Head & Neck Tumours Part I

Dr. Khalid AL-Qahtani

MD,MSc,FRCS(c)

Assistant Professor

Consultant of Otolaryngology

Advance Head and Neck Oncology, Thyroid and Parathyroid, Microvascular Reconstruction,

Skull Base Surgery

Salivary Glands

Content

Anatomy

Physiology

Acute and Chronic Infections

Auto Immune Diseases

• Tumours of Salivary Glands

Basics

• 6 major salivary glands: 2 parotid, 2 submandibular, 2 sublingual.

• 100's of minor salivary glands lining the upper aerodigestive tract

Main job.... Saliva!!!!

Anatomy-Parotid

- Serous cells only
- On side of the face, deep to skin, subcutaneous tissue, superficial to the masseter.
- Parotid compartment borders superior-zygoma, posterior-external auditory canal, inferior-styloid process, styloid muscles, internal carotid and jugular.
- Tale of parotid extends superficial to SCM.

Parotid duct

- Stensen's duct begins at anterior border of the gland 1.5cm below the zygoma. Traverses the masseter 5-6cm, pierces the buccinator.
- Opens in mouth lateral to 2nd upper molar.

Submandibular gland

- Mucous and serous cells.
- Submandibular triangle: anterior and posterior bellies of digastric and inferior margin of the mandible.
- Medial and inferior to the mandible.
- Wraps around the mylohyoid. C-shaped, superficial and deep lobe.
- Superficial layer of deep cervical fascia splits to envelop the gland.

Wharton's duct

- Exits the gland from the medial surface travels b/w the hyoglossus and mylohyoid muscles enters the genioglossus muscle and opens into mouth just lateral to lingual frenulum.
- CN XII inferior to the duct and lingual nerve is superior to the duct.

SM gland innervation

- Sympathetic stimulation stimulates mucoid saliva.
- Parasympathic stimulates watery saliva.
- PNS pre-ganglionic fibres come from the chorda tympani n. via the lingual n. to the submandibular ganglion. Then to the gland itself.
- SNS fibres originate in the superior cervical ganglion and travel with the lingual artery to the gland.

Sublingual glands

- Mucous secreting.
- Just below the floor of mouth mucosa.
- Bordered by genioglossus/hyoglossus medially, mandible laterally, and mylohyoid inferiorly.
- Wharton's duct and lingual n. travel b/w SL gland and genioglossus muscle.
- No fascial capsule.

SL glands cont'd

- Ducts of Rivinus (~10) along the superior aspect of the gland open into the mouth along sublingual fold in the floor of mouth.
- Innervated by the PNS/SNS systems in the same way as the SM gland.
- Gland supplied by sublingual branch of the lingual a. and the submental branch of the facial a. Drained by the corresponding veins.
- Lymphatic drainage is primarily by the submandibular nodes.

Minor salivary glands

- Either mucous serous or both
- 600-1000 /person
- Each gland has it's own duct.
- Found most commonly in buccal, labial, palatal, and lingual regions.

Physiology

Role of saliva:

- Lubricates
- Moistens, help with mastication
- Cools hot food
- Buffers chemicals
- Cleans the mouth (lavage)
- Protects mucosa
- Prevent dental caries
- Helps form enamel, provides inorganic ions
- Antibacterial (lysozyme, IgA, peroxidase)
- Homeostasis

Physl. Cont'd

- Secretory unit: acinus, secretory tubules, and the collecting duct.
- Secrete saliva, hypotonic solution (compared to plasma).

Secretory Unit

Secretory Process

- Active process involving cell synthesis and active transport.
- Primary secretion: produced by acinar cells composition and osmolality more similar to plasma.
- Ductal secretion: tubule modifications make it more hypotonic.
- Degree of modification depends on flow rate. Fast rate less time for modification. It's still hypotonic.
- Serous acinar cell granules contain amylase, mucous acinar cells contain mucin.

Autonomic Nervous System

- Anatomy above
- ANS stimulation causes hyperpolarization (more -), K out into saliva, Cl into cells. Known as the secretory potential.

Parasympathetic NS

- Pre-ganglionic PNS fibers originate from the salivary nucleus in the brainstem.
- No true synapses b/w post-ganglionic fibers and the SL/SM glands. ACh passively diffuses into glands.
- ACh main transmitter.
- Muscarinic solely involved in saliva production.

PNS innervation

Sympathetic NS

- Norepinephrine is the main transmitter.
- All synapses are adrenergic.
- SNS stimulation produces scant viscous saliva.
- SNS simulation augments that of the PNS.

Salivary flow rates

- No ANS stimulation 0.001-0.2 ml/min/gland, 0.8-1.7 ml/min/gland with ANS stimulation.
- $\sim 1000-1500$ ml/24hrs, or 1 ml/min.
- Unstimulated 69% of flow from SM gland, 26% parotid, 5% SL.
- Stimulated parotid and SM reverse contributions.
- Minor glands independent of stimulation usually account for 7-8% total flow.
- Flow independent of age. Acinar cells degenerate with age, flow still constant. Xerostomia in elderly likely due to meds.

Infections of the Salivary Glands

Viral Infections - Mumps

- Most common nonsuppurative infection
- Children
- Parotid (occ. SMG)
- bilateral, generalized swelling
- Paramyxovirus
 - Highly contagious
 - Air-borne droplet spread
 - Incubation 18 days
 - Virus spread for 1 week following swelling

Mumps

- Ductal epithelial desquamation leads to obstruction and secondary infection
- Low grade fever, arthralgia, HA, malaise
- Hydration
- Rest
- Modify diet to decrease gland stimulation
- Complications
- Parainfluenza, echovirus, EBV, choriomeningitis virus

Acquired Immunodeficiency Syndrome

- HIV-SGD
- Lymphoproliferative and cystic enlargement of the major salivary glands
- High suppressor T-cells and lymphocytosis
- Can be initial presentation
- Parotid (15- 30% bilateral) with lymphocytic interstial pneumonitis
- HIV in saliva

HIV – Clinical Features

- Infected newborns or adults (20-60 yo)
- Gradual nontender enlargement of glands
- Xerostomia, dry eyes, arthralgia
- Glandular swelling fluctuates
- Surgical treatment
 - Ddx: lymphoma, Kaposi's
- CT, MRI, FNA observation
- Steroids and zidovudine
- Good oral hygiene, sialagogues, topical fluoride

Acute Suppurative Sialoadentitis

- "Surgical parotitis", "Surgical mumps"
- 0.01-0.02% of all admissions
- 0.002-0.04% of all postops
- Retrograde migration of bacteria from the oral cavity
- Parotid gland most frequently involved
 - Inferior bacteriostatic properties

Pathogenesis of Acute infections

- Normal healthy flow flushes ducts
- Stasis permits retrograde flow
- Compromised host resistance
- Poor oral hygiene (increase oral bacteria)
- Chronic disease or prolonged recovery
- DEHYDRATION
- Anticholinergics or diuretics
- Anorexia reduces salivation
- 25% bilateral

Symptoms of Acute infections

- Rapid onset of pain, swelling, induration
- Fever, chills, malaise
- Increased WBC count
- Suppurative discharge from the gland

- S. aureus
- Streptococcus spc
- Strept pyogenes
- Strept viridans
- Strept pneumo
- H. influenzae
- anaerobes

Treatment

- Antibiotics
- Steroids
- Analgesics
- Local heat application
- Massage
- Increased fluid intake
- Surgical treatment if no improvement
- CT or US to rule out abscess
- Sialogram C/I in acute phase

Chronic Sialoadenitis

- Repeated episodes of pain and inflammation
- Parenchymal degeneration and fibrous replacement of the gland
- Initial severe acute infection
- Duct obstruction
- Depressed glandular secretion
- Parotid
- More infections more damage to gland and duct

Pathophysiology and Treatment

- Obstruction of salivary flow
- Intraductal calculus
- Stricture
- Mucous plug
- Ductal papilla lesion
- Extrinsic compression

- No consistent Tx
- Tympanic neurectomy
- Duct ligation
- Gland excision

Sialolithiasis

- Formation of hardened intraluminal deposits in the ductal system
- Common with chronic sialoadenitis
- Causes:
 - Stagnation of saliva
 - Focus for formation from duct injury
 - Biologic factors (Calcium salts)
- Hilus of the gland most common site

Location

- 80% Wharthon's duct
- 19% Stenson's
- 1% sublingual
- Why Wharthon's?
 - Alkaline and viscous saliva
 - Increased Ca and Phos
 - Angulation of the duct at Mylohyoid
 - Vertical orientation at the distal segment

Composition

- Calcium phosphate and carbonate
- Mg, Zn,NH3
- Glycproteins, mucopolysaccharides, cellular debris
- No correlation with calcium and phosphate levels

Symptoms and Management

- Colicky postprandial pain
- Swelling
- Erosive extrusion
- Plain films
- Sialography

- Like sialoadenitis
- Avoid vigorous probing
- Incise duct orifice
- Sialodochoplasty
- Stenting
- Surgical excision
- ECSL

Salivary Gland Neoplasms

- The Tumors
 - Benign
 - Malignant
- Work Up
 - Hx, Px & Imaging (previously covered)
 - FNAs

- Management
 - Surgery
 - Superficial Parotidectomy
 - Submandibular Gland Resection
 - Complications
 - Contraversial
 - The NO Neck

Salivary Gland Neoplasms

Diverse histopathology

Determines Aggressiveness

Relatively uncommon

– 2% of head and neck neoplasms

Distribution

- 95% in adults
- Parotid: 80% overall; 80% benign
- Submandibular: 15% overall; 50% benign
- Sublingual/Minor: 5% overall; 40% benign

Most Common Parotid Tumours

Benign

- 1) Pleomorphic adenoma
- 2) Warthin tumour

Malignant

- 1) MEC
- 2) AdenoCa

Most Common SMG Tumours

- Benign
 - 1) Pleomorphic adenoma
- Malignant
 - 1) ACC
 - 2) MEC
 - 3) Malignant mixed

Most Common Minor Salivary Gland Tumours

Benign

- 1) Pleomorphic adenoma
- 2) Monomorphic adenoma

• Malignant

- 1) ACC
- 2) MEC
- 3) AdenoCa
- 4) SCC

Common Salivary Gland Tumours in Children

Benign

- 1) Hemangioma (mesenchymal)
- 2) Pleomorphic adenoma (epithelial)
- 3) Lymphangioma

Malignant

- 1) 85% in parotid
- 2) MEC
- 3) Acinic cell carcinoma
- 4) AdenoCa

Multicellular Theory

Neoplastic cells originate from secretory unit counterparts

- Striated duct—oncocytic tumors, Warthin's, adenoca
- Acinar cells—acinic cell carcinoma
- Excretory Duct—squamous cell and mucoepidermoid carcinoma
- Intercalated duct and myoepithelial cells pleomorphic tumors, adenoid cystic & adenoca

Bicellular Theory

Neoplastic cells originate from basal cells in intercalated and excretory ducts

Intercalated Ducts

- Pleomorphic adenoma
- Warthin's tumor
- Oncocytoma
- Acinic cell
- Adenoid cystic

Excretory Ducts

- Squamous cell
- Mucoepidermoid

Benign Neoplasms

Pleomorphic Adenoma

- Most common of all salivary gland neoplasms
 - 70% of parotid tumors
 - 50% of submandibular tumors
 - 45% of minor salivary gland tumors
 - 6% of sublingual tumors
- 4th-6th decades
- F:M = 3-4:1

Pleomorphic Adenoma

- Slow-growing, painless mass
- Parotid: 90% in superficial lobe, most in tail of gland
- Minor salivary gland: lateral palate, submucosal mass

Copyright 2005 Elsevier Inc.

Pleomorphic Adenoma

- Treatment: complete surgical excision
 - Parotidectomy with facial nerve preservation
 - Submandibular gland excision
 - Wide local excision of minor salivary gland
- Avoid enucleation and tumor spill
 - 20-45% recurrence
- can metastasize and yet remain benign histologically

Warthin's Tumor

- AKA: papillary cystadenoma lymphomatosum
- 6-10% of parotid neoplasms
- Older, Caucasian, males
- Incidence increasing in women (smoking)
- 10% bilateral; 20% multicentric
- 3% with associated neoplasms
- Presentation: slow-growing, painless mass in parotid tail

Malignant Tumors

BOX 61-4	
MALIGNANT NEOPLASMS OF MAJOR SALIVARY GLANDS	HOCWALD 2001 ⁶²
Mucoepidermoid carcinoma	28 (36%)
Adenocarcinoma	11 (14%)
Adenoid cystic carcinoma	16 (20%)
Carcinoma ex-pleomorphic adenoma	4 (5%)
Acinic cell carcinoma	7 (9%)
Squamous cell carcinoma	6 (8%)
Other	6 (8%)

Copyright 2005 Elsevier Inc.

Mucoepidermoid Carcinoma

- Most common salivary gland malignancy
- 5-9% of salivary neoplasms
- Parotid 45-70% of cases
- Palate 18%
- 3rd-8th decades, peak in 5th decade
- **F>M**
- Caucasian > African American

Mucoepidermoid Carcinoma

Presentation

- Low-grade: slow growing, painless mass
- High-grade: rapidly enlarging, +/- pain
- **Minor salivary glands: may be mistaken for benign or inflammatory process
 - Hemangioma
 - Papilloma
 - Tori

Mucoepidermoid Carcinoma

Treatment

- Influenced by site, stage, grade
- Low-grade tumors: complete resection by parotidectomy
- High-grade: parotidectomy, neck dissection (NO neck)
 & RTX

- Overall, 2nd most common salivary gland malignancy
- 2nd most common of parotid
- Most common in submandibular, sublingual and minor salivary glands
- **M** = **F**
- 5th decade
- Presentation
 - Asymptomatic enlarging mass
 - Pain, paresthesias, facial weakness/paralysis

- Histology
- i) cribriform pattern
 - Most common
 - "swiss cheese" appearance

- ii) tubular pattern
 - Layered cells forming ductlike structures
 - Basophilic mucinous substance

• iii) solid pattern

 Solid nests of cells without cystic or tubular spaces

Treatment

- Complete local excision
- Tendency for perineural invasion: facial nerve sacrifice
- Postoperative Neutron Beam XRT
- Long-term F/U mandatory

Prognosis

- Local recurrence: 42%
- Distant metastasis: lung, bone
- Indolent course: 5-year survival 75%, 20-year survival 13%

Complications

TABLE 107.8. COMPLICATIONS PAROTIDECTOMY

Early Complications

Facial nerve paralysis

Hemorrhage or hematoma

Infection

Skin flap necrosis

Trismus

Salivary fistula or sialocele

Seroma

Long-term Complications

Frey's syndrome

Recurrent tumor

Cosmetic deformity

Soft-tissue deficit

Hypertrophic scar or keloid

FIGURE 107.17. Right facial paralysis after parotidectomy.

Frey's syndrome (aka. Gustatory sweating)

- Aberrant reinnervation of postganglionic parasympathetic nerves to the sweat glands of the face
- 10% of patients overtly symptomatic
- Diagnosis: Minor's starch iodine test
- Afferent pathway
 - Parotid and sweat glands
 - Auriculotemporal nerve
 - Otic ganglion
 - LSPN (enters skull base via foramen ovale)
 - Jacobson's nerve (leaves skull base via inferior tympanic canaliculus)
 - CN IX
 - Inferior salivatory nucleus

FIGURE 107.18. A: Normal innervation of parotid and sweat glands. **B:** Proposed mechanism of gustatory sweating (Frey's syndrome).

Α

Figure 3. The Minor's test showed areas where the secretion of sweat gland diluted with iodine, which reacted with the starch.

BOX 61-13

TREATMENT OF GUSTATORY SWEATING

Nonsurgical

Topical glycopyrrolate

Topical antiperspirant

Botox injection

Surgical

Fat grafting

Dermal grafting

Temporalis fascia interposition flap

Sternoeleidomastoid interposition flap

Tympanic neurectomy

Copyright 2005 Elsevier Inc.

Thank You