Wound Healing, Scar & Pressure Sores

Khalid Asem Arab, MBBS, FRCSC,FEBOPRAS Assistant Professor, Consultant Plastic Surgery Plastic Surgery Division King Saud University

Objectives

- Basic Principles
- Classification
- Classes of operative wound
- Phases of wound healing
- Collagen Types
- Factors affecting wound healing
- Scars
- Pressure sores
- Burn

The following are the sequence of events and phases taking place in wound healing?

- 1- Remodelling, epithalization, & contracture
- 2- inflammatory, proliferative & remodeling
- 3-vasocontriction, epithalization & contracture
- 4- proliferative, remodelling and wound synthesis

The major cell/s involved in the proliferative phase is/are

- 1- PMN
- 2- Fibronectin
- 3- Fibroblast
- 4- collagen

The difference between secondary & partial thickness healing is :

- Contracture only in secondary healing
- Contracture only in partial thickness healing
- Epithilisation only in secondary
- Epithalization only in parial thickness healing

Perforated gastric ulcer or Perforated appendicitis is/are

- Clean
- Clean-contaminated
- Contaminated
- infected

All of the following is/are charachteristic of ideal scar except:

- Painful
- Flat
- No restriction of movement
- Adequate color

All of the following is characteristic of keloid:

- 1- crosses border
- 2- genetic predisposition
- 3- common in earlobes/ chest in African
- 4- All of the above

Preventive measures of HTS is/are:

- 1- adequate suture bite closure
- 2- Free tension closure
- 3- non-strangulated sutures
- 4- minimal undermining/ electroqautery
- 5- all of the above

Wound:

- disruption of normal anatomical structure and function
- Classified as acute vs. chronic

Definition

- Restoration of integrity and continuity of injured tissue to re-establish homeostasis of that tissue and to stabilize the entire organism's physiology
- Wound healing requires the coordinated completion of a variety of cellular activities, including phagocytosis, chemotaxis, mitogenesis, synthesis of collagen and extracellular matrix components

Classification

By type	By timing	By abnormal healing
 primary delayed primary secondary partial-thickness wound	1- Acute	 overgrowth (hypertrophic, keloid) undergrowth (chronic
healing	2-Chronic	unstable wound) abnormal pigmentation contour abnormality

Classification of Wounds Closure

- • Primary healing (1° intention)
 - Primary closure
 - Within hours of repairing full-thickness surgical incision
 - Results in mortality of minimal number of cellular constituents
- •

• Secondary healing (2° intention)

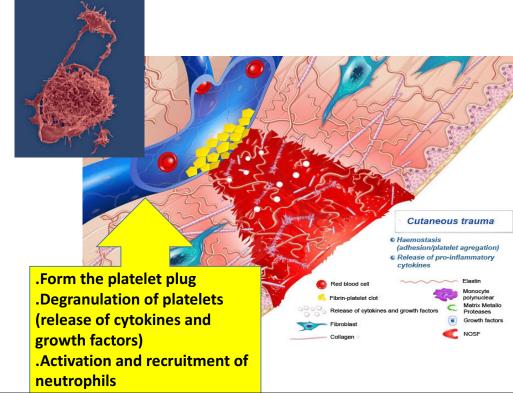
- Wound left open to heal by processes of granulation, contraction, and epithelialization
- Results in more intense inflammatory response
- Larger quantity of granulation tissue with pronounced contraction of wounds
- •

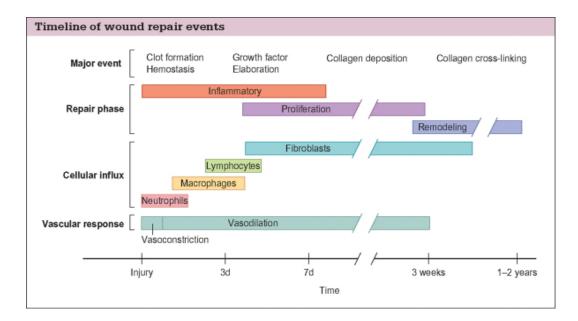
• Tertiary healing (3° intention)

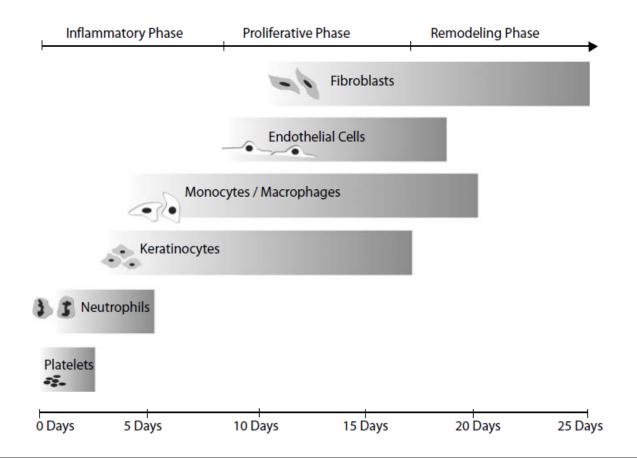
- Delay primary closure
- Desired for contaminated wounds
- Phagocytosis of contaminated tissues well underway by 4th day
- Foreign materials walled off by macrophages

Epithelial Repair

- epithelial continuity is reestablished across a wound
- 1-mobilization
- 2-migration (stimulus is loss of contact inhibition)
- 3-mitosis
- 4-cellular differentiation

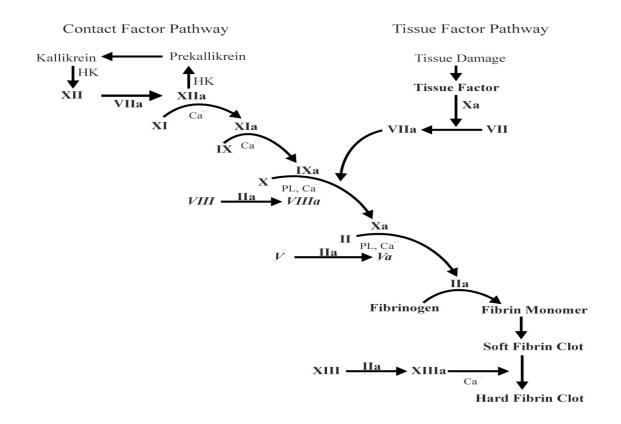



Heamostasis (5-10 min)


Inflammatory (1-4 D)

Proliferative (3D-3Wks)

Remodeling (3 wks -one year)

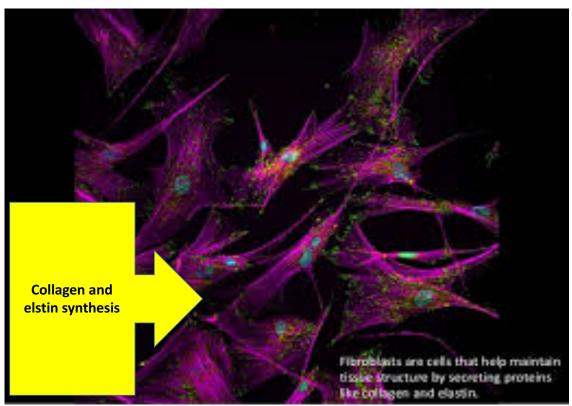


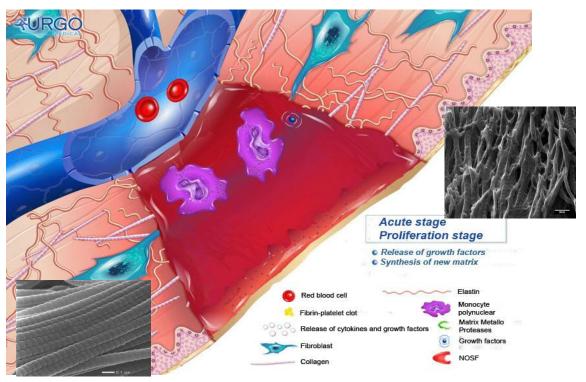
Haemostasis

- Initial response to injury = constriction
- Platelet plug forms after adherence to exposed subendothelial collagen via vWF
- Platelets degranulate releasing: ADP, thromboxane-A2, bradykinin, and 5-HT → further vasoconstriction and platelet aggregationPlatelets stimulated to release
- • platelet derived growth factor (PDGF)
- -made by macrophages, endothelial cells, fibroblasts
- -chemotaxis, fibroblast stimulation
- \circ transforming growth factor β (TGF β)
- -made by macrophages, platelets, fibroblasts
- -fibrinogenesis, angiogenesis, chemotaxis, immune suppression
- \circ fibroblast growth factor
- -made by macrophages and endothelial cells
- -angiogenesis and chemotaxis

Inflammatory phase/ Migratory phase

- Classically represented by:
 - Rubor (redness)
 - caused by vasodilation
 - primarily result of prostacyclin (PGI₂) and histamine, also caused by prostaglandin A, D, and E (PGA, PGD, PGE)
 - Tumour (swelling)
 - caused by leakage of plasma proteins through gaps in vascular endothelium
 - edema potentiated by PGE2, prostaglandin $F_{2\alpha}(PGF_{2\alpha})$
 - Calour (heat)
 - Increased local temperature secondary to both increased blood flow and elevated metabolic rates
 - Dolour (pain)


Macrophages


Proliferative Phase (fibroplasia

- Begins 2-3 days after wounding
- Signalled by arrival of fibroblasts
 - Driven by macrophage-derived bFGF, TGFβ, PDGF to proliferate and synthesize glycosaminogylcans (GAGs) and proteoglycans (building blocks of new extracelluar matrix of granulation tissue and collagen)
 - Also produce bFGF, TGFβ, PDGF, keratinocyte growth factor, insulin-like growth factors-1
 - Dominant cell type peaking at 7-14 days
- Collagen synthesis (net production for next 3-6 weeks)
- ↑ Keratinocyte mitosis
- ↑ Endothelial cells
- Lasts 2-4 weeks depending on site and size of wound with slowing of fibroblast migration and proliferation

Fibroblast

Proliferative phase

Maturation (remodelling)

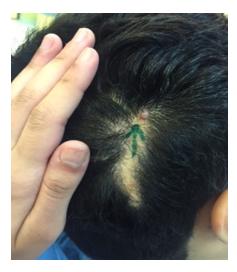
- Begins approx. 3 weeks after injury
- Collagen synthesis and degradation are accelerated but in equilibrium with collagen breakdown (no net increase in collagen content)
- Collagen deposition peaks by 3rd week
- Large capillaries growing into wound regress/disappear
- Indurated, raised, pruritic scar becomes mature scar
- Collagen fibers become organized
- Type III collagen replaced by type I collagen
- o re-establishing normal 4:1 ration (I:III)
 - Duration depends on age, genetics, type of wound, location (1-2 years)
- Tensile strength increases to 80% of pre-injured skin

Collagen

• Left handed helix involving 3 polypeptides

- Most abundant family of proteins in the human body (30%)
 - > 19 types of collagen have been identified
 - Type I collagen is the major structural component of bones, skin, and tendons
 - Type II collagen is found predominantly in cartilage
 - Type III collagen is found in association with type I collagen in varying ratios depending on the type and maturity of tissue (predominant type in granulation tissue)
 - Type IV collagen is found in the basement membrane
- Type V collagen is found in the cornea
- Wound Strength is 80% of original after remodelling
- Lysine and proline hydroxilation required for cross linkage.

- Differs in relative composition of hydroxylysine and hydroxyproline and crosslinking
 - * Type I \cong 90% of all collagen in body
 - Normal skin ratio Type I:Type III = 4:1
 - Hypertrophic / immature scare 2:1 ratio
- Formation inhibited by:
- Colchicine
- Penicillamide
- Steroids
- Vit. C deficiency
- Fe deficiency


 \mathbf{x} The picture can't be displayed.

Types of Surgical wounds

- Clean: nontraumatic, noninfected wounds & no breach of Resp, GI, or GU tract
- *Clean-contaminated*: small breach in protocol; Resp/GI/GU tract are entered with minimal contamination
- **Contaminated:** fresh traumatic wounds; major break in sterile technique, nonpurulent inflammation; in or near contaminated skin
- Infected: purulent infection

Factors affecting wound healing

General	Local
Nutrition	Oxygen
Drugs/Toxins	Infection
Age	Acidity
DM	Radiation
Smoking	Loss of growth factors
Vascular disease	Denervation
Obesity	latrogenic
Systemic diseases	Edema
Idiopathic	Cancer
Inherited diseases	Foreign body

Acute wound

- Cleansing
- Exploration and diagnosis
- Debridement
- Tetanus immunization status
- Replacement of lost tissues where indicated
- Skin cover if required
- Dressing
- Skin closure without tension

Abnormal Scars

• Keliod Vs. Hypertrophic scars Vs. Wide scar

- ideal scar:
- • Flat, Narrow
- • good colour & contour match to surrounding skin
- • parallel to or within resting skin tension lines (RSTL)
- • pliable
- • does not restrict function or distort normal anatomy
- • matures within 6-18 months
- • asymptomatic

Vancouver Scale

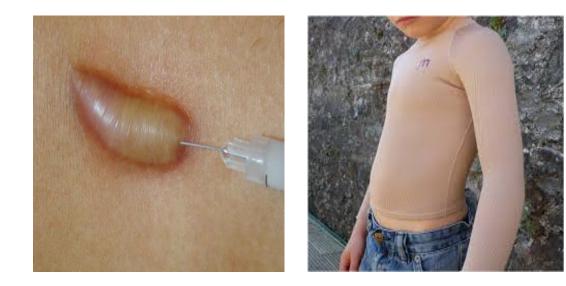
Characteristic	Score	Description
Pigmentation (P)	0	Normal: color that closely resembles the color over the rest of one's body
	1	Hypopigmentation
	2	Hyperpigmentation
Vascularity (V)	0	Normal: color that closely resembles the color over the rest of one's body
	1	Pink
	2	Red
	3	Purple
Pliability (P)	0	Sorinal
	1	Supple: flexible with minimal resistance
	2	Yielding: giving way to pressure
	3	Firm: inflexible, not easily moved, resistant to manual pressure
	4	Banding: rope-like tissue that blanches with extension of the sear-
	5	Contracture: permanent shortening of scar producing deformity or distortion
Height (II)	0	Normal: flat
	1	<2 mm
	2	<5 min
	3	>5 mm

³Each scar characteristic is assessed and assigned a score as shown; the summation of these scores then forms the overall scar score.

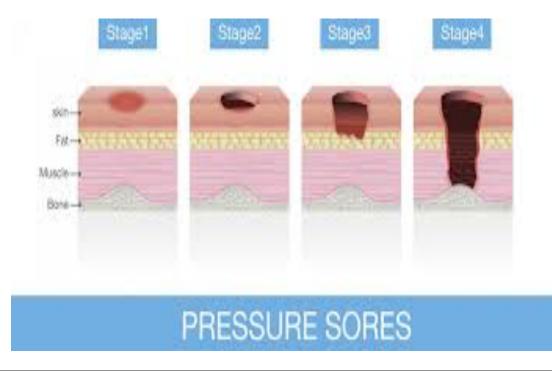
Comparison of Keloid and Hypertrophic scars

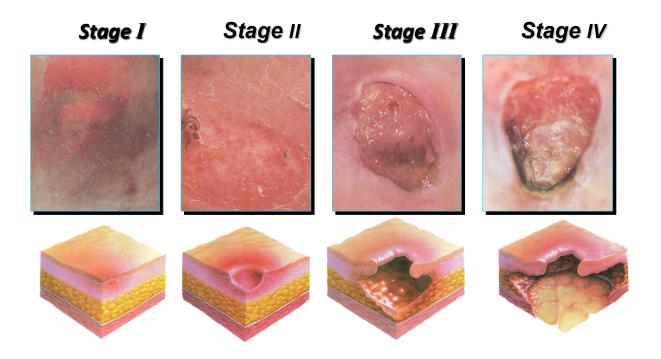
Table 3.4 Comparison of hypertrophic and keloid scars

Features	Hypertrophic scar	Keloid scar
Genetic	Not familial	May be familial
Race	Not race related	Black > white
Sex	Female = male	Female > male
Age	Children	10-30 years
Borders	Remains within wound	Outgrows wound area
Natural history	Subsides with time	Rarely subsides
Site	Flexor surfaces	Sternum, shoulder, face
Aetiology	Related to tension	Unknown


Medical Quick Review of Basics http://pgmcqs.com/tag/all-india-mdms-entrance-exams-mcqs/page/7/

Treatment of HTS !!


- Pressure
- Silicone
- Preventation
- 5-FU
- Steroids
- Radiation
- Laser
- Surgery



Pressure Sores

The following are the sequence of events and phases taking place in wound healing?

- 1- Remodelling, epithalization, & contracture
- 2- inflammatory, proliferative & remodeling
- 3- vasocontriction, epithalization & contracture
- 4- proliferative, remodelling and wound synthesis

The major cell/s involved in the proliferative phase is/are

- 1- PMN
- 2- Fibronectin
- 3- Fibroblast
- 4- collagen

The difference between secondary & partial thickness healing is :

- Contracture only in secondary healing
- Contracture only in partial thickness healing
- Epithilisation only in secondary
- Epithalization only in parial thickness healing

Perforated gastric ulcer or Perforated appendicitis is/are

- Clean
- Clean-contaminated
- Contaminated
- infected

All of the following is/are charachteristic of ideal scar except:

- Painful
- Flat
- No restriction of movement
- Adequate color

All of the following is characteristic of keloid:

- 1- crosses border
- 2- genetic predisposition
- 3- common in earlobes/ chest in African
- 4- All of the above

Preventive measures of HTS is/are:

- 1- adequate suture bite closure
- 2- Free tension closure
- 3- non-strangulated sutures
- 4- minimal undermining/ electroqautery
- 5- all of the above

köszönöm 1mm dekuji mahalo 고맙습니다 thank you merci 谢讨 danke Ευχαριστώ شكر どうもありがとう gracias

QUESTIONS ?

Case Module Discussion

