Orthopedics 432 Team

8

Common Pediatric Fractures

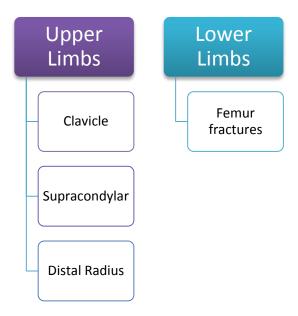
Done By: Awn Algarni & Abdullah AlAnazi (A1)

Revised by: Abdullah Bin Merdhah (A1)

2nd Edition: Maha Adosary (F1)

Color Code:

Slides


431 team work

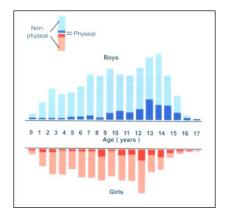
Doctor's Notes Arabic Words Team Notes Books' notes Important
Other Sources

Objectives

Not Given

Mind Map

Introduction


- Vary in various age groups (Infants, children, adolescents)
- Different from adult fractures

Statistics:

- Boys > girls
- Rate increases with age

Why are children's fractures different?

Children have different physiology and anatomy

- •Increased collagen:bone ratio.

Cartilage

- Difficult x-ray evaluation.
- •Size of articular fragment often under-estimated.

Periosteum

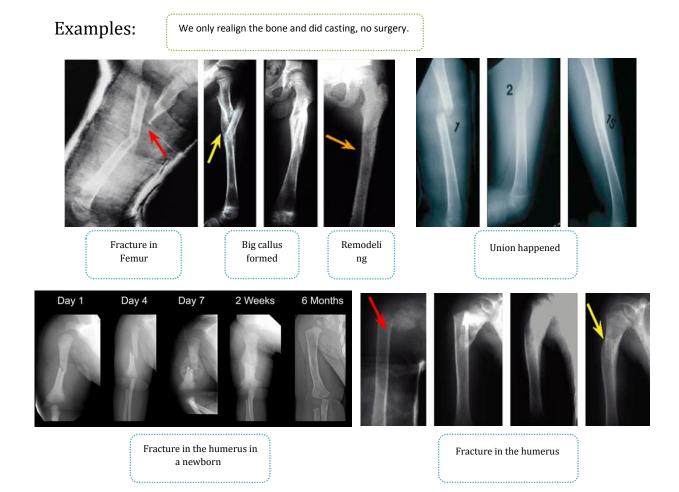
- Metabolically active:
 More callus, rapid union, increased remodeling.
 Thickness and strength:
- Intact periosteal hinge affects fracture pattern.May help reduction.

Ligaments

•Ligaments in children are functionally stronger than bone. Therefore, a higher proportion of injuries that produce sprains in adults result in fractures in children.

Age related fracture pattern

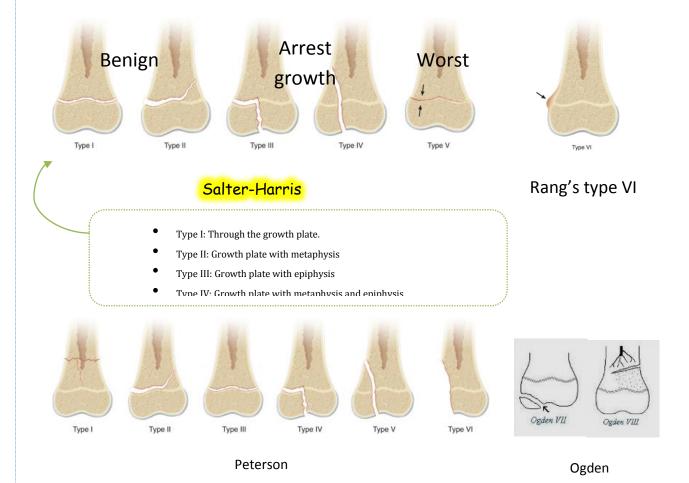
- •Infants: diaphyseal fractures
- Children: metaphyseal fractures
- Adolescents: epiphyseal injuries


Commonly the fracture will be in:

- Diaphysis in infants
- Metaphysis in Children
- Epiphysis in adolescent

Physiology

- •Better blood supply.
- Rare incidence of delayed and non-union.


^{*}In infants we don't use cast, instead we use tongue depressor.

Physeal (Growth Plate) injuries:

- Account for ~25% of all children's fractures.
- More in boys.
- More in upper limb.
- Most heal well rapidly with good remodeling.
- Growth may be affected.

^{*}Fractures near to a joint that moves everywhere (shoulder) and near to epiphysis \rightarrow better for remodeling.

Classification:

- * Less than 1% cause physeal bridging affecting growth.
- * Small bridges (<10%) may lyse spontaneously.
- * Central bridges more likely to lyse.
- * Peripheral bridges more likely to cause deformity
- * Avoid injury to physis during fixation.
- * Monitor growth over a long period.
- * Image suspected physeal bar (CT, MRI).

Type IV. Corrected with Kwire and screw.

General Management

Indications for surgery:

- Head injury.
- Multiple injuries.
- Open fractures.
- Displaced intra articular fractures (Salter-Harris III-IV).
- Adolescence.
- Failure of conservative means (irreducible or unstable fractures).
- Severe soft-tissue injury or fractures with vascular injury.
- · Neurological disorder.
- Malunion and delayed union.
- Compartment syndrome.

Methods of Fixation:

Casting	K-wires	Intramedullary wires, elastic nails.	Screws	Plates	IMN Intramedullary nail	Ex-fix	Combination
Still the commonest	Most commonly used IF "internal fixation"			Multiple trauma	Adolescents not all children because of epiphysis	Usually in open fractures	
	Metaphyseal fractures.						
			人 人				

Common Pediatric Fractures:

- Upper Limb: Clavicle, Supracondylar Fracture, Distal Radius.
- Lower Limbs: Femur fractures.

Fracture Clavicle

- Happens in extreme ages (children and old age).
- 8-15% of all pediatric fractures.
- 0.5% of normal deliveries and in 1.6% of breech deliveries.
- 90% of obstetric fractures.
- 80% of clavicle fractures occur in the shaft.
- The periosteal sleeve always remains in the anatomic position. Therefore, remodeling is ensured.
- We should check <u>neurovascular</u> and <u>pulmonary</u> function status.
- AP view on x-ray is enough.

Mechanism of Injury:

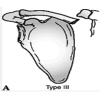
- Indirect: Fall onto an outstretched hand.
- Direct: This is the most common mechanism, it carries the highest incidence of injury to the underlying neurovascular and pulmonary structures.
- Birth injury.

Clinical Evaluation:

- Painful palpable mass along the clavicle.
- Tenderness, crepitus "We don't do crepitus clinically, it's painful", and ecchymosis swelling.
- May be associated with neurovascular injury.
- Pulmonary status must be assessed.

Radiographic Evaluation: AP view

Classification:


- Location.
- · Open or closed.
- Displacement.
- Fracture type: Segmental, comminuted, greenstick.

Allman classification:

• Type I: Middle third most common

Type II: Lateral thirdType III: Medial third

Treatment: "easily treated if there's no N/V or pulmonary injury"

Newborn:

Do nothing just secure it in place it will unite in 1 week.

• Up to 2 years:

Figure-of-eight for 2 weeks.

• Age 2-12 Years:

A figure-of-eight or sling for <u>2-4 weeks</u>.

Indications of operative treatment:

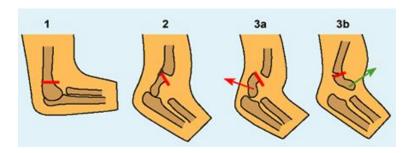
- Open fractures.
- Neurovascular compromise.

Complications: are rare

- Neurovascular compromise.
- Malunion.
- Nonunion.
- Pulmonary injury.

Supracondylar Humeral Fracture

- 55-75% of all elbow fractures.
- The male-to-female ratio is 3:2.
- 5 to 8 years.
- The left, or <u>nondominant side</u>, is most frequently injured.


Mechanism of Injury:

- Indirect: Extension type >95%.
- Direct: <u>Flexion</u> type < 3%.

Clinical Evaluation:

- Swollen, tender elbow with painful ROM.
- S-shaped angulation.
- Pucker sign (dimpling of the skin anteriorly).
- Neurovascular examination:
 - Nerves: Median, radial, and ulnar nerves as well as their terminal branches.
 - The commonest nerve to be injured is:
 - Anterior interosseous nerve, which is branch from the median nerve and it is associated more with extension.
 - The way to assess: ask the patient to do (ok) sign.
 - Vascular: Brachial. Capillary refill and distal pulses should be documented.

Classification (Gartland)

- Type 1: No displacement.
- Type 2: Minimal displacement.
- Type 3: Complete displacement, if it's going backward (3a): **Extension** fracture "indirect trauma". Forward (3b): **Flexion** fracture "direct trauma".

Complete displacement (extension type) may be posteromedial (75%) or posterolateral (25%).

Type 1

Type 2

Type 3 (Extension)

Type 3 (Flexion)

Treatment of extension type:

- Type I: Immobilization in a long arm <u>cast or splint</u> at 60 to 90 degrees of flexion for 2 to 3 weeks.
- Type II: <u>Closed</u> reduction followed by casting **or** <u>pinning if unstable</u> or sever swelling.
- Type III:
 - $\circ \;\;$ Attempt $\boldsymbol{closed} \; \boldsymbol{reduction}$ and pinning.
 - Open reduction and internal fixation may be necessary for unstable fractures, open fractures, or those with neurovascular injury. * Ulnar nerve injury happens with pinning.

Treatment of flexion type:

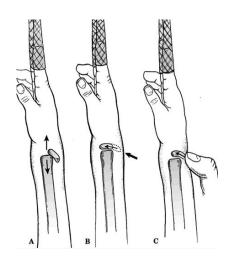
- Type I: Immobilization in a long arm <u>cast</u> in near extension for 2 to 3 weeks.
- Type II: <u>Closed reduction</u> followed by percutaneous <u>pinning</u>.
- Type III: Reduction is often difficult; most require <u>open</u> reduction and <u>internal fixation</u> with crossed pinning.

Complications:

- Neurologic injury (7% to 10%)
 - a. Most are neurapraxias requiring no treatment.
 - b. Median and anterior interosseous nerves (most common).
- Vascular injury (0.5%)
 - a. Direct injury to the brachial artery or secondary to swelling
- Loss of motion.
- Myositis ossificans. "Ossification that occurs in muscles. Bone in muscles → complete stiffness"
- Angular deformity (cubitus varus).
- <u>Compartment syndrome</u>.

Distal Radius Fractures

1. Distal Radius Physeal Injuries


Type 1

Type 2

Type 3

Treatment:

- Salter-Harris Types I and II
 - Closed reduction followed by long arm cast with the forearm pronated.
 - 50% apposition with no angular or rotational deformity is acceptable.
 - o Growth arrest can occur in 25% with repeated manipulations.
 - Open reduction is indicated
 - Irreducible fracture.
 - Open fracture.

- Salter-Harris Type III
 - a. Anatomic reduction is necessary.
 - b. <u>ORIF</u> with smooth pins or screws.
- Salter-Harris Types IV and V
 - a. Rare injuries.
 - b. Need <u>ORIF</u>. *ORIF = Open Reduction Internal Fixation

Complications:

- Physeal arrest:
 - o Shortening.
 - o Angular deformity, we do MRI to assess.
- Ulnar styloid nonunion.
- Carpal tunnel syndrome.

2. Distal Radius Metaphyseal Injuries

Classification:

- We accept more angulation in pediatrics, the younger the child the more angulation we accept.
- Direction of displacement.
- Involvement of the ulna.
- Biomechanical pattern
 - o Torus (only one cortex is involved)
 - o <u>Incomplete (greenstick)</u>
 - o <u>Complete</u>

Torus (only one cortex is involved):

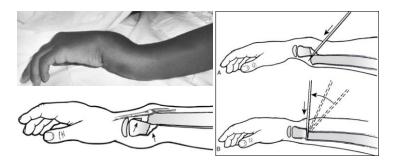
- ✓ Periostium is intact.
- ✓ The injury is stable.
- ✓ Protected <u>immobilization</u> for pain relief.
- ✓ Bicortical injuries should be treated in a long arm <u>cast</u>.

Incomplete (greenstick):

- ✓ Greater ability to remodel in the sagittal plane.
- ✓ <u>Closed reduction</u> and above elbow <u>cast</u> with supinated forearm to relax the brachioradialis muscle.

Complete fracture:

- ✓ <u>Closed reduction</u>.
- ✓ Well molded long arm <u>cast</u> for 3 to 4 weeks.



Indications for percutaneous pinning without open reduction:

- Loss of reduction.
- Excessive swelling.
- Floating elbow.
- Multiple manipulations.

Indications for ORIF:

- Irreducible fracture.
- Open fracture.
- Compartment syndrome.

Complications:

- Malunion: Residual malangulation of more than 20% may result in loss of forearm rotation.
- Nonunion rare.
- **Refracture**: an early return to activity (before 6 weeks).
- Growth disturbance: (overgrowth or undergrowth). 3mm/9-12Y.
- Neurovascular injuries: avoid extreme positions of immobilization.

Femoral Shaft Fractures

- 1.6% of all pediatric fractures.
- Boys > girls.
- 2 to 4 years of age, mid-adolescence.
- In <u>children younger than walking age</u>, 80% of these injuries are caused by <u>child abuse</u>; this decreases to 30% in toddlers.
- In <u>adolescence</u>, >90% due to RTA.

Mechanism of Injury:

- Direct trauma: RTA, fall, or child abuse.
- Indirect trauma: Rotational injury.
- Pathologic fractures: Osteogenesis imperfecta, nonossifying fibroma, bone cysts, and tumors.
- How to know if it's direct or indirect from x-ray? Transverse and comminuted fractures are direct, the spiral is indirect.

Clinical Evaluation:

- Pain, swelling, inability to ambulate, and variable gross deformity.
- Careful <u>neurovascular</u> examination is essential.
- Careful examination of the overlying <u>soft tissues</u> to rule out the possibility of an open fracture.

Radiographic Evaluation:

- · AP and lateral views.
- Must include <u>hip, knee</u> joints.

Classification:

- Descriptive:
 - o Open versus closed.
 - o Level of fracture: proximal, middle, distal third.
 - o Fracture pattern: transverse, spiral, oblique, butterfly fragment.
 - o Comminution.
 - o Displacement.
 - o Angulation.
- Anatomic:
 - Subtrochanteric Shaft.
 - o Supracondylar.

Treatment:

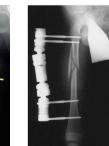
Less than 6 Months

• Pavlik harness:

• Traction and spica casting:

6 Months to 4 Years

- Closed reduction and immediate casting (>95%).
- <u>Traction</u> followed by spica <u>casting</u> if there is difficulty to maintain length and acceptable alignment.



4 to 12 Years

- Flexible IMN.
- Bridge Plating.
- External Fixation
 - Multiple injuries
 - o Open fracture
 - Comminuted #
 - Unstable patient

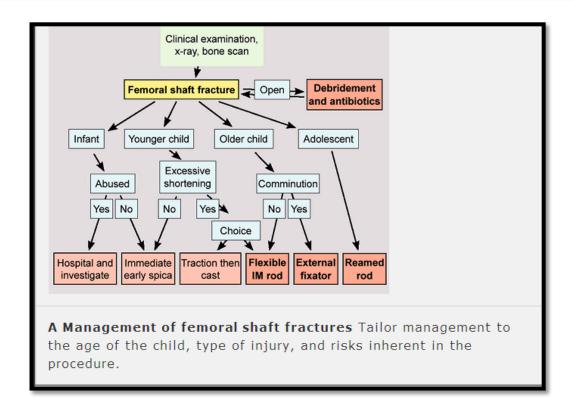
12 Years to Maturity

 Intramedullary fixation with either flexible or interlocked nails "interlocked nails prevent rotation".

Operative Indications:

- Multiple trauma, including head injury.
- Open fracture.
- · Vascular injury.
- Pathologic fracture.
- Uncooperative patient.

Complications:


- Malunion: Remodeling will not correct rotational deformities.
- Nonunion (Rare).
- Muscle weakness.
- Leg length discrepancy:
 - o Secondary to shortening or overgrowth.
 - o Overgrowth of 1.5 to 2.0 cm is common in 2-10 year of age.
- Osteonecrosis with antegrade <u>IMN</u> <16 year.

Age	Varus/Valgus (degrees)	Anterior/Posterior (degrees)	Shortening (mm)
Birth to 2 y	30	30	15
2–5 y	15	20	20
6â€"10 y	10	15	15
11 y to maturity	5	10	10

*You don't have to know the numbers

Summary

- Why are children's fractures different? Children have different physiology and anatomy.
- Physeal Classification: Salter-Harris
- Indications for surgery:
 - o Head injury.
 - o Multiple injuries.
 - o Open fractures.
 - o Displaced intra articular fractures (Salter-Harris III-IV).
 - o Adolescence.
 - o Failure of conservative means (irreducible or unstable fractures).
 - Severe soft-tissue injury or fractures with vascular injury.
 - o Neurological disorder.
 - o Malunion and delayed union.
 - Compartment syndrome.
- Methods of Fixation:
 - Casting
 - K-wires
 - o Intramedullary wires, elastic nails.
 - o Screws
 - Plates
 - o IMN Intramedullary nail
 - o Ex-fix
 - Combination
- Common Pediatric Fractures:
 - o Upper limb: Clavicle, Supracondylar Fracture, Distal Radius.
 - Lower Limbs: Femur fractures.

MCQs

- 1. What are the common fracture pattern in Infants?
 - A. Infants: diaphyseal fractures
 - B. Infants: metaphyseal fractures
 - C. Infants: epiphyseal injuries
- 2. What are the most important systems you have to check in Clavicle Fracture?
 - A. Neurovascular
 - B. Pulmonary function
 - C. a & b
- 3. What are the most common type of Clavicle Fracture?
 - A. Type I: Middle third
 - B. Type II: lateral third
 - C. Type III: Medial third
- 4. What is the cause of Femoral Shaft Fractures In children younger than walking age?
 - A. Child abuse.
 - B. RTA.
 - C. Birth injury.
- 5. Bicortical injuries should be treated as?
 - a. In a long arm cast.
 - b. Closed reduction followed by percutaneous pinning.
 - c. Reduction.

Answers
1.a 2.c 3.a 4.a 5.a

