PRINCIPLES OF FRACTURES (ADULTS) SULTAN ALDOSARI; MD; FRCSC.

OBJECTIVES

- Introduction
- Basic science of fracture healing.
- Principles of evaluating patients with fractures.
- Principles of management.

introduction

- Fracture means literally broken hone
- This can be described in different ways:
 - Extent
 - Location
 - Morphology
 - Mechanism
 - Associated soft tissue injuries

Mechanism: High energy vs. low energy. Multiple injuries vs. isolated injury. Pathological fracture: normal load in presences of weakened bone (tumor, osteoporosis, infection) Stress fracture: normal bone subjected to repeated load (military recruits/athletes).

• As	ssociated soft tissue injuries:
	Close fracture: skin integrity is maintained.
	Open fracture: fracture is exposed to external environment .

QUESTIONS ? FRACTURE HEALING

Natural Bone Healing

- Indirect bone healing (endochondral ossification) occurs in nature with untreated fracture.
- It is called indirect because of formation of cartilage at intermediate stage.
- It runs in 4 stages:
 - Hematoma formation
 - Soft callus formation
 - Hard Callus formation
 - Remodeling

PRINCIPLES OF EVALUATION

HISTORY

- Pain: very severe one. Get complete pain history components
- Inability to use the affected limb.
- Inability to ambulate
- Deformity.
- If it is a major trauma: Patient might not be able to communicate.
- Ask about mechanism of injury.

HISTORY

- Major Trauma (MVC)
 - ① Speed.
 - (2) Front or back seated
 - ③ Driver.
 - 4 Seat belted.
 - ⑤ Ejection.
 - 6 Deployed air bag.
 - 7 Death at scene.

HISTORY

- If you suspect pathological fracture:
 - ► Ask about prior pain before event happened.
 - ➤ Ask about constitutional symptoms.
 - ➤ Ask about history of cancer.
- If you suspect stress fracture:
 - ➤ Ask about recent increment of activities.

PHYSICAL EXAM

- Inspection:
 - > Swelling
 - Deformity
 - Ecchymosis
 - > Skin integrity:
 - Bleeding
 - Protruding bone

PHYSICAL EXAM

- Palpation:
 - ➤ Bony tenderness.
 - Examine joint above and below.
- ROM:
 - ➤ Can not be assessed in acute fracture.

PHYSICAL FXAM

- Vascular exam:
 - Color
 - > Temperature
 - Capillary refill (within 2 sec as compared to other side)
 - Dulcos
 - ➤ Always compare contralateral side.
- Peripheral nerve exam of injured limb.
- Always check compartment tightness:
 - ➤ Wood like vs. soft

PHYSICAL EXAM

- At the End of your exam, you must comment on:
 - (1) Skin is intact or not
 - ② N/V status is intact or not
 - ③ Compartments of limb are soft or not.

INVESTIGATIONS

- Start with basic and proceed to more specific tests
 - 1 Basic blood works.
 - (2) X-rays of interest.
 - 3 advance radiological exams if needed.

INVESTIGATIONS

- X-rays
 - 2 orthogonal (perpendicular) views: AP and lateral
 - > Joint above and below.
 - ➤ Special views: specific for the region of interest.
- Fracture does hurt
 - ➤ Splint patient's injured limb before you send him to X-rays.
 - ➤ If there is gross deformity, re-align, splint then send for images.

INVESTIGATIONS

- Fracture can be obvious on images.
- Sometimes, careful assessment of radiographs is needed (i.e. stress fracture or non displaced fracture)

Secondary signs of fracture on x-ray:

Soft tissue swelling
Fat pad signs
Periosteal reaction
Joint effusion
Cortical buckle

Secondary signs of fracture on x-ray:

- Soft tissue swelling
- Fat pad signs
- Periosteal reaction
- Joint effusion
- Cortical buckle

Secondary signs of fracture on x-ray:

- Soft tissue swelling
- Fat pad signs
- Periosteal reaction
- Joint effusion
- Cortical buckle

Secondary signs of fracture on x-ray:

Soft tissue swelling
Fat pad signs
Periosteal reaction
Joint effusion
Cortical buckle

Secondary signs of fracture on x-ray:
Soft tissue swelling
Fat pad signs
Periosteal reaction
Joint effusion
Cortical buckle

INVESTIGATIONS

- Advanced radiological images:
 - > If fracture extends to joint: obtain CT scar
 - ➤If fracture is suspected but not seen on X-rays: consider doing MRI.

RADIOGRAPHIC DESCRIPTION OF FRACTURE

- Location
- Displacement:
 - Translation
 - Angulation
 - ShorteningRotation
- Pattern.
- common eponymous

Location Which bone? Which part of the bone? Epiphysis -intraarticular? Metaphysis Diaphysis -divide into 1/3s Use anatomic landmarks when possible e.g. medial malleolus, ulnar styloid, etc

FRACTURE DESCRIPTION: SUMMARY

Clinical parameters

Open vs. Closed

Neurovascular status

Clinical deformity

Radiographic parameters

Location

Pattern.

Displacement.

Common eponymous

TREATMENT PATHWAY

- ①Reduction.
- (2) Immobilization
- ③ Definitive treatment
- (4) Rehabilitation.
- If the Injured limb is grossly deformed, simple re-alignment and splinting should be initially undertaken

REDUCTION

- If fracture is displaced.
- Meant to re-align fracture fragments.
- To minimize soft tissue injury.
- Can be consider definitive if fragments' position is accepted.
- Open reduction: take place at OR.

✓ Patient must receive adequate analgesic prior to reduction. ost occur under conscious sedation.

- Emerg.

 ✓ Reduction must be followed by immobilization.
- ✓ N/V status must be documented before and after reduction and immobilization

IMMOBILIZATION

- To hold reduction in position.
- To provide support to broken limb
- To prevent further damage.
- Control the Pair

 Most fractures require an immobilization of joint above and below

DEFINITIVE

- If satisfactory reduction can not be achieved or held at initial stage.
- Reduction can be attempted close or open (surgery)
- Immobilization can be achieved with:
 - Plate and screws.
 - IM nail
 - EX-fix

Treatment: Principles

- Rehabilitation
- Motion as early as possible without jeopardizing maintenance of reduction.
- Wt bearing restriction for short period (6-8 weeks).
- Move unaffected areas immediately

Treatment: Principles

Reduce (if necessary)

- to maximize healing notential
- to insure good function after healing
- Immohiliza
- a to relieve pain
- to prevent motion that may interfere with unior
- a to prevent displacement or angulation of fracture
- Rehabilitate
- a to insure return to function

MULTIPLE TRAUMA

- Multi-disciplinary approach.
- Run by Trauma Team Leader (TTL) at ER. Orthopedic is part of the team.
- Follow trauma Protocol as per your institution.
- Treatment is prioritized toward life threatening conditions then to limb threatening conditions.

COMPLICATIONS

- If fracture extends into joint or close:
 - O A
 - Stiffness
- Fracture healing:
 - Nonunion: doesn't heal after double the expect time.
 - Malunion: healed with mal-alignment.
- Fracture specific: AVN after femur neck fracture.
- Medical complications: LL fractures, VTE
- Surgical related: infection, hardware failure.

Take home points

- Fractures hurt –immobilization relieves pain.
- R/o open fracture, Compartment syndrome and N/V injuries.
- Principles of fracture treatment:
- Reduce
- Immobilize
- Rehabilitate

