

Editing file

Feedback

Basic concepts and terminology in biostatistics

Objectives:

- 1. Definition of statistics and biostatistics and its application.
- 2. To understand different levels of measurements.
- 3. To understand different types of data.
- 4. To use these concepts appropriately.

Statistics

Statistics is the science of conducting studies to collect, organize, summarize, analyze, present, interpret and draw conclusions from data.

Data: Any values (observations or measurements) that have been collected. Singular: datum

Biostatistics

Biostatistics

is the science that **helps** in managing medical **uncertainties** and **variability** of data

Biostatistics

- Statistics arising out of biological sciences, particularly from the fields of medicine and public health.
- The methods used in dealing with statistics in the fields of medicine, biology and public health for planning, conducting and analyzing data which arise in investigations of these branches.

Medical Statistics aka: clinical statistics -same as biostatistics-
Deals with application of statistical methods to the study of diseases (risk factors, prognostic factors, etc), efficacy of new treatments or vaccine, etc

Health Statistics - methodology is the same as medical statistics

Deals with application of statistical methods to varied information of public health importance.

Vital Statistics

Is the ongoing collection of government agencies of data relating to vital event such as births and deaths which are deemed reportables by local health authorities.

Basic Concepts

Biostatistics

Data : Set of values of one or more variables recorded on one or more observational units (singular: Datum).

Sources of data

- Routinely kept records
- Surveys (census) population based
- Experiments
- External source

Categories of data

Primary data: What principle investigator collect (new data) observation, questionnaire, record form, interviews, survey

Secondary data: Collected from other source which data already is collected census, medical record, registry

Variables

Datasets and Data Tables

		OBS	AGE	BMI	FFNUM	TEMP (oF)	GENDER	EXERCISE LEVEL	QUESTION
Detect	Dete Table	1	26	23.2	0	61.0	0	1	1
Dataset		2	30	30.2	9	65.5	1	3	2
		3	32	28.9	17	59.6	1	3	4
		4	37	22.4	1	68.4	1	2	3
		5	33	25.5	7	64.5	0	3	5
		0	29	22.3	1	/0.2	0	2	2
		8	32	23.0	1	728	0	1	1
	Δ dataset organized	0	32	20.3	3	71.5	0	1	1
	A dataset organized	10	33	29.1	5	63.2	1	1	4
Data for a set of	into a table, with	11	26	20.8	2	69.1	0	1	3
		12	34	20.9	4	73.6	0	2	3
variables collection	one column for each	13	31	36.3	1	66.3	0	2	5
		14	31	36.4	0	66.9	1	1	5
in group of persons.	variable and one	15	27	28.6	2	70.2	1	2	2
5 1 1		16	36	27.5	2	68.5	1	3	3
	row tor each person.	17	35	25.6	143	67.8	1	3	4
	•	10	31	21.2	0	/U./	1	1	2
		19	30	22./	0	678	0	2	1
		20	33	20.1	3	07.0	0	2	1

Table 1: Typical data table.

Definitions for variables

Variables

Types of variables and data

- When collecting or gathering data we collect data from individuals cases on particular variables.
- A **variable** is a unit of data collection whose value can vary.
- Variables can be defined into types **according to the level of mathematical scaling** that can be carried out on the data.
- There are **four types** of data or levels of measurement:

Nominal scale variablesOrdinal scale variables	B Interval scale variables 4 Ratio scale variables
Nominal scale variables	Ordinal scale variables
 A type of categorical data in which objects fall into unordered categories. Studies measuring nominal data must ensure that each category is mutually exclusive (no overlap like Male / Female) and the system of measurement needs to be exhaustive. Variables that have only two responses i.e. Yes or no, are known as dichotomies. (Binary) but also can have more than 2 options like (blood group, name of cities or name of carsetc) 	 Ordinal data is data that comprises of categories that can be rank ordered. Similarly with nominal data the distance between each category cannot be calculated but the categories can be ranked above or below each other. (Low stress - Moderate stress - Severe Stress)

Interval scale variables

- Fahrenheit temperature scale: (zero is arbitrary) -40 degrees is not twice as hot as 20 degrees. You can't compare since no zero reference (there is negative).
- IQ tests: No such thing as zero IQ.
 120 IQ not twice as intelligent as 60.
- Question- Can we assume that attitudinal data represents real, quantifiable measured categories?
 (i.e.. That 'very happy' is twice as happy as plain 'happy' or that 'very unhappy' means no happiness at all). "Statisticians not in agreement on this". NO!. You can't quantify it, negative values are included.

Ratio scale variables

- The distance between any two adjacent units of measurement (intervals) is the same and there is a meaningful zero point.
- Income: someone earning SAR20,000 earns twice as much as someone who earns SAR10,000.
- Height
- Weight
- Age
- Negative values are not included
- It can be compared (best scale for comparison)

Variables

Scales of Measurement

Hierarchical data order

- Nominal data is the least complex and give a simple measure of whether objects are the same or different.
- Ordinal data maintains the principles of nominal data but adds a measure of order to what is being observed.
- Interval data builds on ordinal by adding more information on the range between each observation by allowing us to measure the distance between objects. No absolute zero value.
- Ratio data adds to interval with including an absolute zero.

Categorical Data

Categorical Data (Qualitative data)

- The objects being studied are grouped into categories based on some **qualitative** trait.
- The resulting data are merely labels or categories.
- Nominal and Ordinal scales will be used for categorical data or qualitative data.

Binary Data (dichotomies)

A type of categorical data in which there are only **two categories**.

Examples:

- Smoking status- smoker, non-smoker, past smoker
- Attendance: present, absent
- Result of a exam: pass, fail
- Status of student: undergraduate, postgraduate

Dr: it's important in the exam to know that it can be more than two categories "blood groups as example"

Quantitative Data

Nominal data (Binary) & Ordinal data (Examples)

What is your Gender? (please tick)	Did you enjoy the session?			
MaleFemale	YesNo			
What is the level of satisfaction with the new curriculum at a medical school received? (please tick)				
 Very satisfied Somewhat satisfied Neutral 				

Somewhat dissatisfied

Very dissatisfied

Quantitative Data

- The objects being studied are 'measured' based on some quantitative trait.
- The resulting data are set of numbers.
- Interval and Ratio scales will be used to measure quantitative data.

Quantitative data

Relationships between variables

Relationships between variables

Quantitative Variables	Qualitative variables
Height (cm / feet) (Continuous)	Short / Medium / Tall (ordinal)
Weight (kg / pound) (Continuous)	Underweight / Normal weight / Overweight (ordinal)
Blood sugar (mg %) (Continuous)	Diabetic / Non-Diabetic (nominal)
Blood pressure (mm) (Continuous)	Normal blood pressure / Hypertension (nominal, if more options then it will become ordinal)
Hemoglobin (mg %) (Continuous)	Anaemic / Non-Anaemic (nominal)

hospital length of stay	Number	Percent			
1 – 3 days	5891	43.3			
4 – 7 days	3489	25.6			
2 weeks	2449	18.0			
3 weeks	813	6.0			
1 month	417	3.1			
More than 1 month	545	4.0			
Total	14604	100.0			
Mean = 7.85 SE = 0.10					

Table 2: Distribution of blunt injured patientsaccording to hospital length of stay.

Sometimes continues data can be converted into qualitative data. for example: Stress score into (Low stress - Moderate stress - Severe stress)

Clinimetrics and Data types

Clinimetrics

A science called clinimetrics in which qualities are converted to meaningful quantities by using the scoring system. (Categorical data converted into quantitative data)

Examples:

- 1. **Apgar score** based on **a**ppearance, **p**ulse, **g**rimace, **a**ctivity and **r**espiration is used for neonatal prognosis. Appearance: Skin color (categorical) into the score.
- 2. Smoking index: no. of cigarettes, duration, filter or not, whether pipe, cigar etc.
- 3. **APACHE** (Acute Physiology and Chronic Health Evaluation) score: to quantify the severity of condition of a patient.

Data types – important?

• Why do we need to know what type of data we are dealing with? The data type or level of measurement **influences the type of statistical analysis techniques** that can be used when analysing data.

To conclude

Type of variables in any data set are:	The scales to measure these two variables are:
Categorical (Qualitative) & Quantitative	Nominal, Ordinal, Interval and Ratio scales

Summary

	Varia	bles			
Nominal	Ordinal	Interval	Ratio		
 Unordered (not ranked) Mutually exclusive: ex: female / male Exhaustive system of measurement. Two responses variables: ex: Yes/ no Can be ranked ordered Distance between each category cannot be calculated 		 Zero is arbitrary Fahrenheit temp IQ test 	Has a meaningful zero point ex: Height Weight Age		
Categorical (Qualitative)	Quantitative			
The objects being stud categories based on so Nominal &	ied are grouped into ome qualitative trait. Ordinal	The objects being studied are 'measured' based on some quantitative trait. Discrete & Continuous			
Nominal	Ordinal	Discrete	Continuous		
Type of carEthnicitySmoking status	 Type of car Ethnicity Smoking status Grades in exam Degree of illness 		No gaps between possible values Implies measuring		
Binary	Data	Example: • Number of	Example:		
A type of categorical data two categories.	n which there are only	children in the family number of	AgeHeight		
 Smoking status Attendance Result of exam Status of student 	Smoking status Attendance Result of exam Status of student		• Weight		

Questions

(1) Which one of the following types of variables	include absolute zero?
A) Nominal data B) Ordinal data	C) Interval data D) Ratio data
(2) Out of those variables, which can be conside	red as categorical ordinal data?
A) Smoking status	C) Types of car
B) Grades in exam	D) Height
(3) Which one of these values can be considered	as discrete value?
A) 2.2 children in the family	C) 14 students passed
B) 88 cm height	D) 12.7 crimes reported
(4) Which one of the following types of variables	has mutually exclusive values?
A) Nominal data	C) Interval data
B) Ordinal data	D) Ratio data
(5) The levels of measurement can be placed in	hierarchical order which is?
A) Ratio > ordinal > interval > nominal	C) Interval > ordinal > nominal > ratio
B) Ratio > interval > ordinal > nominal	D) Ordinal > interval > nominal > ratio
(6) Out of those variables, which can be conside	red as categorical nominal data?
A) Sex	C) Number of children in the family
D) Data of entirfaction	D) Lleighting and

B) Rate of satisfaction

D) Height in cm

Questions

(7) What is the type of scale measurement for a variable "serum creatinine (mg/dl)?

A) Ratio scale	C) Nominal scale
B) Interval scale	D) Ordinal scale

(8)	What is the type	e of variable mea	asurement scale fo	r cancer stages ((I, II, III< IV))?
-----	------------------	-------------------	--------------------	-------------------	------------------	----

A)	Qualitative variable, nominal scale	C) Quantitative variable, interval scale
B)	Qualitative variable, ordinal scale	D) Quantitative variable, ratio scale

(9) The grades of geometry test were classified as A+, A, B+, B, C+, C, D+, D, F. What is the best scale to measure this type of data?

A) Interval	C) Ordinal
B) Numerical	D) Nomina

(10) Which is the type of scale measurement for systolic blood pressure?

A) Ordinal	C) Ratio
3) Nominal	D) Interval

(11) Which of the following deals with application of statistical methods to varied information of public health importance?

A) Medical statistics	C) Vital statistics
B) Health statistics	D) Safety statistics

(12) What is the type of variable and measurement scale for serum cholesterol?

A) Qualitative variable, nominal scale	C) Quantitative variable, interval scale
B) Qualitative variable, ordinal scale	D) Quantitative variable, ratio scale

Thank you for checking our work!

Leaders:

Shuaa Khdary Sarah AlQuwayz

Abdulrhman Alsuhaibany

Member:

Dana Naibulharam

Note Taker:

Noura Alshathri

Contact us: Research4390@gmail.com