

CASE SCENARIO

54-year-old man is undergoing a laparotomy and colon resection for Carcinoma. The anesthesiologist is attempting to calculate the fluid Replacement.

The patient body weight is 80 kg, 8 hours fasting with bowel preparation blood loss 500 ml and urine output is 400 ml

WHAT ARE THE COMPARTMENT THAT MUST BE CONSIDERED WHEN CALCULATING ?

The patient body weight is 80 kg, 8 hours fasting with bowel preparation blood loss 500ml and urine output is 400 ml.

DISCUSS THE VOLUME OF FLUID THAT SHOULD BE REPLACED?

Perioperative fluid application basically must replace two kinds of losses:

replacement of fluid losses from the body via insensible perspiration and urinary output

Maintenance therapy

replacement of plasma losses from the circulation due to fluid shifting or acute bleeding. Replacement therapy

The following factors must be taken into account:

- I Maintenance fluid requirements
- 2- NPO and other deficits: NG suction, bowel prep
- 3-Third space losses
- 4- Replacement of blood loss
- 5- Special additional losses: diarrhea.

2-WHAT ARE THE SIGNS OF PREOPERATIVE HYPOVOLEMIA?

Hypovolemia: *Signs & Symptoms*

- HTN
- Wt. loss
- Tented, dry skin
- ↑ RR, ↑ PR
- Cool skin
- Flat neck veins
- Oliguria
- · Lethargy
- subjective cue/s:

WHAT ARE THE SIGNS OF PREOPERATIVE HYPOVOLEMIA?

3-HOW TO CALCULATE THE FLUID REPLACEMENT IN THE INTRAOPERATIVE PERIOD ALL OF WHICH TAKE INTO CONSIDERATION THE PREOPERATIVE FLUID DEFICITS?

4-WHICH TYPE OF FLUIDS SHOULD BE USED ?

<u>Dextrose</u>: is metabolized leaving the water, which distributes freely within the total body water. Large quantities will cause hyperglycaemia and dilutional hyponatraemia. <u>Crystalloids</u>: a similar concentration to extracellular fluid.

They will distribute within the extravascular compartment but not within the intracellular compartment Excessive saline can cause a hyperchloraemic alkalosis.

<u>Colloids</u>: suspensions of osmotically active, large particles.

They are usually of either starch or gelatin in origin. Initially, they are largely confined to the vascular compartment, although some have

only a relatively short half-life prior to excretion.

THANKYOU