Orthopedic Emergencies: Compartment Syndrome/Acute Joint Dislocation

Objectives Compartment Syndrome

- 1. To explain the pathophysiology of CS
- 2. To Identify patients at risk of developing CS
- 3. To be able to diagnose and initially manage patients with CS
- To be able to describe the possible complications of CS

- What is a compartment?
- What is the tissue pressure normal
- artery>arteriol>capillary bed (diffusion/exchange)>venule> vein

- Pathophysiology:
- ➢risk factor
- Elevated tissue pressure
- Absence of diffusion at the capillary t
- Cell damage and swelling
- Further increase in tissue pressure
- Lack of oxygenation
- ➢ Vicious circle

- Threshold pressure:
 - 30 mm Hg (rigid)
 - Less than 30 mm Hg difference between compartment pressure and diastolic pressure (clinically relevant)

- Risk factors (local):
 - Trauma, crush, fracture (open/closed)
 - Injection
 - Bleeding
 - Prolonged vascular occlusion (reperfusion injury)
 - Burns
 - Venomous bite
 - Intra-osseous fluid replacement
 - IV fluid extravasation
 - Tight bandage
 - Post surgery

- Risk factors (general):
 - Head injury
 - Decreased conciseness
 Late diagnosis
 - Hypotension

- Diagnosis:
 - Early:
 - Pain!!!
 - Pain increase with stretching the involved compartment
 - Presence of risk factor
 - High index of suspicion
 - Measurement of compartment pressure is high

- Diagnosis:
 - Late:
 - Paresthesia
 - Paralysis
 - Pallor
 - Severely high pressure:
 - Pulselessness (RARE!)

- Diagnosis:
 - Tight, woody compartment
 - Tender compartment
 - Measurement:
 - Rarely necessary
 - Must be done at area of highest expected pressure
 - May give false low result

- Management:
 - Initial (undeveloped CS):
 - Maintain normal blood pressure
 - Remove any constricting bandage
 - Keep limb at heart level
 - Regular close monitoring (15-30 minute intervals)
 - Avoid nerve blocks, sedation and strong analgesia to obtain patients feed back

- Management:
 - Fully developed CS
 - Maintain normal blood pressure
 - Remove any constricting bandage
 - Keep limb at heart level
 - Diuresis to avoid kidney tubular injury if late
 - Urgent surgical decompression (Fasciotomy)

- Fasciotomy:
 - Releasing the compartment fascia
 - Allows swollen muscles to expand in volume
 - Results in decreased compartment pressure
 - Avoids further damage
 - Does not reverse already occurred damage
 - Ideally should be done as soon as diagnosis is made

- Fasciotomy:
 - Should be done as long as there is still viable tissue
 - Should not be done if there is no expected viable tissue, Otherwise infection is likely
 - ➢. Debridement of all necrotic tissue is necessary
 - Second and third look surgeries are often required
 - Closure of skin is usually achieved after swelling has subsided
 - Skin grafting is often required

- Fasciotomy:
 - Indications:
 - 6 hours of total ischemia time (ex: arterial embolism)
 - Significant tissue injury
 - Worsening initial clinical picture
 - Delayed presentation with a picture of developed CS
 - Absolute Compartment pressure >30 mmHg or <30 mm Hg difference from diastolic pressure

- Fasciotomy:
 - Is a prophylactic procedure
 - Does not reverse injury to permanently damaged tissue

So better to have a low threshold!

- Complications:
- 1.Myonecrosis> myoglobenemia>myoglobinuria> kidney tubular damage
- 2.Loss of function of the involved compartment:
 - 1. Flexion contracture
 - 2. Paralysis
 - 3. Loss of sensation

- Complications:
 - Leg:
 - Anterior compartment:
 - Drop foot
 - Deep posterior compartment:
 - Clowed toes
 - Loss of sensation in the sole
 - Forearm:
 - Volar compartment:
 - Volkman contracture

- Objectives:
 - 1. To describe mechanisms of joint stability
 - 2. To be able diagnose patients with a possible acute joint dislocation
 - 3. to be able to describe general principles of managing a patient with a dislocated joint
 - to describe possible complications of joint dislocations in general and in major joints such as the shoulder, hip and knee

- Joint stability:
 - Bony stability
 - Shape of the joint (ball and socket vs round on flat)
 - Soft Tissue :
 - Dynamic stabilizer: Tendons/Muscles
 - Static stabilizer: Ligaments ± meniscus/labr

 Complex synergy leading to a FUNCTIONAL and STABLE joint

- It takes higher energy to dislocate a joint with bony stability than a joint with mainly soft tissue stability
- Connective tissue disorders may lead to increased joint instability due to abnormal soft tissue stabilizers.
- Dislocation of a major joint should lead to considering other injuries.

- At risk group:
 - Major trauma victims
 - Athletes and sport enthusiasts
 - Connective tissue disorder patients

- When a joint is subjected to sufficient force in certain directions it might sustain a fracture, a dislocation or a fracture dislocation
- Different joints have different force victors that may lead to a dislocation
- A joint might dislocate in different directions

- A joint dislocation is described by stating the location of the distal segment
 - Anterior shoulder dislocation: anterior displacement of the humeral head relative to the glenoid
 - Posterior hip dislocation: posterior displacement of the femoral head relative to the acetabulum

- Dislocation:
 - Total loss of contact between the articular surfaces of the joint
- Sublaxation:
 - partial loss of contact between the articular surfaces of the joint
- Acute joint dislocation
- Chronic joint dislocation

- Diagnosis:
 - History of a traumatic event (major trauma or any trauma with the limb in high risk position)
 - Pain and inability to use the limb
 - Deformity
 - Shortening
 - Malalignment
 - Malrotation

- Diagnosis:
 - Should check for other injuries (distracting injury)
 - Should always check the distal neurovascular status.
 - Should check for compartment syndrome

- Diagnosis:
- X-rays:
 - Should be done urgently without delay if dislocation is suspected
 - Two perpendicular views of the involved joint
 - Occasionally, special views are required such as the axillary view for shoulder dislocation
 - X-rays to the joint above and below

- Management principles:
 - Must rule out other injuries
 - Pain relief
 - Urgent reduction
 - Check stability and safety zone
 - Check neurovascular status after reduction
 - X-rays after reduction
 - Protect the joint
 - Rehabilitation
 - Follow for late complications

- Reduction:
 - Monitor vitals
 - IV analgesia (opiod)
 - IV sedation (to relax the muscles)
 - Gradual traction to distract the joint
 - Realignment and rotation to reduce the joint based on direction of dislocation
 - A palpable clunk well be felt
 - Check ROM and stability of the joint

- Reduction:
 - Once joint is felt to be reduced, check distal NV status
 - If it was intact before but not after, farther urgent management is needed
 - If it was not present before but intact after, check again later to confirm
 - Observe patients vitals until medications wear out
 - Stabilize joint and get X-rays

The leg is held in adduction and internal rotation

- If irreducible or partial reduction only
 - Urgent closed reduction under general anesthesia and possible open reduction if closed reduction fails
 - ► Usually due to
 - insufficient muscle relaxation
 - Entrapment of soft tissue

- Special considerations:
 - A fracture dislocation is usually reduced in an open fashion in the operating room
 - Must confirm concentric reduction on the x-rays, otherwise an open reduction should be performed

- Early Complications:
 - Heterotopic ossification
 - Neurological injury (reversible or irreversible)
 - Vascular injury
 - Compartment syndrome
 - Osteochondral fracture/injury

- Late complications:
 - Stiffness
 - Heterotopic ossification
 - Chronic instability
 - Avascular necrosis
 - Osteoarthritis

- Special considerations:
 - Hip joint:
 - Posterior dislocation is commonest
 - Major trauma with hip flexed (dashboard injury)
 - Sciatic nerve injury common
 - High incidence of late
 avascular necrosis
 - An orthopedic emergency!!

- Special considerations:
 - Shoulder dislocation:
 - common
 - Anterior dislocation is more common
 - Patients with seizures prone to posterior dislocation
 - May cause chronic instability
 - Can result in axillary nerve injury

- Special considerations:
 - knee dislocation:
 - Three or more ligaments
 - Severe (high energy) trauma

- May be associated with popletial artery injury---- Limb threatening
- Very serious emergency
- Needs accurate vascular assessment
- May be associate with peroneal nerve injury
- May be associated with fracture/ compartment syndrome
- · Most require surgery sither serly or lets or both

Questions

Be safe and alert!

Thank you