

IHD, Dyslipidemia, and CVD risk assessment

Objectives

- Cardiovascular disease
- Dyslipidemia and Introduction to new guidelines on lipid management
- Comparison with ATP III guidelines
- Current statin treatment recommendations
- Criticism to AHA/ACC
- Treat to target vs fire and forget

1)CAD

Pathogenesis:

CAD is the narrowing of the coronary artery, decreasing the blood supply to the heart, leading to ischemia of the heart muscle cells.

Etiology:

CAD is mostly due to Atherosclerosis.

Atherosclerosis and thrombosis are the most important pathogenic mechanisms.

Primary prevention of CVD

The achievement and maintenance of good health is being emphasized in programs from The American Heart Association that promote seven ideal cardiovascular health metrics, including:

- Not smoking
- Being physically active
- Having a normal blood pressure
- Having a normal blood glucose level
- Having a normal total cholesterol level
- Being normal weight
- Eating a healthy diet

CAD risk factors

Modifiable

- Cigarette and tobacco smoke
- High blood cholesterol
- High blood pressure
- Physical inactivity
- Obesity
- Diabetes

Non-Modifiable

- Age
- Gender
- Family history of CVD

Table 2. Emerging Risk Factors According to ATP III Final Report Update 2004

- 1. Elevated high-sensitivity C-reactive protein
- 2. Coronary artery calcification
- 3. Elevated lipoprotein (a)
- 4. Homocysteine
- 5. Fibrinogin

Emerging risk factors for CAD

C- reactive protein

A person's baseline level of inflammation, as assessed by the plasma concentration of CRP, predicts the long-term risk of a first myocardial infarction.

The Framingham risk score

- Scoring system used to calculate a pt's risk of coronary events.
- The Framingham Heart Study first introduced the term risk factor to medical literature.
- The following risk factors are used to assess cumulative risk:

Age Smoking Status

Systolic BP HTN treatment

Total cholesterol levels HDL-C levels

Calculating 10-Year Risk in Women

Age (years)	20-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79
Points	-7	-3	0	3	6	8	10	12	14	16

			Points		
Total Cholesterol	Age 20-39	Age 40-49	Age 50-59	Age 60-69	Age 70-79
<160 (mg/dl 160-199 200-239 240-279 ≥ 280	.) 0 4 8 11 13	0 3 6 8 10	0 2 4 5	0 1 2 3 4	0 1 1 2 2
	Age 20-39	Age 40-49	Age 50-59	Age 60-69	Age 70-79

Nonsmoker

Smoker

Points

Systolic BP	Untx"ed	Tx"ed
<120	0	0
120-129	3	1
130-139	4	4
140-149	5	3
≥ 160	6	4

HDL CHOLESTEROL

≥ 60 (mg/dL)

50-59 40-49 < 40

Points total:	<9	9	10 11	12	13	14	15	16	17	18	19	20	21	22	23	24	≥25	

10 year Risk (%) <1 1 1 1 2 2 3 4 5 6 8 11 14 17 22 27 \geq 30

Untx"ed = Untreated Tx"ed =Treated

NCEP/Framingham Estimate of 10-Year Coronary Heart Disease Risk in Men

Age (y):	20-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79
Points:	-9	-4	0	3	6	8	10	11	12	13

			Points		
Total	Age	Age	Age	Age	Age
Cholesterol	20-39y	40-49y	50-59y	60-69y	70-79y
<160 (mg/dl)	0	0	0	0	0
*** ***	4	3	2	1	0
	7	5	3	1	0
	9	6	4	2	1
	11	8	5	3	1

HDL	
Cholesterol	Points
≥60 (mg/dl)	-1
50-59	0
40-49	1
<40	2

			Points		
	\ge 20-39y	Age 40-49y	Age 50-59y	Age 60-69y	Age 70-79y
Nonsmoker:	0	0	0	0	0
Smoker	8	5	3	1	1

	romia							
Systolic BP	Untx'ed	Tx'ed						
<120 mmHg	0	0						
120-129	0	1						
130-139	1	2						
140-159	1	2						
≥160	2	3						

Points Total:	<0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	>17
10-Year Risk (%):	<1	1	1	1	1	1	2	2	3	4	5	6	8	10	12	16	20	25	≥30

Untx'ed = Untreated Tx'ed = Treated y = Years

Cases in which you don't need FRS?

Patients who already have a high risk due to other diseases

We don't need FRS if:

- Stroke or TIA
- Bypass surgery or balloon angioplasty
- Type 2 diabetes
- Kidney disease
- Abdominal aortic aneurysm
- Familial hypercholesterolemia
- Peripheral artery disease
- Carotid artery disease

They already have <u>HIGH RISK</u> to develop CHD

Table 3. Classification	on of Patients based on The Framingham Risk Score
Low risk	<10% coronary heart disease risk at 10 years
Intermediate risk	10-20% risk of coronary event at 10 years
High risk	>20% risk of coronary event at 10 years

Major CAD types

❖ Stable Angina; due to atheroma
❖Acute Coronary Syndrome:
Unstable Angina
Myocardial Infarction (STEMI OR NSTEMI)

	STEMI	NSTEMI	Unstable angina
ST	↑	N-↓	N-↓
Troponin I,T	1 2 weeks	↑	Normal
CK-MB	个 3days	↑	Normal

Myocardial infarction

	Table 4. Findings Indicating Myocardial Infarction According to JAMA 1998; 280: 1256-63 (N=200)							
Signs & findings	Positive Signs	Negative Signs						
	ST-segment elevation	Normal ECG						
	New Q-wave	Pleuritic, sharp or stabbing chest pain						
	Chest pain radiating to both the right and left arm simultaneously	Pain reproduced on palpation						
	Added heart sound "S3"	Positional chest pain						
	Hypotension							

Treatment of Acute Coronary Syndrome

- Aspirin (proven to prevent recurrent infarction and decreases mortality)
- Clopidogrel
- β- blockers
- ACE inhibitors & ARBs (should be used if there is intolerance of ACE inhibitors)
- Nitroglycerin
- Heparin
- Statins

Care following MI

- Risk factor modification.
- Cessation of smoking.
- Control blood sugar and blood pressure.
- Physical Rehabilitation and exercise
- Long-term medications:

Aspirin , Clopidogrel , β- blockers ,ACE inhibitors ,Aldosterone blockers, Statins

2) Dyslipidemia

- A disorder of lipoprotein metabolism, including lipoprotein <u>overproduction</u> or deficiency.
- May be manifested by elevation of the total cholesterol, (LDL) and the triglyceride concentrations, and a decrease in the (HDL) concentration in the blood.

Types	Chylomicron	VLDL	LDL	HDL
Made by:	small intestines in the fed stat	the liver from excess dietary carbohydrate and protein along with the Chylomicron remnant	The Liver "VLDL once it has lost a lot of its TG's"	The Liver and Small Intestine
Absorbed into	the lymph vessels, then into the blood			
Rich in	TGs	TGs	Cholesterol	
Function	transport fats from the intestinal mucosa to the liver	Deliver TGs to body cells	Deliver cholesterol to all body cells	Pick up cholesterol from body cells and take it back to the liver

Changes in Lipid Guidelines and Cholesterol Targets

AHA/ACC vs IAS

ACC/AHA 2013

- ACC/AHA (evolved from ATP IV/NHLBI efforts).
- Recommendations based on what has been shown to reduce risk in RCTs.
- Many areas left to clinical judgment where RCT data were not available or limited.

Fire and forget

International Atherosclerosis Society (IAS)

 Apo B-containing lipoproteins is causally associated with ASCVD risk and that lowering "atherogenic cholesterol" (LDL-C and non-HDL-C) will reduce risk.

Treat to target

AHA/ACC

Use Critical Questions (CQs) to create the evidence search from which the guideline is developed

- Cholesterol Panel: 3 CQs
- 2. Risk Assessment Work Group: 2 CQs
- 3. Lifestyle Management Work Group: 3 CQs

2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults

What has changed compared to ATP3 guideline?

- No specific LDL cholesterol target
- Initiate either **moderate-intensity** or **high-intensity statin** therapy for patients who fall into the four categories
- Measure lipids during follow-ups to assess adherence to treatment, not to achieve a specific LDL target

	ATP-III	AHA/ACC
Basis for recommendations	Expert opinion based on pathophysiology, observational, & RCT data	Evidence-based recommendations based on RCTs and systematic reviews
Risk stratification	CHD equivalents, risk factors, 10-year risk of MI	4 specific risk groups based on benefits in clinical trials
Risk calculation	Framingham risk score	Pooled cohort equation
Goals of therapy	LDL & non-HDL levels (stratified by risk)	Statin intensity (% LDL reduction)
Role for monitoring	Fasting lipid panel to assess achievement of goal	Fasting lipid panel to assess adherence/therapeutic response
Role of non-statin agents	Encouraged use if needed to achieve LDL or non-HDL goal	Discourages use in most patients because of lack of evidence on improving outcomes

Table 2. ATP III Classification of LDL, Total, and HDL Cholesterol (mg/dL)

	, , , , , , , , , , , , , , , , , , , ,	Ollariges (120) and Drug Therapy in Differen			
LDL Cholesterol <100	Optimal	Risk Category	LDL Goal	LDL Level at Which to Initiate Therapeutic Lifestyle Changes (TLC)	LDI at V Cor
100-129 130-159 160-189	Near optimal/above optimal Borderline high High	CHD or CHD Risk Equivalents (10-year risk >20%)	<100 mg/dL	Changes (TLC) ≥100 mg/dL	The ≥10 (10 dru
≥190 Total Cholesterol <200	Very high Desirable	2+ Risk Factors (10-year risk ≤20%)	<130 mg/dL	≥130 mg/dL	10- ≥13 10- ≥16
200-239 ≥240 HDL Cholesterol	Borderline high High	0-1 Risk Factor [†]	<160 mg/dL	≥160 mg/dL	≥19 (16 LDL opt
<40 Low ≥60 High		cannot be achieved by glycerides and HDL, eight in this subcategory.	y therapeutic lifestyle .g., nicotinic acid or f	owering drugs in this category if changes. Others prefer use of d fibrate. Clinical judgment also ma a 10-year risk <10%, thus 10-ye	lrugs th ay call f

Table 5: LDL Cholesterol Goals and Cutpoints for Therapeutic Lifestyle Changes (TLC) and Drug Therapy in Different Risk Categories.

Risk Category	LDL Goal	LDL Level at Which to Initiate Therapeutic Lifestyle Changes (TLC)	LDL Level at Which to Consider Drug Therapy
CHD or CHD Risk Equivalents (10-year risk >20%)	<100 mg/dL	≥100 mg/dL	≥130 mg/dL (100-129 mg/dL: drug optional)*
2+ Risk Factors (10-year risk ≤20%)	<130 mg/dL	≥130 mg/dL	10-year risk 10-20%: ≥130 mg/dL 10-year risk <10%: ≥160 mg/dL
0-1 Risk Factor [†]	<160 mg/dL	≥160 mg/dL	≥190 mg/dL (160-189 mg/dL: LDL-lowering drug optional)
* Some authorities recor	mmend use of LDL-lo	wering drugs in this category if a	an LDL cholesterol <100 ma/dl

OL cholesterol <100 mg/dL that primarily modify trifor deferring drug therapy

sk assessment in people with 0-1 risk factor is not necessary.

The scope of new the guidelines

- Focus on treatment of blood cholesterol to reduce ASCVD risk in adults.
- Emphasize adherence to a heart healthy lifestyle as foundation of ASCVD risk reduction.
- Identify individuals most likely to benefit from cholesterol-lowering therapy "4 statin benefit groups "
- Identify safety issues.

ACC/AHA - Why Not Continue to Treat to Target?

Major difficulties:

- Current RCT data do not indicate what the target should be
- Unknown magnitude of additional ASCVD risk reduction with one target compared to another
- Unknown rate of additional adverse effects from multidrug therapy used to achieve a specific goal

Therefore, unknown net benefit from treat-to-target

4 Major Statin Benefit Groups

- Individuals with clinical ASCVD
- 2. Individuals with LDL >190
- 3. Individuals with DM, 40-75 yo with LDL 70-189 and without clinical ASCVD
- 4. Individuals without clinical ASCVD or DM with LDL 70-189 and estimated 10-year ASCVD risk >7.5%

Don't Forget Healthy Lifestyle

- Healthy diet
- Regular exercise
- No Smoking
- Maintain healthy weight

2013 ACC/AHA/NHLBI Guideline on Lifestyle for CVD Prevention

- Mediterranean or DASH-type diet
- Restrict consumption of saturated fats, trans fats, sweets, sugar-sweetened beverages, and sodium.
- Physical activity of moderate to vigorous intensity lasting 40 minutes per session 3-4 times per week

Dosing Statins

Table 5. High- Moderate- and Low-Intensity Statin Therapy (Used in the RCTs reviewed by the Expert Panel)*

High-Intensity Statin Therapy	Moderate-Intensity Statin Therapy	Low-Intensity Statin Therapy
Daily dose lowers LDL-C on average, by approximately ≥50%	Daily dose lowers LDL-C on average, by approximately 30% to <50%	Daily dose lowers LDL-C on average, by <30%
Atorvastatin (40†)–80 mg Rosuvastatin 20 (40) mg	Atorvastatin 10 (20) mg Rosuvastatin (5) 10 mg Simvastatin 20-40 mg‡ Pravastatin 40 (80) mg Lovastatin 40 mg Fluvastatin XL 80 mg Fluvastatin 40 mg bid Pitavastatin 2-4 mg	Simvastatin 10 mg Pravastatin 10-20 mg Lovastatin 20 mg Fluvastatin 20-40 mg Pitavastatin 1 mg

1. Patients with clinical ASCVD

2.Patient with LDL greater than 190 mg/dl

- These are patients with familial hyperlipidemia
- They deserve special consideration
- Often start with untreated LDL of 325-400 mg/dl

3. Patients with DM, age 40-75 years

- All have indication for statin
- Diabetics with > 7.5% 10 year risk get high intensity statin therapy
- Diabetics with < 7.5% 10 year risk of CAD get moderate intensity statin therapy

4. Age 40-75 years that do not meet above criteria, but have a 10 year risk

of >7.5 %

- 10 year and lifetime risk as determined by CV Risk Calculator.
- Specifically designed for this trial.
- Downloadable on AHA or ACC site.

Pooled Cohort Risk Assessment Equations

Predicts 10-year risk for a first atherosclerotic cardiovascular disease (ASCVD) event

Clinical controversies

- ❖ Management of other patient groups
 - Age <40 or >75 years without clinical ASCVD?
 - 10-year risk of 5%-7.5%?
 - LDL ≥160mg/dl or other primary hyperlipidemias?
 - ❖ Additional risk assessment may be necessary
 - 1) High sensitivity C-reactive protein
 - 2) Ankle-brachial index
 - 3) Coronary artery scores
 - 4) Family history of premature CHD
 - 5) Elevated lifetime risk of ASCVD

No recommendations on statin therapy for patients with:

- I. NYHA class II-IV
- II. ESRD on dialysis

Clinical ASCVD Not currently on statin therapy Initial evaluation prior to statin initiation

- Fasting lipid panel*
- ALT
- CK (if indicated)
- Consider evaluation for other secondary causes (Table 6) or conditions that may influence statin safety (Table 8, Rec 1).

Evaluate and Treat Laboratory Abnormalities

- 1. Triglycerides ≥500 mg/dL
- 2. LDL-C ≥190 mg/dL
 - Secondary causes (Table 6)
 - If primary, screen family for FH
- 3. Unexplained ALT ≥3 times ULN

No Clinical ASCVD Not currently on cholesterol-lowering drugs Initial evaluation prior to statin initiation

- Fasting lipid panel*
- ALT
- Hemoglobin A1c (if diabetes status unknown)
- CK (if indicated)
- Consider evaluation for other secondary causes (Table 6) or conditions that may influence statin safety (Table 8, Rec 1)

Evaluate and Treat Laboratory Abnormalities

- 1. Triglycerides ≥500 mg/dL
- 2. LDL-C ≥190 mg/dL
 - Secondary causes (Table 6)
- If primary, screen family for FH
- 3. Unexplained ALT ≥3 times ULN

Table 6.

Secondary Causes of Hyperlipidemia Most Commonly Encountered in Clinical Practice

Secondary Cause	Elevated LDL-C	Elevated Triglycerides	
Diet	Saturated or trans fats, weight gain, anorexia nervosa	Weight gain, very-low-fat diets, high intake of refined carbohydrates, excessive alcohol intake	
Drugs	Diuretics, cyclosporine, glucocorticoids, amiodarone	Oral estrogens, glucocorticoids, bile acid sequestrants, protease inhibitors, retinoic acid, anabolic steroids, sirolimus, raloxifene, tamoxifen, beta blockers (not carvedilol), thiazides	
Diseases	Biliary obstruction, nephrotic syndrome	Nephrotic syndrome, chronic renal failure, lipodystrophies	
Disorders and altered states of metabolism	Hypothyroidism, obesity, pregnancy*	Diabetes (poorly controlled), hypothyroidism, obesity; pregnancy*	

Drug Class	Agents and Daily Doses	Lipid/Li Effects	poprotein	Side Effects	Contraindications
HMG CoA reductase inhibitors (statins)	Lovastatin (20-80 mg) Pravastatin (20-40 mg) Simvastatin (20-80 mg) Fluvastatin (20-80 mg) Atorvastatin (10-80 mg) Cerivastatin (0.4-0.8 mg)	LDL HDL TG	↓18-55% ↑5-15% ↓7-30%	Myopathy Increased liver enzymes	Absolute: • Active or chronic liver disease Relative: • Concomitant use of certain drugs*
Bile acid sequestrants	Cholestyramine (4-16 g) Colestipol (5-20 g) Colesevelam (2.6-3.8 g)	LDL HDL TG	↓15-30% ↑3-5% No change or increase	Gastrointestinal distress Constipation Decreased absorp- tion of other drugs	Absolute: • dysbeta- lipoproteinemia • TG >400 mg/dL Relative: • TG >200 mg/dL
Nicotinic acid	Immediate release (crystalline) nicotinic acid (1.5-3 gm), extended release nicotinic acid (Niaspan®) (1-2 g), sustained release nicotinic acid (1-2 g)	LDL HDL TG	↓5-25% ↑15-35% ↓20-50%	Flushing Hyperglycemia Hyperuricemia (or gout) Upper GI distress Hepatotoxicity	Absolute: Chronic liver disease Severe gout Relative: Diabetes Hyperuricemia Peptic ulcer disease
Fibric acids	Gemfibrozil (600 mg BID) Fenofibrate (200 mg) Clofibrate (1000 mg BID)		↓5-20% increased in with high TG) ↑10-20% ↓20-50%	Dyspepsia Gallstones Myopathy	Absolute: • Severe renal disease • Severe hepatic disease

Combine statin with fibric acid > it is better to choice fenofibrate not gemfibrozil.

2013 AHA/ACC Cholesterol Guidelines

Monitoring of statins:

Baseline ALT prior to initiation

- Consider baseline CK in patients at risk for muscle disorders
- Routine ALT or CK levels not recommended unless symptomatic

Baseline fasting lipid panel

- 4-12 weeks to assess therapeutic response and every 3-12 months if clinically warranted
- Reinforce adherence if response is less than expected
- Dose may be decreased if 2 consecutive LDL <40

STATIN Safety recommendations

Conditions that could predispose pts to statin **side effect**:

- Impaired renal or hepatic function
- History of previous statin intolerance or muscle disorder
- Age >75
- History of hemorrhagic stroke

Consider use of lower-intensity statin if any of these characteristics are present

- > Select the appropriate dose.
- > Keep potential Side effects and drug-drug interaction In mind (grade A).
- > If high or moderate intensity statin not tolerated, use the maximum tolerated dose instead.
- > It may be harmful to initiate simvastatin 80mg, or increase the dose of simvastatin to 80mg (Grade B).

Management of adverse effects

Mild to moderate muscle symptoms

- D/C statin until muscle symptoms resolve
- Re-challenge with a lower dose
- If <u>symptoms resume</u>, D/C statin and re-challenge with lower dose of different statin
- Gradually titrate to target dose
- If <u>symptoms don't resolve</u> after 2 months, assume it is not statin-related and resume original statin

New onset diabetes

Reinforce lifestyle modifications

Memory impairment

Consider other potential causes before stopping statin

Non-statin therapies

Non statin therapies, alone or in combination with statins, do not provide acceptable risk reduction benefits compared to adverse effects.

These include:

- Zetia
- Fibrates
- Fish oil
- Niacin

For the most part, these should be avoided with few exceptions.

The role of non-statin agents

Limited evidence to support use of non-statin agents

Consider use of non-statin agents in the following situations:

- In addition to statins in high-risk patients with less than anticipated response:
 - Clinical ASCVD and age<75
 - o Baseline LDL>190
 - o Age 40-75 years with diabetes
- Completely statin-intolerant
- TG (>500)

Pooled Cohort Equations: Criticism

Estimates of 12 million to 45 million additional candidates for statin therapy based on CV risk estimates

 Pencina* et al. estimated 87.4% of men and 53.6% of women ages 60-75 would now be eligible for statins

Validation attempts have yielded conflicting results:

- 75%-150% when applied to data from the Women's Health Study and the Physician's Health Study
- Muntner‡ et al. reported good results in actual vs. predicted 5-year risks in a contemporary cohort of the REGARDS study

Observed and expected events for different scores were compared in MESA after a 10.2- year follow-up

Risk Score	Predicted Events, n (%)	Observed Events, n (%)	Signed Absolute Difference	Discordance, %*	c-Statistic	Discrimination Slope
Total (n = 4227)						
FRS-CHD†	397.6 (9.41)	263 (6.22)	3.18	51	0.68	0.05
FRS-CVD‡	561.3 (13.28)	448 (10.60)	2.68	25	0.71	0.09
ATPIII-FRS-CHD§	288.7 (6.83)	134 (3.17)	3.66	115	0.71	0.06
RRS	314.0 (7.43)	323 (7.64)	-0.21	-3	0.72	0.07
AHA-ACC-ASCVD¶	387.2 (9.16)	218 (5.16)	4.00	78	0.71	0.06
Men (n = 1961)						
FRS-CHD†	251.1 (12.80)	164 (8.36)	4.44	53	0.69	0.05
FRS-CVD‡	358.7 (18.29)	261 (13.31)	4.98	37	0.71	0.09
ATPIII-FRS-CHD§	218.6 (11.15)	86 (4.39)	6.76	154	0.71	0.05
RRS	213.5 (10.89)	196 (9.99)	0.89	9	0.70	0.06
AHA-ACC-ASCVD¶	232.1 (11.84)	125 (6.37)	5.46	86	0.71	0.06
Women (n = 2266)						
FRS-CHD†	146.5 (6.47)	99 (4.37)	2.10	48	0.60	0.01
FRS-CVD‡	202.6 (8.94)	187 (8.25)	0.69	8	0.70	0.05
ATPIII-FRS-CHD§	70.2 (3.10)	48 (2.12)	0.98	46	0.67	0.02
RRS	100.5 (4.44)	127 (5.60)	-1.17	-21	0.72	0.05
AHA-ACC-ASCVD¶	155.1 (6.84)	93 (4.10)	2.74	67	0.70	0.05

Treat to target vs Fire and forget

Is There a Need for a Dramatic Change in Approach to ASCVD Prevention?

IMProved Reduction of Outcomes: Vytorin Efficacy International Trial

A Multicenter, Double-Blind, Randomized Study to Establish the Clinical Benefit and Safety of Vytorin (Ezetimibe/Simvastatin Tablet) vs Simvastatin Monotherapy in High-Risk Subjects Presenting With Acute Coronary Syndrome

Study Design

Patients stabilized post ACS ≤ 10 days:

LDL-C 50-125*mg/dL (or 50-100**mg/dL if prior lipid-lowering Rx)

*3.2mM **2.6mM

N=18,144

Standard Medical & Interventional Therapy

Simvastatin 40 mg Uptitrated to Simva 80 mg if LDL-C > 79 (adapted per FDA label 2011)

Ezetimibe / Simvastatin 10 / 40 mg

Follow-up Visit Day 30, every 4 months

90% power to detect ~9% difference

Duration: Minimum 2 1/2-year follow-up (at least 5250 events)

Primary Endpoint: CV death, MI, hospital admission for UA, coronary revascularization (≥ 30 days after randomization), or stroke

Cardiovascular death, MI, documented unstable angina requiring rehospitalization, coronary revascularization (≥30 days), or stroke

Conclusions

IMPROVE IT: First trial demonstrating incremental clinical benefit when adding a non-statin agent (ezetimibe) to statin therapy:

- YES: Non-statin lowering LDL-C with ezetimibe reduces cardiovascular events
- YES: Even Lower is Even Better (achieved mean LDL-C 53 vs. 70 mg/dL at 1 year)
- YES: Confirms ezetimibe safety profile

Reaffirms the LDL hypothesis, that reducing LDL-C prevents cardiovascular events

Results could be considered for future guidelines

The Future of Guidelines

- LDL-Creduction
- Incorporate IMPROVE-ITdata
- Incorporate early PCSK9 trials
- Thedata continues to support LDL-C targets and "lower is better".

Summary

- Fire and forget approach
- Know the 4 high risk groups
- Use medications proven to reduce risk, ie statins
- Encourage healthy lifestyle
- Don't forget patient preference

Done by: Kholoud Aldosari

