathrm{Cl}: 0.90-5.30$)		\checkmark	C.I include 1 Significant effect size
Odds ratio for every 50 -pound increase in weight: 1.05 ($95 \% \mathrm{Cl}$: 1.01-1.20)	\checkmark		C.I does not include 1 Insignificant effect size

The figer name is Forest plot -The size of square indicates effect size. - Diamond shape indicate sum of confidence intervals.

L26 Statistical Significance of Data II (95\% CI)

Comparison between p values and confidence interval

P - value hypothesis testing

CI estimating

Gives you the probability that the result is merely caused by chance or not by chance, it does not give the magnitude and direction of the difference.

Provides a measure of strength of evidence against the Ho Does not provide information on magnitude of the effect.

Affected by sample size and magnitude of effect:
interpret with caution!

Indicates estimate of value in the population given one result in the sample, it gives the magnitude and direction of the difference

How confident are we about the true value in the source population

Better precision with large sample size
Much more informative than P -value
"Is there a statistically significant difference between the two treatments?" (or two groups)
"What is the size of that treatment difference?", and "How precisely did this trial determine or estimate the treatment difference?"

L Practical Session: Statistical Significance (p-value and 95\% CI)

Definition of P-Value:

Mark correct and false statements as: (Yes/No)

A. A "p" stands for probability and it ranges from 0 to 1.
B. A p-value of ≤ 0.05 is considered as not statistically significant.
C. A p-value of >0.05 is considered as statistically significant
D. Statistically significant is more important than clinical significant.
E. The p-value is the probability of getting an outcome as extreme as or more extreme than the actually observed outcome (sample) under the null hypothesis.
F. Usually the null hypothesis is a statement of "no effect", "no difference" or " $=0$ " and we are eager to find evidence against it.
G. When large samples are available, even small deviations from the null hypothesis will be significant.

Conclusions based on P-Value:

- There are two groups of employees (Teaching staff and Hospital staff)
- H0: Mean Income 1 = Mean Income 2
- You draw a random sample of size 30 from each population.

A. Statistically, the mean income of the two employee groups is equal.	No
B. With probability 0.016 teaching staff has the same mean income as hospital staff.	No
C. The sample data is not compatible $(p=0.016)$ with the null hypothesis: the mean income in the two groups is equal.	Yes
D. We could not find a significant (at level 0.05$)$ difference in mean income of two groups.	No
E. Data did not show a significant difference in mean income of two groups.	No
F. The sample data is compatible $(p=0.016)$ with the null hypothesis that teaching and hospital staff have the same mean income.	No

A. Mean income in the two groups did not differ significantly $(p=0.09)$.	Yes
B. Mean income in the two groups differs significantly ($p=0.09$).	No
C. The null hypothesis, that the mean income of teaching and hospital are equal, is rejected at significance level $\alpha=0.05$.	No
D. The null hypothesis, that the mean income of teaching and hospital are equal, is not rejected at significance level $\alpha=0.05$.	Yes

Definition of Confidence Interval:

Mark correct and false conclusions as: (Yes/No)

A. A confidence interval always covers the true parameter.
B. A confidence interval covers the true parameter with a given probability.
C. A confidence interval covers the statistic with a given probability.

L Practical Session: Statistical Significance (p-value and 95\% CI)

Duality of P-value and 95% confidence intervals:

- Which of the 4 statements given below are either consistent or inconsistent by both p-values and $\mathbf{9 5 \%}$ confidence intervals? And also comment on the width of the confidence interval where ever it is consistent.
A) A study comparing BMI (each 50 male and female) reported mean difference (male-female) $=6.0, \mathrm{p}=0.10, \mathrm{CI} 95 \%=[-1$ to 40]

Answer: The mean BMI difference between male and female in the target population is not statistically significant ($\mathrm{p}=0.10$, which is >0.05), also the 95% confidence interval for difference of mean value of BMI included the null value "zero" (of no difference). Hence both p-value and 95\% CI are consistent. The width of confidence interval is large due to small sample size, which indicates low precision of the estimate.
B) A study comparing BMI (each 500 male and female) reported means difference (male-female) $=\mathbf{1 0 . 5}, \mathbf{p}=\mathbf{0 . 0 1} \mathbf{C I} 95 \%=[-\mathbf{2} ; \mathbf{1 5}]$

Answer: The p-value and $95 \% \mathrm{CI}$ are inconsistent. Because $\mathrm{p}=0.01$ which is <0.05 (statistically significant), where as $95 \% \mathrm{CI}$ included the null value "zero" (of no difference).
C) A study comparing Systolic BP (each 50 male and female) reported mean difference (male-female)=8.0, $\mathbf{p}=\mathbf{0 . 0 0 0 1} \mathbf{C I} 95 \%=[-\mathbf{2} ; \mathbf{2 0}]$

Answer: The p-value and 95% CI are inconsistent. Because $\mathrm{p}=0.0001$ which is <0.05 (highly statistically significant), where as 95% CI included the null value "zero" (of no difference).
D) A study comparing Systolic BP (each 500 male and female) reported mean difference (male-female) $=\mathbf{7 . 5}, \mathbf{p}=\mathbf{0 . 0 0 0 1} \mathbf{C I} \mathbf{9 5 \%}=[4.5 ; \mathbf{1 2 . 0}]$

Answer: The mean Systolic BP difference between male and female in the target population is highly statistically significant ($\mathrm{p}=0.0001$, which is <0.05) also the 95% confidence interval for difference of mean value of Systolic BP does not included the null value "zero" (of no difference). Hence both p-value and $95 \% \mathrm{CI}$ are consistent. The width of confidence interval is small due to large sample size, which indicates a good precision of the estimate.

In a sample of 100 children taken from a rural community, it was found anemia prevalence as 35%. Construct 95% confidence interval for the prevalence of anemia for that community and give your inference. Also comment on the width of confidence interval.
[Use: $\mathbf{9 5 \%}$ CI for population proportion $=p \pm$ confidence factor \times S.error of (p), Where confidence factor=1.96 and S.error of $(p)=4.8$]

Solution:

95% confidence limits are $(0.35 \pm 1.96 \times 0.048)=0.2559$ to $0.4441=\mathbf{2 6 \%}$ to $\mathbf{4 4 \%}$
With 95% confidence, we expect that the anemia prevalence in the population will be as minimum as 26% and as high as 44%. The width of 95% confidence interval is wide, due to sample size of 100 children, which indicates lack of precision of the estimate.

To examine the hypothesis that the low birth weight babies have a higher risk of coronary diseases in later life, a study was conducted in 100 low birth weight babies and in 100 babies born with normal weight. It was found that 15% among the former 10% in the latter had lifetime incidence of chronic diseases. Obtain 95% CI for the difference in proportions in these two groups. Is there a statistically significant difference in the incidence of coronary diseases of low birth weight babies and babies born with normal weight?
[Use: 95\% CI for (P1-P2) $=(\mathbf{p 1 - p 2}) \pm$ confidence factor \times S.error of $(p 1-p 2)$, Where confidence factor=1.96 and S.error of $(p 1-p 2)=0.0466]$

Solution:

95% C I for $(\mathrm{P} 1-\mathrm{P} 2)$ is $[(0.15-0.10) \pm 1.96 \times 0.0466]=-0.0431$ to $0.1432=\mathbf{- 4 . 3 1 \%}$ to $\mathbf{1 4 . 3 2 \%}$
The CI shows that coronary diseases in low birth weight babies would be as higher as 14.32% when compared to normal group. As the 95% confidence intervals for difference of proportions (incidence of coronary disease) included "zero" (null value of no difference), it can inferred that there is no statistically significant difference between low birth weight babies and normal weight babies.

L Practical Session:
 Statistical Significance (p-value and 95\% CI)

nterpretation of p-values and $\mathbf{9 5 \%}$ confidence intervals in the following abstract:

Title: The Outcome of Extubation Failure in a Community Hospital Intensive Care Unit: A Cohort Study Seymour CW, Martinez A, Christie JD, Fuchs BD. Critical Care 2004, 8:R322-R327 (20 July 2004)

Introduction: Extubation failure has been associated with poor intensive care unit (ICU) and hospital outcomes in tertiary care medical centers. Given the large proportion of critical care delivered in the community setting, our purpose was to determine the impact of extubation failure on patient outcomes in a community hospital ICU.

Methods: A retrospective cohort study was performed using data gathered in a 16-bed medical/surgical ICU in a community hospital. During 30 months, all patients with acute respiratory failure admitted to the ICU were included in the source population if they were mechanically ventilated by endotracheal tube for more than 12 hours. Extubation failure was defined as reinstitution of mechanical ventilation within 72 hours $(\mathrm{n}=60)$, and the control cohort included patients who were successfully extubated at 72 hours ($\mathrm{n}=93$).

Results: The primary outcome was total ICU length of stay after the initial extubation. Secondary outcomes were total hospital length of stay after the initial extubation, ICU mortality, hospital mortality, and total hospital cost. Patient groups were similar in terms of age, sex, and severity of illness, as assessed using admission Acute Physiology and Chronic Health Evaluation II score ($\mathrm{P}>0.05$). Both ICU (1.0 versus 10 days; $\mathrm{P}<0.01$) and hospital length of stay (6.0 versus 17 days; $\mathrm{P}<0.01$) after initial extubation were significantly longer in reintubated patients. ICU mortality was significantly higher in patients who failed extubation (odds ratio $=12.2,95 \%$ confidence interval $[\mathrm{CI}]=1.5-101 ; \mathrm{P}<0.05$), but there was no significant difference in hospital mortality (odds ratio $=2.1,95 \% \mathrm{CI}=0.8-5.4 ; \mathrm{P}<0.15$). Total hospital costs (estimated from direct and indirect charges) were significantly increased by a mean of US\$33,926 (95\% CI =US\$22,573-45,280; $\mathrm{P}<0.01$).

Conclusion: Extubation failure in a community hospital is univariately associated with prolonged inpatient care and significantly increased cost. Corroborating data from tertiary care centers, these adverse outcomes highlight the importance of accurate predictors of extubation outcome.

What is the sample size in each of Extubation failure and successfully extubated groups?

Answer: Extubation failure $=60$ and successfully extubated $=93$

On what basis the authors had mentioned that the patients groups were similar?

Answer: By using $\mathrm{P}>0.05$.

Is there a statistically significant difference in ICU and hospital length of stay initial extubation in re-intubated patients? If yes what are the corresponding \mathbf{p}-values?

[^2]
How to interpret ICU mortality odds ratio = 12.2? Is it statistically significant?

Abstract

Answer: The odd s of ICU mortality is 12.2 times higher in patients who failed extubation, when compared with the patients who successfully extubated. Yes the Odds ratio is statistically significant as p-value is <0.05.

What is the interpretation of its 95% confidence interval: $1.5-101$? Why this confidence interval is very wide?

[^3]| Choosing the appropriate Statistical test | | Based on the three aspects of the data
 (Types of variables‘ Number of groups being compared \& Sample size.) | |
| :---: | :---: | :---: | :---: |
| Test | | Z-test | Student's t-test |
| Study variable | | Qualitative | Qualitative |
| Outcome variable | | tative or Qualitative | Quantitative |
| Comparison | - Sample mean Example: The ed been accused of higher GPAs tha
 - Two sample Example: Weigh | population mean
 on department at a university has inflation" in medical students with ents in general.
 for Diet vs Exercise | - sample mean with population mean - Whether the sample mean is equal to the predefined population mean?-
 - Two means (Independent samples)- Whether the CD4 level of patients taking treatment A is equal to CD 4 level of patients taking treatment B ? -
 - paired samples. - Whether the treatment conferred any significant benefit? - |
| Sample size | larger in each gr | (30) \& standard deviation is known | each group <30 can be used even for large sample size |
| Z-value \& t-Value | " Z and t " are the

 | ures of: How difficult is it to believe ues: Difficult to believe the null hyp ues: Easy to believe the null hypoth | ne null hypothesis?
 hesis - accept that there is a real difference.significant is - have not proved any difference.no significant |
| Karl Pearson Correlation Coefficient | | | |
| Study variable \& Outcome variable | | | Quantitative |

- A number called the correlation measures both the direction and strength of the linear relationship between two related sets of quantitative variables.

Measurement of correlation

1. Scatter Diagram
2. Karl Pearson's coefficient of Correlation

Scatter diaphragm

- Using the axes
- X-axis horizontally - Y-axis vertically - Both axes meet: origin of graph: $0 / 0$
- Both axes can have different units of measurement. - Numbers on graph are (x, y)
- A correlation coefficient (r) provides a quantitative way to express the degree of linear relationship between two variables.
- Range: \mathbf{r} is always between -1 and 1
- Sign of correlation indicates direction:
- high with high and low with low -> positive (Ex. Height and Weight, Age and BP)
- high with low and low with high $->$ negative (Ex. Duration of HIV/AIDS and CD4 CD8, Price and Demand, Sales and advertisement expenditure)
- no consistent pattern -> near zero
- Magnitude (absolute value) indicates strength: (-.9 is just as strong as .9) -0.10 to 0.40 weak
- 0.40 to 0.80 moderate
- 0.80 to 0.99 high
- 1.00 perfect

[^4]
Limitations

1. Correlation coefficient is appropriate measure of relation only when relationship is linear.
2. Correlation coefficient is appropriate measure of relation when equal ranges of scores in the sample and in the population.
3. Correlation doesn't imply causality.

L28 Statistical tests to observe the statistical significance of Categorical variables

test	Study variable		Outcome variable	Comparison	Sample size	Expected frequency
Chi-square	Qualitative		Qualitative	Two or more proportions E.g : (two proportions) :Prevalence of exercise among female and male. (more than two proportions): 1- prevalence of exercise among gp A, gp B, female gp. 2- prevalence of hypertension among 4 age gps.	>20	>5
Fisher's exact			Two proportions	<20		
Macnemar's test (for paired samples)			Two proportions	Any		
Z-test			- Sample proportion with population proportion - two sample proportions	Larger in each group (>30)		
Chi-square Test	Purpose	To find out whether the association between two categorical variables are statistically significant.				
	Null Hypothesis	There is no association between two variables.				
	Requirements	$\checkmark \quad$ The data must be in the form of frequencies counted in each of a set of categories. Percentages cannot be used. $\checkmark \quad$ The total number observed must exceed 20 . $\checkmark \quad$ The expected frequency under the H_{0} hypothesis in any one fraction must not normally be less than 5 . \checkmark All the observations must be independent of each other. In other words, one observation must not have an influence upon another observation.				
	Application	- Testing for independence (or association). - Testing for homogeneity. (Similarity) - Testing of goodness-of-fit.				
Fisher's Exact Test	The method of Yates's correction was useful when manual calculations were done. Now different types of statistical packages are available. Therefore, it is better to use Fisher's exact test rather than Yates's correction as it gives exact result.					
McNemar's Test	When to use	When we have a paired samples and both the exposure and outcome variables are qualitative variables (Binary).				
	Situation	Two paired binary variables that form a particular type of 2×2 table. e.g. matched case-control study or cross-over trial. cross-over trial (is when you give treatment A to the group and after a while you give the same group treatment B so the group become a comparison group, another situation is when you give first group treatment A and second group treatment B and after awhile you cross the treatments between the groups).				

Test	Equation
Ch-square	$x^{2}=\sum\left[\frac{(0-\mathbf{e})^{2}}{\mathbf{e}}\right]$
Fisher's exact	$=\frac{R_{1}!R_{2}!C_{1}!C_{2}!}{n!a!b!c!d!}$
MacNemar's test	$\mathrm{X}^{2}=\frac{(\|\mathbf{f}-\mathrm{g}\|-1)^{2}}{\mathrm{f}+\mathrm{g}}$
Z-test	$z=\frac{P-P}{\sqrt{\frac{p q}{n}}}: \mathrm{Z}=\frac{\mathrm{P}_{1}-\mathrm{P}_{2}}{\sqrt{\frac{\mathrm{P}_{1}\left(1-\mathrm{P}_{1}\right)}{\mathrm{n}_{1}}+\frac{\mathrm{P}_{2}\left(1-\mathrm{P}_{2}\right)}{\mathrm{n}_{2}}}}$

L Practical Session: Using appropriate statistical tests

What are the three criteria to use, in selecting the appropriate statistical test?

1- Type of variables.
2- Number of groups being compared. 3- Sample size
One of the best indicators of the health of a baby is his/her weight at birth.
Birth weight of $>2500 \mathrm{gms}$ is considered normal. A researcher wants to test whether birth weight of babies born last year in a region are normal. He took a sample of 100 babies and calculated mean and SD (Standard deviation) of the birth weights. What test he should do to test his hypothesis that the birth weight of babies normal?

Outcome variable: Birth weight
Type of variable: Quantitative
How many groups: 1
Sample size: 100 (large) (more than 30)
Statistical test: The best test for this case is Z-test for single mean and we can also use student's t-test since its used for small and large sample size.

A team of scientists wants to test a new medication to see if it has either a positive or negative effect on intelligence, or no effect at all. In the population, the average IQ is 100 with a standard deviation of 15 . A sample of 30 participants who have taken the medication has a mean of 140 . Did the medication affect intelligence, using alpha $=0.05$? Using an appropriate statistical test they concluded that medication has significantly affected intelligence.
What is the statistical test they used here?
Outcome variable: IQ
Type of variable: Quantitative
How many groups: 1
Sample size: 30 (small)
Statistical test: Student's t-test for single mean
Remember whenever you see mean or average its quantitative data and whenever you see proportion, out of and the frequency its categorical (qualitative) data.
research survey claims that 9 out of 10 doctors recommend aspirin for their patients with headaches. To test this claim, a random sample of 100 doctors is obtained. Of these 100 doctors, 82 indicate that they recommend aspirin. Is this claim accurate? Using an alpha of 0.05 with a two-tailed test, it was concluded that the claim that 9 out of 10 doctors recommend aspirin for their patients can't be rejected? What is the statistical test used here?

Outcome variable: Recommend aspirin or not recommend Type of variable: Qualitative (nominal)
How many groups: 1
Sample size: 100 (large)
Statistical test: Z-test for single proportion.
A statistics teacher wants to compare his two classes to see if they performed any differently on the tests he gave that semester. Class A had 25 students with an average score of 70 , standard deviation 15 . Class B had 20 students with an average score of 74 , standard deviation 25 . Using alpha 0.05 , did these two classes perform differently on the tests?
Using an appropriate statistical test, he concluded that there was no significant difference between the performances of Class A and Class B.
What is the statistical test the teacher has used ?
Outcome variable: Score
Type of variable: Quantitative
How many groups: 2 (class A and class B)
Sample size: 20 and 25 (small) (less than 30)
Statistical test: Student's t -test for independent samples (two means). Degrees of freedom: $\mathrm{n} 1+\mathrm{n} 2-2=20+25-2=43$
We wish to test the proportion of smokers in a region is 15%. Taking a random sample of 320 persons in that region and found the proportion as 22%. What is an appropriate test here to test the hypothesis that sample proportion is not equal to proportion of smokers in that region?

Outcome variable: Proportion of smoking (Smoker or non-smoker) Type of variable: Qualitative (nominal)
How many groups: 1
Sample size: 320 (large) (more than 30)
Statistical test: Z-test for single proportion. We can't apply the chi-square here because its a single proportion and Chi-Square test is for 2 or more proportion.

L Practical Session: Using appropriate statistical tests

Researchers want to test the effectiveness of a new anti-anxiety medication. In clinical testing, 64 out of 200 people taking the medication report symptoms of anxiety. Of the people receiving a placebo, 92 out of 200 report symptoms of anxiety. Is the medication working any differently than the placebo? Test this claim using alpha $=0.05$. what is the appropriate statistical test we can use in this situation?

Outcome variable: Symptoms of anxiety (present or absent) Type of variable: Qualitative (nominal)
How many groups: 2 (medication and placebo)
Sample size: 200 and 200 (large) (more than 30)
Statistical test: Z-test for two proportions.
To test the association between gender and favorite color a study has been done on 500 college boys and girls are asked which is their favorite color: blue, green, or pink?
Results are shown below:
What is the appropriate statistical test we can use in this situation?

	BLUE	GREEN	PINK	TOTAL
BOYS	100	150	20	300
GIRLS	20	30	180	200
TOTAL	120	180	200	500

Outcome variable: Color
Type of variable: Qualitative (nominal)
How many groups: 2
Sample size: 500 (large) (more than 20)
Statistical test: Chi-square test for independence (or association). Whenever you see association
you know by default that it is Chi-Square test.
The degrees of freedom: $(\mathrm{r}-1)(\mathrm{c}-1)=(2-1)(3-1)=2$
In 2010, ages of a random sample of 500 individuals from the same small town was taken.. below are the results:
Using alpha $=0.05$, would you conclude that the population distribution of ages is equally distributed? What is the appropriate statistical test we can use in this situation?
mean or proportions ? Proportions
Outcome variable: Age
Type of variable: Qualitative (age in category) (ordinal)
How many groups: 1

<18 years	$18-35$ years	>35 years
121	288	91

Sample size: 500 (large)(more than 20)
Statistical test: Chi-square test for homogeneity (to see whether the values are distributed equally or not). In this example it isn't uniformly distributed (not homogenous because 288 which is 57.6% of 500 are in the 18-35 years category so we need to provide statistical evidence

9-Researchers want to test a new weight loss pill. The following is the weights (kg) of 10 people before and after taking the pill. How to find the effect of this pill on weight loss? What test will you do in this situation using alpha $=0.05$? What is the degrees of freedom?

Outcome variable: Weight
Type of variable: Quantitative
How many groups: 1
Sample size: 10 (small) (less than 30)
Statistical test: Student's t-test for paired samples (dependent samples). (because it's before
and after, with small sample size)
The degrees of freedom: $(\mathrm{n}-1)=(10-1)=9(\mathrm{n}-1$ because its one sample $)$

When the chi-squared test for 2×2 table is not valid (when the expected numbers are <5) What is an alternative test we use?

Answer : Fisher's exact test.
Remember, the only alternative test for Chi-Square test when the table is 2×2 with a small sample size which results in an expected value less than 5 is Fisher's exact test.
Fisher's exact test is only for 2×2 table, not bigger dimensions tables.
A researcher wants to test the mean systolic blood pressure of Saudi females of Dammam city is $120 \mathrm{~mm} / \mathrm{hg}$ with 95% confidence. He took a random sample of 525 Saudi females and found the mean systolic blood pressure as $110 \mathrm{~mm} / \mathrm{hg}$.
What is an appropriate test here to test his hypothesis?

Outcome variable: Mean systolic blood pressure

Type of variable: Quantitative
How many groups: 1
Sample size: 525 (large) (more than 30)
Statistical test: Z-test for single mean (Z test because sample size is large)

L Practical Session: Using appropriate statistical tests

The following data describe numbers of children with different sized palatine tonsils and their carrier status for Strep. pyogenes. What is the statistical test used to observe an association between carrier status and size of tonsils?

Outcome variable: Size of tonsils
Type of variable: Qualitative (ordinal)
How many groups: 2 (carriers and non-carriers)
Sample size: 1398 (large) (more than 20)
Statistical test: Chi-square test for association (or independence).
The degrees of freedom: $(\mathrm{r}-1)(\mathrm{c}-1)=(2-1)(3-1)=2$
Can we calculate the odds ratio for this table? No, because it's 3 columns and 2 rows.

Tonsils				
	not enlarged	Enlarged	Enlarged greatly	Total
Carriers	19	29	24	72
Non-carriers	497	560	269	1326
Total	516	589	293	1398

14. A researcher wants to test the mean HB of a pregnant women of Malaz area is $12 \mathrm{~g} / \mathrm{dl}$. He took a random sample of 20 and found that the mean score is $11 \mathrm{~g} / \mathrm{dl}$ and standard deviation is $34 \mathrm{~g} / \mathrm{dl}$. Could this sample originate from a population of mean $=12 \mathrm{~g} / \mathrm{dl}$? What is an appropriate test here?

Outcome variable: Hemoglobin
Type of variable: Quantitative
How many groups: 1
Sample size: 20 (small) (less than 30)
Statistical test: Student's t-test for single mean. (you can't apply z-test here because sample
size is small)
The degrees of freedom: $(n-1)=(20-1)=19$
15. A research team claims that their new drug increases the birth weight of babies. In order to test this, he took a random sample of 75 women for treatment group and 75 for Control group and at the end of the study period it was found Average birth Weight 3100 g and SD 420 g for treatment group and for control average weight was 2750 g and SD 425 g . What is an appropriate test to be done here?

Outcome variable: Birth weight
Type of variable: Quantitative
How many groups: 2 (treatment group and control group)
Sample size: 75 and 75 (large)(more than 30)
Statistical test: Z-test for two means. You can also apply student's t-test for independent
samples because it can be used for small and large samples. Degrees of freedom: n1 $1+\mathrm{n} 2-2=75+75-2=148$
16. In an epidemiological survey, 1319 schoolchildren were assessed symptoms of severe cold at the age of 12 and again at the age of 14 . At age 12,356 (27%) children were reported to have severe colds in the past 12 months compared to $468(35.5 \%)$ at age 14 . what test is to be used to test these proportions?Was there a significant increase of the prevalence of severe cold?

Outcome variable: Symptoms of severe cold
Type of variable: Qualitative (nominal)
How many groups: 1
Sample size: 1319 (large) (more than 20)
Statistical test: McNemar's chi-square test. (Because they are related "paired dependent
sample" Follow up of the same group)(same sample at the age of 12 , same sample at the age of 14) Degrees of freedom: $n-1=2-1=1$
17. A researcher wants to quantify the linear relationship between systolic blood pressure and age of his study subjects. What is the appropriate plot so as to observe the relationship and what statistical measure he has to apply to quantify this relationship?
Solution:

Outcome variable: Systolic blood pressure and age
Type of variable: Quantitative
What is the aproperite plot: Scatter plot. By putting age on x-axis and systolic BP on y-axis. Statistical measures: Karl pearson of correlation coefficient.
18. What is the range of correlation coefficient?

Between -1 and +1
-1 to $0 \rightarrow$ negative correlation
0 to $+1 \rightarrow$ positive correlation
The + and - gives us the direction and the values gives us the magnitude.
19. What are the statistical tests to use, for test of association and for the measure of association? Solution:

- Test the association: Chi-square test (will see either there is association or not)
- Measure the association: Odds ratio (for cross sectional, prospective study and case control) or relative risk (for retrospective study and RCT).

20. What are the degrees of freedom for $3 \times 4 \& 2 \times 3$ contingency tables? Solution:

Answer :(R-1)(C-1)

* first number is the rows, second number is the columns (Rows \times Columns)
- 3×4 table $=(3-1)(4-1)=6$
- 2×3 table $=(2-1)(3-1)=2$

Leader

Rania almutiri

The work done by

Raina almutiri
Renad alhomaidi
Haya Alanazi
Hessah Fahad
Shatha Aldhohair
Samar almohammedi
Nourah Alklaib
shatha Aldossari
Sara alobed
Noura almasoud
Abdulaziz alomar

[^0]: Objective: To observe whether feeding milk to 5 year old children enhances growth.
 Groups: Extra milk diet - Normal milk diet
 Outcome: Height (in cms.)
 Assumptions or specifications: Type-I error $(\alpha)=0.05$ Type-II error $(\beta)=0.20$ i.e., $\operatorname{Power}(1-\beta)=0.80$ Clinically significant difference $(\Delta)=0.5 \mathrm{~cm}$., Measure of variation (SD.,) $\quad=2.0 \mathrm{~cm}$., (from literature or "Guesstimate")

[^1]: - You can also calculate the sample size for a single proportion by using this table. Depending on the variables i you are given, choose a row (d) and a column (P) for a given a confidence interval of 95\% and a Za of 1.96. l e.g.,Question 3 I

[^2]: Answer: Yes, Both ICU (1.0 versus 10 days; $\mathrm{P}<0.01$) and hospital length of stay (6.0 versus 17 days; $\mathrm{P}<0.01$) after initial extubation were significantly longer in reintubated patients.

[^3]: Answer: This study shows an odds ratio of 12.2. If this study is repeated 100 times, 95 times the odds ratio lies within 1.5 and 101. The confidence interval is wide due to small sample size, which indicates that the odds ratio of 12.2 is not a precise estimate.

[^4]: About "r" $\quad \mathbf{1 - r}$ is not dependent on the units in the problem 2-r ignores the distinction between explanatory and response variables
 3- \mathbf{r} is not designed to measure the strength of relationships that are not approximately straight line. 4- \mathbf{r} can be strongly influenced by outliers.

