PRINCIPLES OF FRACTURES (ADULTS)

SULTAN ALDOSARI; MD; FRCSC.

OBJECTIVES

- Introduction.
- Basic science of fracture healing.
- Principles of evaluating patients with fractures.
- Principles of management.

- Lamellar bone
- Cancellous bone
- Woven bone

• Lamellar Bone

- Collagen fibers arranged in parallel layers
- Normal adult long bone
- Basic unit: Osteon"Haversian systems"

- Cancellous bone (trabecular or spongy bone)
 - Less dense and more elastic bone
 - Small bones
 - Metaphysis

- Woven Bone
 - Coarse with random orientation
 - Weaker than lamellar bone
 - Normally
 remodeled to
 lamellar bone

Bone Composition

• Cells

- Osteocytes
- Osteoblasts
- Osteoclasts

• Extracellular Matrix

- Organic (35%)
 - Collagen (type I) 90%
 - Osteocalcin, osteonectin, proteoglycans, glycosaminoglycans, lipids (ground substance)
- Inorganic (65%)
 - Primarily hydroxyapatite Ca₅(PO₄)₃(OH)₂

Gross Anatomy

What does "Fracture" mean?

- Fracture means literally broken bone.
- This can be described in different ways:
 - Extent
 - Location
 - Morphology
 - Mechanism
 - Associated soft tissue injuries

• Extent:

 Complete: fracture extends 360° of bone circumference (all around)

• Extent:

- Complete: fracture extends 360° of bone circumference (all around).
- Incomplete: seen almost only in children:
 - Greensick

• Extent:

- Complete: fracture extends 360° of bone circumference (all around).
- Incomplete: seen almost only in children:
 - Greensick
 - Buckle fracture

• Location:

- Name of bone
- Side
- Diaphysis, metaphysis or epiphysis
- Long bones (diaphysis): divide them in thirds (proximal, middle or distal third)
- Metaphysis: intra-articular v.s extra-articular

• Morphology:

 Transverse: loading mode resulting in fracture is tension

- Morphology:
 - Oblique: loading mode is compression.

- Morphology:
 - Spiral: loading mode is torsion.

• Morphology:

- Fracture with Butterfly fragment: loading mode is bending.
- It also called a wedge fracture.

• Morphology:

- Comminuted fracture: 3 or more fragments
- Segmental fracture

• Mechanism:

- High energy vs. low energy.
- Multiple injuries vs. isolated injury.
- Pathological fracture: normal load in presences of weakened bone (tumor, osteoporosis, infection)
- Stress fracture: normal bone subjected to repeated load (military recruits/athletes).

- Associated soft tissue injuries:
 - Close fracture: skin integrity is maintained.
 - Open fracture: fracture is exposed to external environment .

Any skin breach in proximity of a fracture is an open fracture until proven otherwise.

FRACTURE HEALING

Bone Healing

- Indirect bone healing (endochondral ossification) occurs in nature with untreated fracture.
- It is called indirect because of formation of cartilage at intermediate stage.
- It runs in 4 stages:
 - Hematoma formation
 - Soft callus formation
 - Hard Callus formation
 - Remodeling

- Inflammation phase (1-2 weeks):
 - Disruption of B.V
 - Cells migrates
 - Coagulation starts

Soft callus (2-3 weeks)

- Cascade of cellular differentiation occurs
- New B.V
- Fibroblasts produce granulation tissue
- This evolves into fibrocartilage

- Hard callus (3-12 weeks)
 - Endochondral ossification converts soft callus into woven bone
 - Starts at periphery
 - Continues till no more movement

- Remodeling (years)
 - conversion of woven
 bone into lamellar bone.

Direct bone healing

- It can happens if no motion takes place
- Bone is formed without intermediate stage
- "Cutting cone mechanism"

Is it direct or indirect bone healing mechanism?

Healing Factors

- Complexity of fracture
- Soft tissue damage
- Close v.s Open
- Periosteal stripping
- Systemic :
 - Malnutrition
 - smoking

PRINCIPLES OF EVALUATION

HISTORY

- Pain: very severe one. Get complete pain history components
- Inability to use the affected limb.
- Inability to ambulate.
- Deformity.
- If it is a major trauma: Patient might not be able to communicate.
- Ask about mechanism of injury.

HISTORY

- Major Trauma (MVC):
 - ① Speed.
 - 2 Front or back seated.
 - ③ Driver.
 - ④ Seat belted.
 - **(5)** Ejection.
 - 6 Deployed air bag.
 - Death at scene.

HISTORY

- If you suspect pathological fracture:
 Ask about prior pain before event happened.
 Ask about constitutional symptoms.
 Ask about history of cancer.
 If you suspect stress fracture:
 - Ask about recent increment of activities.

• Inspection:

- Swelling
- Deformity
- Ecchymosis
- Skin integrity:
 - Bleeding
 - Protruding bone

• Palpation:

Bony tenderness.Examine joint above and below.

• ROM:

Can not be assessed in acute fracture.

• Vascular exam:

- color.
- > Temperature.
- > Capillary refill (within 2 sec as compared to other side)
- ➢ Pulses
- > Always compare contralateral side.
- Peripheral nerve exam of injured limb.
- Always check compartment tightness:
 > Wood like vs. soft

At the End of your exam, you must comment

On:
① Skin is intact or not
② N/V status is intact or not
③ Compartments of limb are soft or not.

- Start with basic and proceed to more specific tests.
 - 1 Basic blood works.
 - 2 X-rays of interest.
 - 3 advance radiological exams if needed.

- X-rays:
 - 2 orthogonal (perpendicular) views: AP and lateral.
 Joint above and below.
 Special views: specific for the region of interest.
- Fracture does hurt:
 - Splint patient's injured limb before you send him to Xrays.
 - If there is gross deformity, re-align, splint then send for images.

- Fracture can be obvious on images.
- Sometimes, careful assessment of radiographs is needed (i.e. stress fracture or non displaced fracture)

- Soft tissue swelling
- Fat pad signs
- Periosteal reaction
- Joint effusion
- Cortical buckle

- Soft tissue swelling
- Fat pad signs
- Periosteal reaction
- Joint effusion
- Cortical buckle

- Soft tissue swelling
- Fat pad signs
- Periosteal reaction
- Joint effusion
- Cortical buckle

- Soft tissue swelling
- Fat pad signs
- Periosteal reaction
- Joint effusion
- Cortical buckle

- Soft tissue swelling
- Fat pad signs
- Periosteal reaction
- Joint effusion
- Cortical buckle

Advanced radiological images:
 ➢ If fracture extends to joint: obtain CT scan
 ➢ If fracture is suspected but not seen on X-rays: consider doing MRI.

RADIOGRAPHIC DESCRIPTION OF FRACTURE

- Location
- Displacement:
 - Translation
 - Angulation
 - Shortening
 - Rotation
- Pattern.
- common eponymous

Location

- Which bone?
- Which part of the bone?
 - * Epiphysis -intraarticular?
 - Metaphysis
 - Diaphysis -divide into 1/3s

- Use anatomic landmarks when possible
 - * e.g. medial malleolus, ulnar styloid, etc

Pattern

- Simple vs. comminuted
- Complete vs. incomplete
- Orientation of fracture line
 - Transverse
 - Oblique
 - Spiral

Displacement

- Displacement is the opposite of apposition
- Position of distal fragment relative to proximal
- Expressed as a percentage

Angulation

- Deviation from normal alignment
- Direction of angulation defined by apex of
- Expressed in degrees

FRACTURE DESCRIPTION: SUMMARY

Clinical parameters Open vs. Closed Neurovascular status **Clinical deformity Radiographic parameters** Location. Pattern. Displacement. **Common eponymous**

TREATMENT PATHWAY

Reduction.
 Immobilization
 Definitive treatment
 Rehabilitation.

 If the Injured limb is grossly deformed, simple re-alignment and splinting should be initially undertaken

REDUCTION

- If fracture is displaced.
- Meant to re-align fracture fragments.
- To minimize soft tissue injury.
- Can be consider definitive if fragments' position is accepted.
- Open reduction: take place at OR.

REDUCTION

Patient must receive adequate analgesic prior to reduction. Most occur under conscious sedation at Emerg. Reduction must be followed by immobilization. ✓ N/V status must be documented before and after reduction and immobilization

- To hold reduction in position.
- To provide support to broken limb
- To prevent further damage.
- Control the Pain

• Most fractures require an immobilization of joint above and below

BACK SLAB

SLING

COMPLETE CAST

SKELETAL TRACTION

SKIN TRACTION

DEFINITIVE

- If satisfactory reduction can not be achieved or held at initial stage.
- Reduction can be attempted close or open (surgery)
- Immobilization can be achieved with:
 - Plate and screws.
 - IM nail
 - EX-fix

Rehabilitation

- Motion as early as possible without jeopardizing maintenance of reduction.
- Wt bearing restriction for short period (6-8 weeks).
- Move unaffected areas immediately

Treatment: Principles

Reduce (if necessary)

- to maximize healing potential
- To ensure good function after healing

Immobilize

- to relieve pain
- to prevent motion that may interfere with union
- to prevent displacement or angulation of fracture
- Rehabilitate
 - to insure return to function

MULTIPLE TRAUMA

- Multi-disciplinary approach.
- Run by Trauma Team Leader (TTL) at ER.
 Orthopedic is part of the team.
- Follow trauma Protocol as per your institution.
- Treatment is prioritized toward life threatening conditions then to limb threatening conditions.

COMPLICATIONS

- If fracture extends into joint or close:
 - O.A
 - Stiffness
- Fracture healing:
 - Nonunion: doesn't heal after double the expect time.
 - Malunion: healed with mal-alignment.
- Fracture specific: AVN after femur neck fracture.
- Medical complications: LL fractures, VTE
- Surgical related: infection, hardware failure.

Take home points

- Fractures hurt –immobilization relieves pain.
- R/o open fracture, Compartment syndrome and N/V injuries.
- Principles of fracture treatment:
 - Reduce
 - Immobilize
 - Rehabilitate

